

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

Product Status	Active
Туре	Blackfin+
Interface	CAN, DSPI, EBI/EMI, I ² C, PPI, QSPI, SD/SDIO, SPI, SPORT, UART/USART, USB OTG
Clock Rate	300MHz
Non-Volatile Memory	ROM (512kB)
On-Chip RAM	1MB
Voltage - I/O	1.8V, 3.3V
Voltage - Core	1.10V
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	88-VFQFN Exposed Pad, CSP
Supplier Device Package	88-LFCSP-VQ (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/analog-devices/adsp-bf706bcpz-3

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

output enable and the input enable of a GPIO pin are both active, the data signal before the pad driver is looped back to the receive path for the same GPIO pin.

MEMORY ARCHITECTURE

The processor views memory as a single unified 4G byte address space, using 32-bit addresses. All resources, including internal memory, external memory, and I/O control registers, occupy separate sections of this common address space. The memory portions of this address space are arranged in a hierarchical structure to provide a good cost/performance balance of some very fast, low-latency core-accessible memory as cache or SRAM, and larger, lower-cost and performance interface-accessible memory systems. See Figure 3.

Internal (Core-Accessible) Memory

The L1 memory system is the highest-performance memory available to the Blackfin+ processor core.

The core has its own private L1 memory. The modified Harvard architecture supports two concurrent 32-bit data accesses along with an instruction fetch at full processor speed which provides high-bandwidth processor performance. In the core, a 64K byte block of data memory partners with an 64K byte memory block for instruction storage. Each data block is multibanked for efficient data exchange through DMA and can be configured as SRAM. Alternatively, 16K bytes of each block can be configured in L1 cache mode. The four-way set-associative instruction cache and the 2 two-way set-associative data caches greatly accelerate memory access performance, especially when accessing external memories.

The L1 memory domain also features a 8K byte data SRAM block which is ideal for storing local variables and the software stack. All L1 memory is protected by a multi-parity-bit concept, regardless of whether the memory is operating in SRAM or cache mode.

Outside of the L1 domain, L2 and L3 memories are arranged using a Von Neumann topology. The L2 memory domain is a unified instruction and data memory and can hold any mixture of code and data required by the system design. The L2 memory domain is accessible by the Blackfin+ core through a dedicated 64-bit interface. It operates at SYSCLK frequency.

The processor features up to 1M byte of L2 SRAM, which is ECC-protected and organized in eight banks. Individual banks can be made private to any system master. There is also a 512K byte single-bank ROM in the L2 domain. It contains boot code, security code, and general-purpose ROM space.

OTP Memory

The processor features 4 kB of one-time-programmable (OTP) memory which is memory-map accessible. This memory stores a unique chip identification and is used to support secure-boot and secure operation.

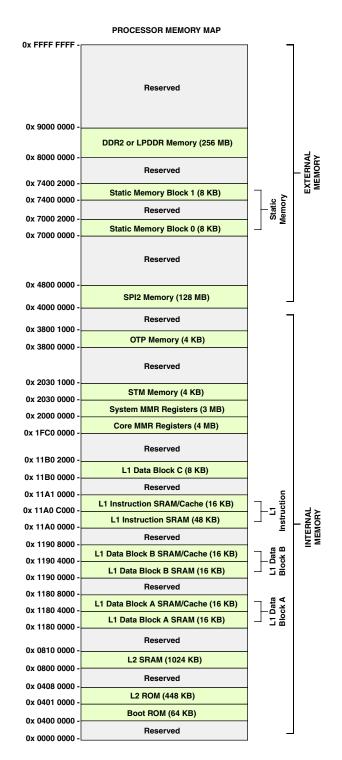


Figure 3. ADSP-BF706/ADSP-BF707 Internal/External Memory Map

General-Purpose Timers

There is one GP timer unit, and it provides eight general-purpose programmable timers. Each timer has an external pin that can be configured either as a pulse width modulator (PWM) or timer output, as an input to clock the timer, or as a mechanism for measuring pulse widths and periods of external events. These timers can be synchronized to an external clock input on the TIMER_TMRx pins, an external TIMER_CLK input pin, or to the internal SCLK0.

These timer units can be used in conjunction with the UARTs and the CAN controller to measure the width of the pulses in the data stream to provide a software auto-baud detect function for the respective serial channels.

