

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

E·XFI

Product Status	Active
Туре	Blackfin+
Interface	CAN, DSPI, EBI/EMI, I ² C, PPI, QSPI, SD/SDIO, SPI, SPORT, UART/USART, USB OTG
Clock Rate	400MHz
Non-Volatile Memory	ROM (512kB)
On-Chip RAM	512kB
Voltage - I/O	1.8V, 3.3V
Voltage - Core	1.10V
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	184-LFBGA, CSPBGA
Supplier Device Package	184-CSPBGA (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/analog-devices/adsp-bf705kbcz-4

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

GENERAL DESCRIPTION

The ADSP-BF70x processor is a member of the Blackfin[®] family of products. The Blackfin processor combines a dual-MAC 16-bit state-of-the-art signal processing engine, the advantages of a clean, orthogonal RISC-like microprocessor instruction set, and single-instruction, multiple-data (SIMD) multimedia capabilities into a single instruction-set architecture. New enhancements to the Blackfin+ core add 32-bit MAC and 16-bit complex MAC support, cache enhancements, branch prediction and other instruction set improvements—all while maintaining instruction set compatibility to previous Blackfin products. The processor offers performance up to 400 MHz, as well as low static power consumption. Produced with a low-power and low-voltage design methodology, they provide world-class power management and performance.

By integrating a rich set of industry-leading system peripherals and memory (shown in Table 1), the Blackfin processor is the platform of choice for next-generation applications that require RISC-like programmability, multimedia support, and leadingedge signal processing in one integrated package. These applications span a wide array of markets, from automotive systems to embedded industrial, instrumentation, video/image analysis, biometric and power/motor control applications.

Table 1. Processor Comparison

D	ocessor Feature	ADSP-	ADSP-	ADSP-	ADSP-	ADSP- BF704	ADSP-	ADSP-	ADSP-	
		BF700	BF701	BF702	BF703		BF705	BF706	BF707	
	ximum Speed Grade (MHz) ¹ ximum SYSCLK (MHz)		00	400 200						
		88-Lead	184-Ball	88-Lead	184-Ball	2 88-Lead	184-Ball	88-Lead	184-Ball	
Pd	ckage Options	LFCSP	CSP_BGA	LFCSP	CSP_BGA	LFCSP	CSP_BGA	LFCSP	CSP_BGA	
GP	IOs	43	47	43	47	43	47	43	47	
	L1 Instruction SRAM		•		48	3K	•		•	
_	L1 Instruction SRAM/Cache				16	5K				
Memory (bytes)	L1 Data SRAM				32	2K				
(d)	L1 Data SRAM/Cache				32	2K				
(Jor	L1 Scratchpad (L1 Data C)				8	К				
Aem	L2 SRAM	12	28K	25	6K	51	2K	10	24K	
2	L2 ROM				51	2K				
	DDR2/LPDDR (16-bit)	No	Yes	No	Yes	No	Yes	No	Yes	
I ² C		1								
Up	/Down/Rotary Counter	1								
GP	Timer	8								
Wa	itchdog Timer	1								
GP	Counter	1								
SP	ORTs	2								
Qı	ad SPI					2				
Du	al SPI					1				
SP	Host Port					1				
US	B 2.0 HS OTG					1				
Pa	rallel Peripheral Interface					1				
CA	Ν					2				
UA	RT	2								
Re	al-Time Clock					1				
Static Memory Controller (SMC)			Yes							
Se	curity Crypto Engine		1		Ye	es	1		•	
SD	/SDIO (MSI)	4-bit	8-bit	4-bit	8-bit	4-bit	8-bit	4-bit	8-bit	
4-(Channel 12-Bit ADC	No	Yes	No	Yes	No	Yes	No	Yes	

¹Other speed grades available.

The CAN controller offers the following features:

- 32 mailboxes (8 receive only, 8 transmit only, 16 configurable for receive or transmit)
- Dedicated acceptance masks for each mailbox
- Additional data filtering on first two bytes
- Support for both the standard (11-bit) and extended (29-bit) identifier (ID) message formats
- Support for remote frames
- Active or passive network support
- CAN wake-up from hibernation mode (lowest static power consumption mode)
- Interrupts, including: TX complete, RX complete, error and global

An additional crystal is not required to supply the CAN clock, as the CAN clock is derived from a system clock through a programmable divider.

USB 2.0 On-the-Go Dual-Role Device Controller

The USB 2.0 on-the-go (OTG) dual-role device controller provides a low-cost connectivity solution for the growing adoption of this bus standard in industrial applications, as well as consumer mobile devices such as cell phones, digital still cameras, and MP3 players. The USB 2.0 controller allows these devices to transfer data using a point-to-point USB connection without the need for a PC host. The module can operate in a traditional USB peripheral-only mode as well as the host mode presented in the OTG supplement to the USB 2.0 specification.

The USB clock is provided through a dedicated external crystal or crystal oscillator.

The USB OTG dual-role device controller includes a phase locked loop with programmable multipliers to generate the necessary internal clocking frequency for USB.

Housekeeping ADC (HADC)

The HADC provides a general-purpose, multichannel successive approximation analog-to-digital converter. It supports the following features:

- 12-bit ADC core (10-bit accuracy) with built-in sample and hold
- 4 single-ended input channels
- Throughput rates up to 1 MSPS
- Single external reference with analog inputs between 0 V and 3.3 V
- Selectable ADC clock frequency including the ability to program a prescaler
- Adaptable conversion type: allows single or continuous conversion with option of autoscan

- Auto sequencing capability with up to 4 autoconversions in a single session. Each conversion can be programmed to select any input channel.
- Four data registers (individually addressable) to store conversion values

System Crossbars (SCB)

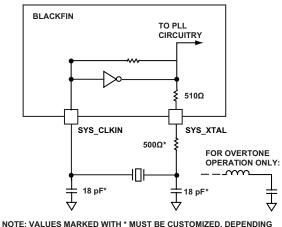
The system crossbars (SCB) are the fundamental building blocks of a switch-fabric style for (on-chip) system bus interconnection. The SCBs connect system bus masters to system bus slaves, providing concurrent data transfer between multiple bus masters and multiple bus slaves. A hierarchical model built from multiple SCBs—provides a power and area efficient system interconnect, which satisfies the performance and flexibility requirements of a specific system.