The GP timers can generate interrupts to the processor core, providing periodic events for synchronization to either the system clock or to external signals. Timer events can also trigger other peripherals through the TRU (for instance, to signal a fault). Each timer may also be started and/or stopped by any TRU master without core intervention.

Core Timer

The processor core also has its own dedicated timer. This extra timer is clocked by the internal processor clock and is typically used as a system tick clock for generating periodic operating system interrupts.

Watchdog Timer

The core includes a 32-bit timer, which may be used to implement a software watchdog function. A software watchdog can improve system availability by forcing the processor to a known state, through generation of a hardware reset, nonmaskable interrupt (NMI), or general-purpose interrupt, if the timer expires before being reset by software. The programmer initializes the count value of the timer, enables the appropriate interrupt, then enables the timer. Thereafter, the software must reload the counter before it counts down to zero from the programmed value. This protects the system from remaining in an unknown state where software that would normally reset the timer has stopped running due to an external noise condition or software error.

After a reset, software can determine if the watchdog was the source of the hardware reset by interrogating a status bit in its timer control register that is set only upon a watchdog-generated reset.

Serial Ports (SPORTs)

Two synchronous serial ports (comprised of four half-SPORTs) provide an inexpensive interface to a wide variety of digital and mixed-signal peripheral devices such as Analog Devices' audio codecs, ADCs, and DACs. Each half-SPORT is made up of two data lines, a clock, and frame sync. The data lines can be programmed to either transmit or receive and each data line has a dedicated DMA channel.

Serial port data can be automatically transferred to and from on-chip memory/external memory through dedicated DMA channels. Each of the serial ports can work in conjunction with another serial port to provide TDM support. In this configuration, one SPORT provides two transmit signals while the other SPORT provides the two receive signals. The frame sync and clock are shared.

Serial ports operate in six modes:

- Standard DSP serial mode
- Multichannel (TDM) mode
- I²S mode
- Packed I²S mode
- Left-justified mode
- Right-justified mode

General-Purpose Counters

A 32-bit counter is provided that can operate in general-purpose up/down count modes and can sense 2-bit quadrature or binary codes as typically emitted by industrial drives or manual thumbwheels. Count direction is either controlled by a levelsensitive input pin or by two edge detectors.

A third counter input can provide flexible zero marker support and can alternatively be used to input the push-button signal of thumbwheel devices. All three pins have a programmable debouncing circuit.

Internal signals forwarded to a GP timer enable this timer to measure the intervals between count events. Boundary registers enable auto-zero operation or simple system warning by interrupts when programmed count values are exceeded.

Parallel Peripheral Interface (PPI)

The processor provides a parallel peripheral interface (PPI) that supports data widths up to 18 bits. The PPI supports direct connection to TFT LCD panels, parallel analog-to-digital and digital-to-analog converters, video encoders and decoders, image sensor modules, and other general-purpose peripherals.

The following features are supported in the PPI module:

- Programmable data length: 8 bits, 10 bits, 12 bits, 14 bits, 16 bits, and 18 bits per clock.
- Various framed, non-framed, and general-purpose operating modes. Frame syncs can be generated internally or can be supplied by an external device.
- ITU-656 status word error detection and correction for ITU-656 receive modes and ITU-656 preamble and status word decode.
- Optional packing and unpacking of data to/from 32 bits from/to 8 bits, 16 bits and 24 bits. If packing/unpacking is enabled, endianness can be configured to change the order of packing/unpacking of bytes/words.
- RGB888 can be converted to RGB666 or RGB565 for transmit modes.
- Various de-interleaving/interleaving modes for receiving/transmitting 4:2:2 YCrCb data.
- Configurable LCD data enable (DEN) output available on Frame Sync 3.

Target defined:

- Hardware Reset—All functional units are set to their default states without exception. History is lost.
- System Reset—All functional units except the RCU are set to their default states.
- Core-only Reset—Affects the core only. The system software should guarantee that the core, while in reset state, is not accessed by any bus master.

Source defined:

- Hardware Reset—The <u>SYS_HWRST</u> input signal is asserted active (pulled down).
- System Reset—May be triggered by software (writing to the RCU_CTL register) or by another functional unit such as the dynamic power management (DPM) unit (hibernate) or any of the system event controller (SEC), trigger routing unit (TRU), or emulator inputs.
- Core-only Reset—Triggered by software.
- Trigger request (peripheral).

Voltage Regulation

The processor requires an external voltage regulator to power the VDD_INT pins. To reduce standby power consumption, the external voltage regulator can be signaled through SYS_EXTWAKE to remove power from the processor core. This signal is high-true for power-up and may be connected directly to the low-true shut-down input of many common regulators.

While in the hibernate state, all external supply pins (VDD_ EXT, VDD_USB, and VDD_DMC) can still be powered, eliminating the need for external buffers. The external voltage regulator can be activated from this power down state by asserting the SYS_HWRST pin, which then initiates a boot sequence. SYS_EXTWAKE indicates a wake-up to the external voltage regulator.

SYSTEM DEBUG

The processor includes various features that allow for easy system debug. These are described in the following sections.

System Watchpoint Unit

The system watchpoint unit (SWU) is a single module which connects to a single system bus and provides for transaction monitoring. One SWU is attached to the bus going to each system slave. The SWU provides ports for all system bus address channel signals. Each SWU contains four match groups of registers with associated hardware. These four SWU match groups operate independently, but share common event (interrupt, trigger, and others) outputs.

Debug Access Port

The debug access port (DAP) provides IEEE-1149.1 JTAG interface support through its JTAG debug and serial wire debug port (SWJ-DP). SWJ-DP is a combined JTAG-DP and SW-DP that enables either serial wire debug (SWD) or a JTAG emulator to be connected to a target. SWD signals share the same pins as

JTAG. The DAP provides an optional instrumentation trace for both the core and system. It provides a trace stream that conforms to MIPI System Trace Protocol version 2 (STPv2).

DEVELOPMENT TOOLS

Analog Devices supports its processors with a complete line of software and hardware development tools, including integrated development environments (CrossCore[®] Embedded Studio), evaluation products, emulators, and a wide variety of software add-ins.

Integrated Development Environments (IDEs)

CrossCore Embedded Studio is based on the Eclipse[™] framework. Supporting most Analog Devices processor families, it is the IDE of choice for future processors, including multicore devices. CrossCore Embedded Studio seamlessly integrates available software add-ins to support real time operating systems, file systems, TCP/IP stacks, USB stacks, algorithmic software modules, and evaluation hardware board support packages. For more information, visit www.analog.com/cces.

EZ-KIT Lite Evaluation Board

For processor evaluation, Analog Devices provides a wide range of EZ-KIT Lite[®] evaluation boards. Including the processor and key peripherals, the evaluation board also supports on-chip emulation capabilities and other evaluation and development features. Also available are various EZ-Extenders[®], which are daughter cards delivering additional specialized functionality, including audio and video processing. For more information, visit www.analog.com and search on "ezkit" or "ezextender".

EZ-KIT Lite Evaluation Kits

For a cost-effective way to learn more about developing with Analog Devices processors, Analog Devices offer a range of EZ-KIT Lite evaluation kits. Each evaluation kit includes an EZ-KIT Lite evaluation board, directions for downloading an evaluation version of the available IDE, a USB cable, and a power supply. The USB controller on the EZ-KIT Lite board connects to the USB port of the user's PC, enabling the chosen IDE evaluation suite to emulate the on-board processor in-circuit. This permits the customer to download, execute, and debug programs for the EZ-KIT Lite system. It also supports in-circuit programming of the on-board Flash device to store user-specific boot code, enabling standalone operation. With the full version of Cross-Core Embedded Studio installed (sold separately), engineers can develop software for supported EZ-KITs or any custom system utilizing supported Analog Devices processors.

ADSP-BF706 EZ-KIT Mini

The ADSP-BF706 EZ-KIT Mini[™] product (ADZS-BF706-EZMini) contains the ADSP-BF706 processor and is shipped with all of the necessary hardware. Users can start their evaluation immediately. The EZ-KIT Mini product includes the standalone evaluation board and USB cable. The EZ-KIT Mini ships with an on-board debug agent.

The evaluation board is designed to be used in conjunction with the CrossCore Embedded Studio (CCES) development tools to test capabilities of the ADSP-BF706 Blackfin processor.