The SCBs provide the following features:

- Highly efficient, pipelined bus transfer protocol for sustained throughput
- Full-duplex bus operation for flexibility and reduced latency
- Concurrent bus transfer support to allow multiple bus masters to access bus slaves simultaneously
- Protection model (privileged/secure) support for selective bus interconnect protection

POWER AND CLOCK MANAGEMENT

The processor provides three operating modes, each with a different performance/power profile. Control of clocking to each of the processor peripherals also reduces power consumption. See Table 5 for a summary of the power settings for each mode.


System Crystal Oscillator and USB Crystal Oscillator

The processor can be clocked by an external crystal (see Figure 4), a sine wave input, or a buffered, shaped clock derived from an external clock oscillator. If an external clock is used, it should be a TTL compatible signal and must not be halted, changed, or operated below the specified frequency during normal operation. This signal is connected to the SYS_CLKIN pin of the processor. When an external clock is used, the SYS_XTAL pin must be left unconnected. Alternatively, because the processor includes an on-chip oscillator circuit, an external crystal may be used.

For fundamental frequency operation, use the circuit shown in Figure 4. A parallel-resonant, fundamental frequency, microprocessor grade crystal is connected across the SYS_CLKIN and SYS_XTAL pins. The on-chip resistance between SYS_CLKIN and the SYS_XTAL pin is in the 500 k Ω range. Further parallel resistors are typically not recommended.

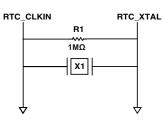
The two capacitors and the series resistor shown in Figure 4 fine-tune phase and amplitude of the sine frequency. The capacitor and resistor values shown in Figure 4 are typical values only. The capacitor values are dependent upon the load capacitance recommendations of the crystal manufacturer and the PCB physical layout. The resistor value depends on the drive

level specified by the crystal manufacturer. The user should verify the customized values based on careful investigations on multiple devices over the required temperature range.

NOTE: VALUES MARKED WITH * MUST BE CUSTOMIZED, DEPENDING ON THE CRYSTAL AND LAYOUT. ANALYZE CAREFULLY. FOR FREQUENCIES ABOVE 33 MHz, THE SUGGESTED CAPACITOR VALUE OF 18pF SHOULD BE TREATED AS A MAXIMUM.

Figure 4. External Crystal Connection

A third-overtone crystal can be used for frequencies above 25 MHz. The circuit is then modified to ensure crystal operation only at the third overtone by adding a tuned inductor circuit as shown in Figure 4. A design procedure for third-overtone operation is discussed in detail in application note (EE-168) *Using Third Overtone Crystals with the ADSP-218x DSP* (www.analog.com/ee-168).


The same recommendations may be used for the USB crystal oscillator.

Real-Time Clock

The real-time clock (RTC) provides a robust set of digital watch features, including current time, stopwatch, and alarm. The RTC is clocked by a 32.768 kHz crystal external to the processor. Connect RTC pins RTC_CLKIN and RTC_XTAL with external components as shown in Figure 5.

The RTC peripheral has dedicated power supply pins so that it can remain powered up and clocked even when the rest of the processor is in a low power state. The RTC provides several programmable interrupt options, including interrupt per second, minute, hour, or day clock ticks, interrupt on programmable stopwatch countdown, or interrupt at a programmed alarm time.

The 32.768 kHz input clock frequency is divided down to a 1 Hz signal by a prescaler. The counter function of the timer consists of four counters: a 60-second counter, a 60-minute counter, a 24-hour counter, and a 32,768-day counter. When the alarm interrupt is enabled, the alarm function generates an interrupt when the output of the timer matches the programmed value in the alarm control register. There are two alarms. The first alarm is for a time of day. The second alarm is for a specific day and time of that day.

NOTE: CRYSTAL LOAD CAPACITORS ARE NOT NECESSARY IN MOST CASES.

Figure 5. External Components for RTC

The stopwatch function counts down from a programmed value, with one-second resolution. When the stopwatch interrupt is enabled and the counter underflows, an interrupt is generated.

Clock Generation

The clock generation unit (CGU) generates all on-chip clocks and synchronization signals. Multiplication factors are programmed to define the PLLCLK frequency. Programmable values divide the PLLCLK frequency to generate the core clock (CCLK), the system clocks (SYSCLK, SCLK0, and SCLK1), the LPDDR or DDR2 clock (DCLK), and the output clock (OCLK).

Writing to the CGU control registers does not affect the behavior of the PLL immediately. Registers are first programmed with a new value, and the PLL logic executes the changes so that it transitions smoothly from the current conditions to the new ones.

SYS_CLKIN oscillations start when power is applied to the VDD_EXT pins. The rising edge of SYS_HWRST can be applied after all voltage supplies are within specifications, and SYS_CLKIN oscillations are stable.

Clock Out/External Clock

The SYS_CLKOUT output pin has programmable options to output divided-down versions of the on-chip clocks. By default, the SYS_CLKOUT pin drives a buffered version of the SYS_ CLKIN input. Clock generation faults (for example, PLL unlock) may trigger a reset by hardware. The clocks shown in Table 3 can be output on the SYS_CLKOUT pin.

Port Name	Direction	Description
HADC_VREFN	Input	Ground Reference for ADC. Connect to an external voltage reference that meets data sheet specifications.
HADC_VREFP	Input	External Reference for ADC. Connect to an external voltage reference that meets data sheet specifications.
MSI_CD	Input	Card Detect. Connects to a pull-up resistor and to the card detect output of an SD socket.
MSI_CLK	Output	Clock. The clock signal applied to the connected device from the MSI.
MSI_CMD	I/O	Command. Used to send commands to and receive responses from the connected device.
MSI_Dn	I/O	Data n. Bidirectional data bus.
MSI_INT	Input	eSDIO Interrupt Input. Used only for eSDIO. Connects to an eSDIO card's interrupt output. An interrupt may be sampled even when the MSI clock to the card is switched off.
Px_nn	I/O	Position n. General purpose input/output. See the GP Ports chapter of the HRM for programming information.
RTC_CLKIN	Input	Crystal input/external oscillator connection. Connect to an external clock source or crystal.
RTC_XTAL	Output	Crystal output. Drives an external crystal. Must be left unconnected if an external clock is driving RTC_CLKIN.
SMC_ABEn	Output	Byte Enable n. Indicate whether the lower or upper byte of a memory is being accessed. When an asynchronous write is made to the upper byte of a 16-bit memory, SMC_ABE1b=0 and SMC_ABE0b=1. When an asynchronous write is made to the lower byte of a 16-bit memory, SMC_ABE1b=1 and SMC_ABE0b=0.
SMC_AMSn	Output	Memory Select n. Typically connects to the chip select of a memory device.
SMC_AOE	Output	Output Enable. Asserts at the beginning of the setup period of a read access.
SMC_ARDY	Input	Asynchronous Ready. Flow control signal used by memory devices to indicate to the SMC when further transactions may proceed.
SMC_ARE	Output	Read Enable. Asserts at the beginning of a read access.
SMC_AWE	Output	Write Enable. Asserts for the duration of a write access period.
SMC_Ann	Output	Address n. Address bus.
SMC_Dnn	I/O	Data n. Bidirectional data bus.
SPI_CLK	I/O	Clock. Input in slave mode, output in master mode.
SPI_D2	I/O	Data 2. Used to transfer serial data in Quad mode. Open-drain when ODM mode is enabled.
SPI_D3	I/O	Data 3. Used to transfer serial data in Quad mode. Open-drain when ODM mode is enabled.
SPI_MISO	I/O	Master In, Slave Out. Used to transfer serial data. Operates in the same direction as SPI_MOSI in Dual and Quad modes. Open-drain when ODM mode is enabled.
SPI_MOSI	I/O	Master Out, Slave In. Used to transfer serial data. Operates in the same direction as SPI_MISO in Dual and Quad modes. Open-drain when ODM mode is enabled.
SPI_RDY	I/O	Ready. Optional flow signal. Output in slave mode, input in master mode.
SPI_SELn	Output	Slave Select Output n. Used in Master mode to enable the desired slave.
SPI_SS	Input	Slave Select Input. Slave mode - Acts as the slave select input. Master mode- Optionally serves as an error detection input for the SPI when there are multiple masters.
SPT_ACLK	I/O	Channel A Clock. Data and Frame Sync are driven/sampled with respect to this clock. This signal can be either internally or externally generated.
SPT_AD0	I/O	Channel A Data 0. Primary bidirectional data I/O. This signal can be configured as an output to transmit serial data, or as an input to receive serial data.
SPT_AD1	I/O	Channel A Data 1. Secondary bidirectional data I/O. This signal can be configured as an output to transmit serial data, or as an input to receive serial data.
SPT_AFS	I/O	Channel A Frame Sync. The frame sync pulse initiates shifting of serial data. This signal is either generated internally or externally.
SPT_ATDV	Output	Channel A Transmit Data Valid. This signal is optional and only active when SPORT is configured in multichannel transmit mode. It is asserted during enabled slots.

Table 6. ADSP-BF70x Detailed Signal Descriptions (Continued)

Table 7. ADSP-BF70x 184-Ball CSP_BGA Signal Descriptions (Continued)

Signal Name	Description	Port	Pin Name
DMC0_DQ07	DMC0 Data 7	Not Muxed	DMC0_DQ07
DMC0_DQ08	DMC0 Data 8	Not Muxed	DMC0_DQ08
MC0_DQ09	DMC0 Data 9	Not Muxed	DMC0_DQ09
DMC0_DQ10	DMC0 Data 10	Not Muxed	DMC0_DQ10
DMC0_DQ11	DMC0 Data 11	Not Muxed	DMC0_DQ11
DMC0_DQ12	DMC0 Data 12	Not Muxed	DMC0_DQ12
DMC0_DQ13	DMC0 Data 13	Not Muxed	DMC0_DQ13
MC0_DQ14	DMC0 Data 14	Not Muxed	DMC0_DQ14
MC0_DQ15	DMC0 Data 15	Not Muxed	DMC0_DQ15
MC0_LDM	DMC0 Data Mask for Lower Byte	Not Muxed	DMC0_LDM
MC0_LDQS	DMC0 Data Strobe for Lower Byte	Not Muxed	DMC0_LDQS
MC0_LDQS	DMC0 Data Strobe for Lower Byte (complement)	Not Muxed	DMC0_LDQS
MC0_ODT	DMC0 On-die termination	Not Muxed	DMC0_ODT
MC0_RAS	DMC0 Row Address Strobe	Not Muxed	DMC0_RAS
MC0_UDM	DMC0 Data Mask for Upper Byte	Not Muxed	DMC0_UDM
MC0_UDQS	DMC0 Data Strobe for Upper Byte	Not Muxed	DMC0_UDQS
DMC0_UDQS	DMC0 Data Strobe for Upper Byte (complement)	Not Muxed	DMC0_UDQS
MC0_VREF	DMC0 Voltage Reference	Not Muxed	DMC0_VREF
DMC0_WE	DMC0 Write Enable	Not Muxed	DMC0_WE
ND	Ground	Not Muxed	GND
ND_HADC	Ground HADC	Not Muxed	GND_HADC
IADC0_VIN0	HADC0 Analog Input at channel 0	Not Muxed	HADC0_VIN0
IADC0_VIN1	HADC0 Analog Input at channel 1	Not Muxed	HADC0_VIN1
IADC0_VIN2	HADC0 Analog Input at channel 2	Not Muxed	HADC0_VIN2
IADC0_VIN3	HADC0 Analog Input at channel 3	Not Muxed	HADC0_VIN3
IADC0_VREFN	HADC0 Ground Reference for ADC	Not Muxed	HADC0_VREFN
IADC0_VREFP	HADC0 External Reference for ADC	Not Muxed	HADC0_VREFP
TG_SWCLK	TAPC0 Serial Wire Clock	Not Muxed	JTG_TCK_SWCLK
TG_SWDIO	TAPC0 Serial Wire DIO	Not Muxed	JTG_TMS_SWDIO
TG_SWO	TAPC0 Serial Wire Out	Not Muxed	JTG_TDO_SWO
TG_TCK	TAPC0 JTAG Clock	Not Muxed	JTG_TCK_SWCLK
TG_TDI	TAPC0 JTAG Serial Data In	Not Muxed	JTG_TDI
TG_TDO	TAPC0 JTAG Serial Data Out	Not Muxed	JTG_TDO_SWO
TG_TMS	TAPC0 JTAG Mode Select	Not Muxed	JTG_TMS_SWDIO
TG_TRST	TAPC0 JTAG Reset	Not Muxed	JTG_TRST
ISI0_CD	MSI0 Card Detect	A	PA_08
ISI0_CLK	MSI0 Clock	С	PC_09
ISI0_CMD	MSI0 Command	С	PC_05
ISI0_D0	MSI0 Data 0	С	PC_08
1SI0_D1	MSI0 Data 1	С	PC_04
1SI0_D2	MSI0 Data 2	С	PC_07
ISI0_D3	MSI0 Data 3	С	PC_06
ISI0_D4	MSI0 Data 4	С	PC_10
1SI0_D5	MSI0 Data 5	С	PC_11
1SI0_D6	MSI0 Data 6	С	PC_12
ASIO_D7	MSI0 Data 7	С	PC_13