184-BALL CSP_BGA SIGNAL DESCRIPTIONS

The processor's pin definitions are shown in Table 7. The columns in this table provide the following information:

- Signal Name: The Signal Name column in the table includes the signal name for every pin and (where applicable) the GPIO multiplexed pin function for every pin.
- Description: The Description column in the table provides a verbose (descriptive) name for the signal.

Table 7. ADSP-BF70x 184-Ball CSP_BGA Signal Descriptions

- General-Purpose Port: The Port column in the table shows whether or not the signal is multiplexed with other signals on a general-purpose I/O port pin.
- Pin Name: The Pin Name column in the table identifies the name of the package pin (at power on reset) on which the signal is located (if a single function pin) or is multiplexed (if a general-purpose I/O pin).

Signal Name	Description	Port	Pin Name
CAN0_RX	CAN0 Receive	С	PC_02
CAN0_TX	CAN0 Transmit	С	PC_03
CAN1_RX	CAN1 Receive	A	PA_12
CAN1_TX	CAN1 Transmit	A	PA_13
CNT0_DG	CNT0 Count Down and Gate	A	PA_07
CNT0_UD	CNT0 Count Up and Direction	A	PA_15
CNT0_ZM	CNT0 Count Zero Marker	A	PA_13
DMC0_A00	DMC0 Address 0	Not Muxed	DMC0_A00
DMC0_A01	DMC0 Address 1	Not Muxed	DMC0_A01
DMC0_A02	DMC0 Address 2	Not Muxed	DMC0_A02
DMC0_A03	DMC0 Address 3	Not Muxed	DMC0_A03
DMC0_A04	DMC0 Address 4	Not Muxed	DMC0_A04
DMC0_A05	DMC0 Address 5	Not Muxed	DMC0_A05
DMC0_A06	DMC0 Address 6	Not Muxed	DMC0_A06
DMC0_A07	DMC0 Address 7	Not Muxed	DMC0_A07
DMC0_A08	DMC0 Address 8	Not Muxed	DMC0_A08
DMC0_A09	DMC0 Address 9	Not Muxed	DMC0_A09
DMC0_A10	DMC0 Address 10	Not Muxed	DMC0_A10
DMC0_A11	DMC0 Address 11	Not Muxed	DMC0_A11
DMC0_A12	DMC0 Address 12	Not Muxed	DMC0_A12
DMC0_A13	DMC0 Address 13	Not Muxed	DMC0_A13
DMC0_BA0	DMC0 Bank Address Input 0	Not Muxed	DMC0_BA0
DMC0_BA1	DMC0 Bank Address Input 1	Not Muxed	DMC0_BA1
DMC0_BA2	DMC0 Bank Address Input 2	Not Muxed	DMC0_BA2
DMC0_CAS	DMC0 Column Address Strobe	Not Muxed	DMC0_CAS
DMC0_CK	DMC0 Clock	Not Muxed	DMC0_CK
DMC0_CKE	DMC0 Clock enable	Not Muxed	DMC0_CKE
DMC0_CK	DMC0 Clock (complement)	Not Muxed	DMC0_CK
DMC0_CS0	DMC0 Chip Select 0	Not Muxed	DMC0_CS0
DMC0_DQ00	DMC0 Data 0	Not Muxed	DMC0_DQ00
DMC0_DQ01	DMC0 Data 1	Not Muxed	DMC0_DQ01
DMC0_DQ02	DMC0 Data 2	Not Muxed	DMC0_DQ02
DMC0_DQ03	DMC0 Data 3	Not Muxed	DMC0_DQ03
DMC0_DQ04	DMC0 Data 4	Not Muxed	DMC0_DQ04
DMC0_DQ05	DMC0 Data 5	Not Muxed	DMC0_DQ05
DMC0_DQ06	DMC0 Data 6	Not Muxed	DMC0_DQ06

Table 7. ADSP-BF70x 184-Ball CSP_BGA Signal Descriptions (Continued)

Signal Name	Description	Port	Pin Name
DMC0_DQ07	DMC0 Data 7	Not Muxed	DMC0_DQ07
DMC0_DQ08	DMC0 Data 8	Not Muxed	DMC0_DQ08
MC0_DQ09	DMC0 Data 9	Not Muxed	DMC0_DQ09
DMC0_DQ10	DMC0 Data 10	Not Muxed	DMC0_DQ10
DMC0_DQ11	DMC0 Data 11	Not Muxed	DMC0_DQ11
DMC0_DQ12	DMC0 Data 12	Not Muxed	DMC0_DQ12
DMC0_DQ13	DMC0 Data 13	Not Muxed	DMC0_DQ13
MC0_DQ14	DMC0 Data 14	Not Muxed	DMC0_DQ14
MC0_DQ15	DMC0 Data 15	Not Muxed	DMC0_DQ15
MC0_LDM	DMC0 Data Mask for Lower Byte	Not Muxed	DMC0_LDM
MC0_LDQS	DMC0 Data Strobe for Lower Byte	Not Muxed	DMC0_LDQS
MC0_LDQS	DMC0 Data Strobe for Lower Byte (complement)	Not Muxed	DMC0_LDQS
MC0_ODT	DMC0 On-die termination	Not Muxed	DMC0_ODT
MC0_RAS	DMC0 Row Address Strobe	Not Muxed	DMC0_RAS
MC0_UDM	DMC0 Data Mask for Upper Byte	Not Muxed	DMC0_UDM
MC0_UDQS	DMC0 Data Strobe for Upper Byte	Not Muxed	DMC0_UDQS
DMC0_UDQS	DMC0 Data Strobe for Upper Byte (complement)	Not Muxed	DMC0_UDQS
MC0_VREF	DMC0 Voltage Reference	Not Muxed	DMC0_VREF
DMC0_WE	DMC0 Write Enable	Not Muxed	DMC0_WE
ND	Ground	Not Muxed	GND
ND_HADC	Ground HADC	Not Muxed	GND_HADC
IADC0_VIN0	HADC0 Analog Input at channel 0	Not Muxed	HADC0_VIN0
IADC0_VIN1	HADC0 Analog Input at channel 1	Not Muxed	HADC0_VIN1
IADC0_VIN2	HADC0 Analog Input at channel 2	Not Muxed	HADC0_VIN2
IADC0_VIN3	HADC0 Analog Input at channel 3	Not Muxed	HADC0_VIN3
IADC0_VREFN	HADC0 Ground Reference for ADC	Not Muxed	HADC0_VREFN
IADC0_VREFP	HADC0 External Reference for ADC	Not Muxed	HADC0_VREFP
TG_SWCLK	TAPC0 Serial Wire Clock	Not Muxed	JTG_TCK_SWCLK
TG_SWDIO	TAPC0 Serial Wire DIO	Not Muxed	JTG_TMS_SWDIO
TG_SWO	TAPC0 Serial Wire Out	Not Muxed	JTG_TDO_SWO
TG_TCK	TAPC0 JTAG Clock	Not Muxed	JTG_TCK_SWCLK
TG_TDI	TAPC0 JTAG Serial Data In	Not Muxed	JTG_TDI
TG_TDO	TAPC0 JTAG Serial Data Out	Not Muxed	JTG_TDO_SWO
TG_TMS	TAPC0 JTAG Mode Select	Not Muxed	JTG_TMS_SWDIO
TG_TRST	TAPC0 JTAG Reset	Not Muxed	JTG_TRST
ISI0_CD	MSI0 Card Detect	A	PA_08
ISI0_CLK	MSI0 Clock	С	PC_09
ISI0_CMD	MSI0 Command	С	PC_05
ISI0_D0	MSI0 Data 0	С	PC_08
1SI0_D1	MSI0 Data 1	С	PC_04
1SI0_D2	MSI0 Data 2	С	PC_07
ISI0_D3	MSI0 Data 3	С	PC_06
ISI0_D4	MSI0 Data 4	С	PC_10
1SI0_D5	MSI0 Data 5	С	PC_11
1SI0_D6	MSI0 Data 6	С	PC_12
ASIO_D7	MSI0 Data 7	С	PC_13

Table 7. ADSP-BF70x 184-Ball CSP_BGA Signal Descriptions (Continued)