		Driver	Int	Reset	Reset	Hiber	Hiber	Power	Description
Signal Name	Туре	Туре	Term	Term	Drive	Term	Drive	Domain	and Notes
DMC0_A06	1/0	В	none	none	none	none	none	VDD_DMC	Desc: DMC0 Address 6
									Notes: No notes.
DMC0_A07	I/O	В	none	none	none	none	none	VDD_DMC	Desc: DMC0 Address 7
									Notes: No notes.
DMC0_A08	I/O	В	none	none	none	none	none	VDD_DMC	Desc: DMC0 Address 8
									Notes: No notes.
DMC0_A09	I/O	В	none	none	none	none	none	VDD_DMC	Desc: DMC0 Address 9
									Notes: No notes.
DMC0_A10	I/O	В	none	none	none	none	none	VDD_DMC	Desc: DMC0 Address 10
									Notes: No notes.
DMC0_A11	I/O	В	none	none	none	none	none	VDD_DMC	Desc: DMC0 Address 11
									Notes: No notes.
DMC0_A12	I/O	В	none	none	none	none	none	VDD_DMC	Desc: DMC0 Address 12
DMC0 442	1/0								Notes: No notes.
DMC0_A13	I/O	В	none	none	none	none	none	VDD_DMC	Desc: DMC0 Address 13
	1/0	D							Notes: No notes.
DMC0_BA0	I/O	В	none	none	none	none	none	VDD_DMC	Desc: DMC0 Bank Address Input 0 Notes: No notes.
DMC0_BA1	I/O	В	nono	nono	nono	nono	none	VDD_DMC	Desc: DMC0 Bank Address Input 1
DIVICO_BAT	1/0	D	none	none	none	none	none	VDD_DIVIC	Notes: No notes.
DMC0_BA2	I/O	В	none	none	none	none	none	VDD_DMC	Desc: DMC0 Bank Address Input 2
DIVICO_DIV2	1/0		none	none	none	none	none	VDD_DIMC	Notes: For LPDDR, leave unconnected.
DMC0_CAS	I/O	В	none	none	none	none	none	VDD_DMC	Desc: DMC0 Column Address Strobe
bineo_erio	., 0		lione	none	none	none	none		Notes: No notes.
DMC0_CK	I/O	с	none	none	L	none	L	VDD_DMC	Desc: DMC0 Clock
		-							Notes: No notes.
DMC0_CK	I/O	С	none	none	L	none	L	VDD_DMC	Desc: DMC0 Clock (complement)
									Notes: No notes.
DMC0_CKE	I/O	В	none	none	L	none	L	VDD_DMC	Desc: DMC0 Clock enable
									Notes: No notes.
DMC0_CS0	I/O	В	none	none	none	none	none	VDD_DMC	Desc: DMC0 Chip Select 0
									Notes: No notes.
DMC0_DQ00	I/O	В	none	none	none	none	none	VDD_DMC	Desc: DMC0 Data 0
									Notes: No notes.
DMC0_DQ01	I/O	В	none	none	none	none	none	VDD_DMC	Desc: DMC0 Data 1
									Notes: No notes.
DMC0_DQ02	I/O	В	none	none	none	none	none	VDD_DMC	Desc: DMC0 Data 2
	1/0								Notes: No notes.
DMC0_DQ03	I/O	В	none	none	none	none	none	VDD_DMC	Desc: DMC0 Data 3
	1/0	D							Notes: No notes.
DMC0_DQ04	I/O	В	none	none	none	none	none	VDD_DMC	Desc: DMC0 Data 4 Notes: No notes.
DMC0_DQ05	I/O	В	none	none	none	none	none	VDD_DMC	Desc: DMC0 Data 5
	"0		none	none	none	none	lione		Notes: No notes.
DMC0_DQ06	I/O	В	none	none	none	none	none	VDD_DMC	Desc: DMC0 Data 6
2									Notes: No notes.
DMC0_DQ07	I/O	В	none	none	none	none	none	VDD_DMC	Desc: DMC0 Data 7
									Notes: No notes.

Table 15. ADSP-BF70x Designer Quick Reference (Continued)

		Driver	Int	Reset	Reset	Hiber	Hiber	Power	Description
Signal Name	Туре	Туре	Term	Term	Drive	Term	Drive	Domain	and Notes
PB_04	I/O	A	none	none	none	none	none	VDD_EXT	Desc: PPI0 Data 3 SPT0 Channel B Clock SPI0 Slave Select Output 4 SMC0 Data 3 TM0 Alternate Clock 6 Notes: SPI slave select outputs require a pull-up when used.
PB_05	I/O	A	none	none	none	none	none	VDD_EXT	Desc: PPI0 Data 2 SPT0 Channel B Data 0 SPI0 Slave Select Output 5 SMC0 Data 2 Notes: SPI slave select outputs require a
									pull-up when used.
PB_06	I/O	A	none	none	none	none	none	VDD_EXT	Desc: PPI0 Data 1 SPT0 Channel B Frame Sync SPI0 Slave Select Output 6 SMC0 Data 1 TM0 Clock
									Notes: SPI slave select outputs require a pull-up when used.
PB_07	I/O	A	none	none	none	none	none	VDD_EXT	Desc: PPI0 Data 0 SPT0 Channel B Data 1 SPI0 Data 3 SMC0 Data 0 SYS Power Saving Mode Wakeup 0
									Notes: If hibernate mode is used, one of the following must be true during hibernate. Either this pin must be actively driven by another IC, or it must have a pull-up or pull-down.
PB_08	I/O	A	none	none	none	none	none	VDD_EXT	Desc: UARTO Transmit PPI0 Data 16 SPI2 Slave Select Output 2 SMC0 Data 8 SYS Power Saving Mode Wakeup 1 Notes: SPI slave select outputs require a pull-up when used. If hibernate mode is used, one of the following must be true during hibernate. Either this pin must be actively driven by another IC, or it must have a pull-up or pull-down.
PB_09	I/O	A	none	none	none	none	none	VDD_EXT	Desc: UARTO Receive PPI0 Data 17 SPI2 Slave Select Output 3 SMC0 Data 9 TM0 Alternate Capture Input 3 Notes: SPI slave select outputs require a pull-up when used.
PB_10	I/O	A	none	none	none	none	none	VDD_EXT	Desc: SPI2 Clock TRACE0 Trace Clock SMC0 Data 10 TM0 Alternate Clock 4 Notes: SPI clock requires a pull-down when controlling most SPI flash devices.
PB_11	I/O	A	none	none	none	none	none	VDD_EXT	Desc: SPI2 Master In, Slave Out TRACE0 Trace Data 4 SMC0 Data 11 Notes: Pull-up required for SPI_MISO if SPI master boot is used.

Table 15. ADSP-BF70x Designer Quick Reference (Continued)

Signal Name	Туре	Driver Type	lnt Term	Reset Term	Reset Drive	Hiber Term	Hiber Drive	Power Domain	Description and Notes
PC_13	1/0	A	none	none	none	none	none	VDD_EXT	Desc: SPT1 Channel B Data 1 MSI0 Data 7 Notes: An external pull-up may be required for MSI modes, see the MSI chapter in the hardware reference for details.
PC_14	I/O	A	none	none	none	none	none	VDD_EXT	Desc: SPT1 Channel B Transmit Data Valid MSI0 eSDIO Interrupt Input Notes: No notes.
RTC0_CLKIN	a	na	none	none	none	none	none	VDD_RTC	Desc: RTC0 Crystal input / external oscil- lator connection Notes: If RTC is not used, connect to ground.
RTC0_XTAL	а	na	none	none	none	none	none	VDD_RTC	Desc: RTC0 Crystal output Notes: No notes.
SYS_BMODE0	I/O	na	none	none	none	none	none	VDD_EXT	Desc: SYS Boot Mode Control 0 Notes: A pull-down is required for setting to 0 and a pull-up is required for setting to 1.
SYS_BMODE1	I/O	na	none	none	none	none	none	VDD_EXT	Desc: SYS Boot Mode Control 1 Notes: A pull-down is required for setting to 0 and a pull-up is required for setting to 1.
SYS_CLKIN	а	na	none	none	none	none	none	VDD_EXT	Desc: SYS Clock/Crystal Input Notes: No notes.
SYS_CLKOUT	I/O	A	none	none	L	none	none	VDD_EXT	Desc: SYS Processor Clock Output Notes: During reset, SYS_CLKOUT drives out SYS_CLKIN Frequency.
SYS_EXTWAKE	I/O	A	none	none	н	none	L	VDD_EXT	Desc: SYS External Wake Control Notes: Drives low during hibernate and high all other times including reset.
SYS_FAULT	I/O	A	none	none	none	none	none	VDD_EXT	Desc: SYS Complementary Fault Output Notes: Open drain, requires an external pull-up resistor.
SYS_HWRST	I/O	na	none	none	none	none	none	VDD_EXT	Desc: SYS Processor Hardware Reset Control Notes: Active during reset, must be externally driven.
SYS_NMI	I/O	na	none	none	none	none	none	VDD_EXT	Desc: SYS Non-maskable Interrupt Notes: Requires an external pull-up resistor.
SYS_RESOUT	I/O	А	none	none	L	none	none	VDD_EXT	Desc: SYS Reset Output Notes: Active during reset.
SYS_XTAL	a	na	none	none	none	none	none	VDD_EXT	Desc: SYS Crystal Output Notes: Leave unconnected if an oscil- lator is used to provide SYS_CLKIN. Active during reset. State during hibernate is controlled by DPM_HIB_ DIS.

Table 15. ADSP-BF70x Designer Quick Reference (Continued)

SPECIFICATIONS

For information about product specifications, contact your Analog Devices, Inc. representative.

OPERATING CONDITIONS

Parameter		Test Conditions/Comments	Min	Nominal	Max	Unit
V _{DD_INT}	Internal Supply Voltage	CCLK ≤ 400 MHz	1.045	1.100	1.155	V
$V_{DD_EXT}^{1}$	External Supply Voltage		1.7	1.8	1.9	V
$V_{DD_EXT}^{1}$	External Supply Voltage		3.13	3.30	3.47	V
V _{DD_DMC}	DDR2/LPDDR Supply Voltage		1.7	1.8	1.9	v
$V_{DD_USB}^{2}$	USB Supply Voltage		3.13	3.30	3.47	v
$V_{DD_{RTC}}$	Real-Time Clock Supply Voltage		2.00	3.30	3.47	V
V_{DD_HADC}	Housekeeping ADC Supply Voltage		3.13	3.30	3.47	v
$V_{DD_OTP}^{1}$	OTP Supply Voltage					
	For Reads		2.25	3.30	3.47	V
	For Writes		3.13	3.30	3.47	v
V _{DDR_VREF}	DDR2 Reference Voltage		$0.49 \times V_{DD_DMC}$	$0.50 \times V_{DD_DMC}$	$0.51 \times V_{DD_DMC}$	v
$V_{HADC_{REF}}^{3}$	HADC Reference Voltage		2.5	3.30	V _{DD_HADC}	v
V_{IH}^{4}	High Level Input Voltage	$V_{DD_{EXT}} = 3.47 V$	2.0			v
V_{IH}^{4}	High Level Input Voltage	$V_{DD_EXT} = 1.9 V$	$0.7 \times V_{DD_EXT}$			V
V _{IHTWI} ^{5, 6}	High Level Input Voltage	$V_{DD_EXT} = maximum$	$0.7 \times V_{VBUSTWI}$		V _{VBUSTWI}	V
$V_{\text{IH}_{DDR2}}^{7}$		$V_{DD_DMC} = 1.9 V$	$V_{DDR_REF} + 0.25$			v
$V_{\text{IH_LPDDR}}^{8}$		$V_{DD_DMC} = 1.9 V$	$0.8 \times V_{DD_DMC}$			V
V _{ID_DDR2} 9	Differential Input Voltage	$V_{IX} = 1.075 V$	0.50			V
V _{ID_DDR2} 9	Differential Input Voltage	$V_{IX} = 0.725 V$	0.55			V
V_{IL}^{4}	Low Level Input Voltage	$V_{DD_{EXT}} = 3.13 V$			0.8	V
V_{IL}^{4}	Low Level Input Voltage	$V_{DD_EXT} = 1.7 V$			$0.3 \times V_{\text{DD}_\text{EXT}}$	V
V _{ILTWI} 5, 6	Low Level Input Voltage	$V_{DD_EXT} = minimum$			$0.3 imes V_{VBUSTWI}$	V
$V_{IL_DDR2}^{7}$		$V_{DD_DMC} = 1.7 V$			$V_{DDR_{REF}} - 0.25$	V
$V_{IL_LPDDR}^{8}$		$V_{DD_DMC} = 1.7 V$			$0.2 \times V_{DD_DMC}$	V
TJ	Junction Temperature	$T_{AMBIENT} = 0^{\circ}C \text{ to } +70^{\circ}C$	0		105	°C
TJ	Junction Temperature	$T_{AMBIENT} = -40^{\circ}C \text{ to } +85^{\circ}C$	-40		+105	°C
T	Junction Temperature	$T_{AMBIENT} = -40^{\circ}C \text{ to } +105^{\circ}C$	-40		+125	°C

¹Must remain powered (even if the associated function is not used).

² If not used, connect to 1.8 V or 3.3 V.

 $^{3}\mathrm{V}_{\mathrm{HADC_VREF}}$ should always be less than $\mathrm{V}_{\mathrm{DD_HADC}}.$

⁴ Parameter value applies to all input and bidirectional signals except RTC signals, TWI signals, DMC0 signals, and USB0 signals.

⁵ Parameter applies to TWI signals.

 6 TWI signals are pulled up to V_{BUSTWI} . See Table 16.

⁷ Parameter applies to DMC0 signals in DDR2 mode.

⁸ Parameter applies to DMC0 signals in LPDDR mode.

⁹ Parameter applies to signals DMC0_LDQS, <u>DMC0_LDQS</u>, DMC0_UDQS, <u>DMC0_UDQS</u> when used in DDR2 differential input mode.

Power-Up Reset Timing

A power-up reset is required to place the processor in a known state after power-up. A power-up reset is initiated by asserting SYS_HWRST and JTG_TRST. During power-up reset, all pins are high impedance except for those noted in the ADSP-BF70x Designer Quick Reference on Page 38.

Both JTG_TRST and SYS_HWRST need to be asserted upon power-up, but only SYS_HWRST needs to be released for the device to boot properly. JTG_TRST may be asserted indefinitely for normal operation. JTG_TRST only needs to be released when using an emulator to connect to the DAP for debug or boundary scan. There is an internal pull-down on JTG_TRST to ensure internal emulation logic will always be properly initialized during power-up reset.

Table 30 and Figure 9 show the relationship between power supply startup and processor reset timing, related to the clock generation unit (CGU) and reset control unit (RCU). In Figure 9, $V_{DD_{_SUPPLIES}}$ are $V_{DD_{_INT}}$, $V_{DD_{_EXT}}$, $V_{DD_{_DMC}}$, $V_{DD_{_USB}}$, $V_{DD_{_CTC}}$, $V_{DD_{_OTP}}$, and $V_{DD_{_HADC}}$.

There is no power supply sequencing requirement for the ADSP-BF70x processor. However, if saving power during power-on is important, bringing up $V_{DD_{INT}}$ last is recommended. This avoids a small current drain in the $V_{DD_{INT}}$ domain during the transition period of I/O voltages from 0 V to within the voltage specification.

Table 30. Power-Up Reset Timing

Paramete	r	Min	Max	Unit
Timing Red	quirement			
t _{rst_in_pwr}	$\label{eq:starsest} \overrightarrow{SYS_HWRST} and \ \overrightarrow{JTG_TRST} \ Deasserted \ After \ V_{DD_INT}, \ V_{DD_DMC}, \ V_{DD_USB}, \\ V_{DD_RTC}, \ V_{DD_OTP}, \ V_{DD_HADC}, \ and \ SYS_CLKIN \ are \ Stable \ and \ Within \ Specification$	$11 \times t_{CKIN}$		ns
t _{VDDEXT_RST}	SYS_HWRST Deasserted After V _{DD_EXT} is Stable and Within Specifications (No External Pull-Down on JTG_TRST)	10		μs
t _{VDDEXT_RST}	\overline{SYS}_{HWRST} Deasserted After V_{DD_EXT} is Stable and Within Specifications (10k External Pull-Down on \overline{JTG}_{TRST})	1		μs

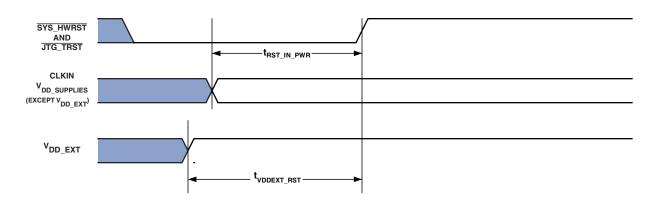


Figure 9. Power-Up Reset Timing

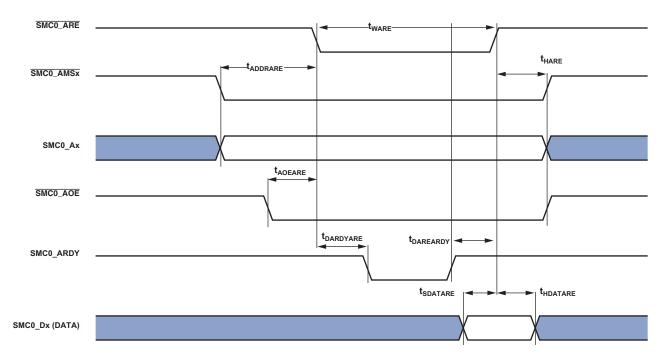


Figure 10. Asynchronous Read

Asynchronous Flash Read

Table 33 and Figure 12 show asynchronous flash memory read timing, related to the static memory controller (SMC).

Table 33. Asynchronous Flash Read

		V _{DD_E}) 1.8 V/3.3 V M		
Parameter		Min	Max	Unit
Switching C	haracteristics			
t _{amsadv}	SMC0_Ax (Address)/SMC0_AMSx Assertion Before SMC0_NORDV Low ¹	PREST × t _{SCLK0} – 2		ns
t _{wadv}	SMC0_NORDV Active Low Width ²	$RST \times t_{SCLK0} - 2$		ns
DADVARE	SMC0_ARE Low Delay From SMC0_NORDV High ³	$PREAT \times t_{SCLK0} - 2$		ns
t _{HARE}	Output ⁴ Hold After SMC0_ARE High ⁵	$RHT \times t_{SCLK0} - 2$		ns
t _{ware} 6	SMC0_ARE Active Low Width ⁷	$RAT \times t_{SCLK0} - 2$		ns

¹ PREST value set using the SMC_BxETIM.PREST bits.

² RST value set using the SMC_BxTIM.RST bits.

³ PREAT value set using the SMC_BxETIM.PREAT bits.

⁴Output signals are SMC0_Ax, <u>SMC0_AMS</u>, <u>SMC0_AOE</u>.

⁵ RHT value set using the SMC_BxTIM.RHT bits.

⁶SMC0_BxCTL.ARDYEN bit = 0.

 $^7\,\rm RAT$ value set using the SMC_BxTIM.RAT bits.

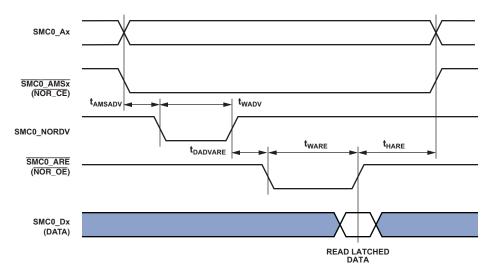


Figure 12. Asynchronous Flash Read

General-Purpose I/O Port Timing (GPIO)

Table 45 and Figure 23 describe I/O timing, related to the general-purpose ports (PORT).

Table 45. General-Purpose I/O Port Timing

		V _{DD_EXT} 1.8 V/3.3 V Nominal				
Paramet	er	Min	Max	Unit		
Timing Re	equirement					
t _{WFI}	General-Purpose Port Pin Input Pulse Width	$2 \times t_{SCLK0} - 1.5$	5	ns		

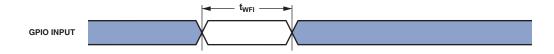


Figure 23. General-Purpose I/O Port Timing

Timer Cycle Timing

Table 46 and Figure 24 describe timer expired operations, related to the general-purpose timer (TIMER). The input signal is asynchronous in width capture mode and external clock mode and has an ideal maximum input frequency of ($f_{SCLK0}/4$) MHz. The Period Value (VALUE) is the timer period assigned in the TMx_TMRn_PER register and can range from 2 to $2^{32} - 1$.

Table 46. Timer Cycle Timing

		1	V _{DD_EXT} .8 V Nominal	3.	V _{DD_EXT} 3.3V Nominal		
Param	eter	Min	Max	Min	Max	Unit	
Timing	Requirements						
t _{WL}	Timer Pulse Width Input Low ¹	$2 \times t_{SCLK0} - 1.5$		$2 \times t_{SCLK0} - 1.5$	$2 \times t_{SCLK0} - 1.5$		
t _{wH}	Timer Pulse Width Input High ¹	$2 \times t_{SCLK0} - 1.5$		$2 \times t_{SCLK0} - 1.5$		ns	
Switch	ing Characteristic						
t _{HTO}	Timer Pulse Width Output	$t_{SCLK0} \times VALUE$	– 1	$t_{SCLK0} \times VALUE$	– 1	ns	

¹This specification indicates the minimum instantaneous width that can be tolerated due to duty cycle variation or jitter for TMx signals in width capture and external clock modes. The ideal maximum frequency for TMx signals is listed in Timer Cycle Timing on this page.

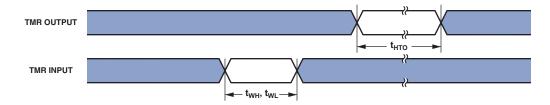


Figure 24. Timer Cycle Timing

Serial Ports

To determine whether serial port (SPORT) communication is possible between two devices at clock speed n, the following specifications must be confirmed: 1) frame sync delay and frame sync setup and hold, 2) data delay and data setup and hold, and 3) serial clock (SPT_CLK) width. In Figure 27 either the rising edge or the falling edge of SPT_CLK (external or internal) can be used as the active sampling edge.

When externally generated the SPORT clock is called $f_{SPTCLKEXT}$:

$$t_{SPTCLKEXT} = \frac{1}{f_{SPTCLKEXT}}$$

When internally generated, the programmed SPORT clock ($f_{SPTCLKPROG}$) frequency in MHz is set by the following equation where CLKDIV is a field in the SPORT_DIV register that can be set from 0 to 65,535:

$$f_{SPTCLKPROG} = \frac{f_{SCLK0}}{(CLKDIV + 1)}$$

$$t_{SPTCLKPROG} = \frac{1}{f_{SPTCLKPROG}}$$

Table 49. Serial Ports-External Clock

		V _{DD_EXT} 1.8V Nominal		V _{DD_EXT} 3.3 V Nominal		
Parameter		Min	Мах	Min	Max	Unit
Timing R	equirements					
t _{SFSE}	Frame Sync Setup Before SPT_CLK (Externally Generated Frame Sync in Either Transmit or Receive Mode) ¹	1.5		1		ns
t _{HFSE}	Frame Sync Hold After SPT_CLK (Externally Generated Frame Sync in Either Transmit or Receive Mode) ¹	3		3		ns
t _{SDRE}	Receive Data Setup Before Receive SPT_CLK ¹	1.5		1		ns
t _{HDRE}	Receive Data Hold After SPT_CLK ¹	3		3		ns
t _{SCLKW}	SPT_CLK Width ²	$(0.5 \times t_{SPTCLKEXT}) - 1$		$(0.5 \times t_{SPTCLKEXT}) - 1$		ns
t _{sptclke}	SPT_CLK Period ²	t _{sptclkext} – 1		t _{sptclkext} – 1		ns
Switching	g Characteristics					
t _{DFSE}	Frame Sync Delay After SPT_CLK (Internally Generated Frame Sync in Either Transmit or Receive Mode) ³		18		15	ns
t _{HOFSE}	Frame Sync Hold After SPT_CLK (Internally Generated Frame Sync in Either Transmit or Receive Mode) ³	2.5		2.5		ns
t _{DDTE}	Transmit Data Delay After Transmit SPT_CLK ³		18		15	ns
t _{HDTE}	Transmit Data Hold After Transmit SPT_CLK ³	2.5		2.5		ns

¹Referenced to sample edge.

² This specification indicates the minimum instantaneous width or period that can be tolerated due to duty cycle variation or jitter on the external SPT_CLK. For the external SPT_CLK ideal maximum frequency, see the f_{SPTCLKEXT} specification in Table 18 on Page 52 in Clock Related Operating Conditions.

³Referenced to drive edge.

ADSP-BF700/701/702/703/704/70

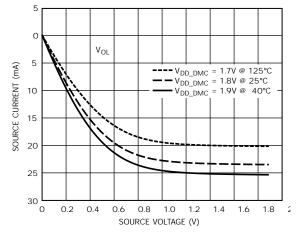


Figure 55. Driver Type B and Dynpixe C (DDR Drive Strength 40)

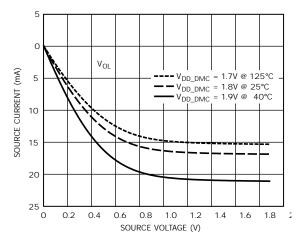


Figure 56. Driver Type B and Dynpixee C (DDR Drive Strength 50)

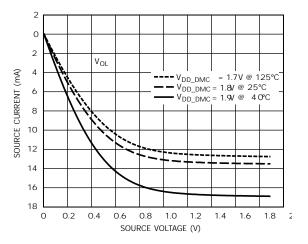


Figure 57. Driver Type B and Dynpace C (DDR Drive Strength 60)

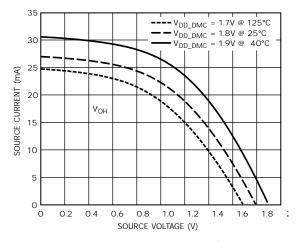
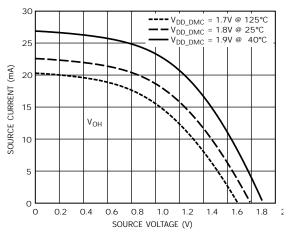



Figure 58. Driver Type B and Dynpixee€ (DDR Drive Strength 34)

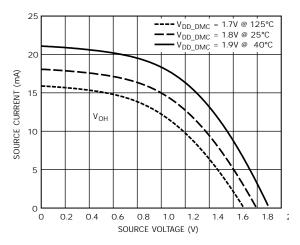


Figure 60. Driver Type B and Dynpixee€ (DDR Drive Strength 50)