Signal Name	Description	Port	Pin Name
MSIO_INT	MSI0 eSDIO Interrupt Input	C	PC_14
PA_00-PA_15	Position 00 through Position 15	A	PA_00-PA_15
PB_00-PB_15	Position 00 through Position 15	В	PB_00-PB_15
PC_00-PC_14	Position 00 through Position 14	с	PC_00-PC_14
PPI0_CLK	EPPI0 Clock	А	PA_14
PPI0_D00	EPPIO Data 0	В	PB_07
PPI0_D01	EPPIO Data 1	В	PB_06
PPI0_D02	EPPIO Data 2	В	PB_05
PPI0_D03	EPPIO Data 3	В	PB_04
PPI0_D04	EPPIO Data 4	В	PB_03
PPI0_D05	EPPIO Data 5	В	PB_02
PPI0_D06	EPPIO Data 6	В	PB_01
PPI0_D07	EPPIO Data 7	В	PB_00
PPI0_D08	EPPIO Data 8	A	PA_11
 PPI0_D09	EPPIO Data 9	A	 PA_10
PPI0_D10	EPPIO Data 10	A	PA_09
PPI0_D11	EPPIO Data 11	А	PA_08
PPI0_D12	EPPIO Data 12	с	PC_03
PPI0_D13	EPPIO Data 13	с	PC_02
PPI0_D14	EPPIO Data 14	С	PC_01
PPI0_D15	EPPIO Data 15	с	PC_00
PPI0_D16	EPPIO Data 16	В	PB_08
PPI0_D17	EPPIO Data 17	В	PB_09
PPI0_FS1	EPPI0 Frame Sync 1 (HSYNC)	A	PA_12
PPI0_FS2	EPPI0 Frame Sync 2 (VSYNC)	А	PA_13
PPI0_FS3	EPPI0 Frame Sync 3 (FIELD)	А	PA_15
RTC0_CLKIN	RTC0 Crystal input/external oscillator connection	Not Muxed	RTC0_CLKIN
RTC0_XTAL	RTC0 Crystal output	Not Muxed	RTC0_XTAL
SMC0_A01	SMC0 Address 1	А	PA_08
5MC0_A02	SMC0 Address 2	А	PA_09
	SMC0 Address 3	А	 PA_10
	SMC0 Address 4	A	 PA_11
SMC0_A05	SMC0 Address 5	A	PA_07
	SMC0 Address 6	А	 PA_06
	SMC0 Address 7	А	 PA_05
	SMC0 Address 8	А	 PA_04
SMC0_A09	SMC0 Address 9	С	PC_01
5MC0_A10	SMC0 Address 10	C	PC_02
5MC0_A11	SMC0 Address 11	C	PC_03
5MC0_A12	SMC0 Address 12	C	PC_04
SMC0_ABE0	SMC0 Byte Enable 0	A	PA_00
SMC0_ABE1	SMC0 Byte Enable 1	A	PA_01
SMC0_AMS0	SMC0 Memory Select 0	A	PA_15
SMC0_AMS1	SMC0 Memory Select 1	A	PA_02
SMC0_AOE	SMC0 Output Enable	A	PA_12
SMC0_ARDY	SMC0 Asynchronous Ready	A	PA_03

Signal Name	Description	Port	Pin Name
UARTO_RX	UARTO Receive	В	PB_09
UART0_TX	UARTO Transmit	В	PB_08
UART1_CTS	UART1 Clear to Send	В	PB_14
UART1_RTS	UART1 Request to Send	В	PB_13
UART1_RX	UART1 Receive	С	PC_01
UART1_TX	UART1 Transmit	С	PC_00
USB0_CLKIN	USB0 Clock/Crystal Input	Not Muxed	USB0_CLKIN
USB0_DM	USB0 Data –	Not Muxed	USB0_DM
USB0_DP	USB0 Data +	Not Muxed	USB0_DP
USB0_ID	USB0 OTG ID	Not Muxed	USB0_ID
USB0_VBC	USB0 VBUS Control	Not Muxed	USB0_VBC
USB0_VBUS	USB0 Bus Voltage	Not Muxed	USB0_VBUS
USB0_XTAL	USB0 Crystal	Not Muxed	USB0_XTAL
VDD_DMC	VDD for DMC	Not Muxed	VDD_DMC
VDD_EXT	External VDD	Not Muxed	VDD_EXT
VDD_HADC	VDD for HADC	Not Muxed	VDD_HADC
VDD_INT	Internal VDD	Not Muxed	VDD_INT
VDD_OTP	VDD for OTP	Not Muxed	VDD_OTP
VDD_RTC	VDD for RTC	Not Muxed	VDD_RTC
VDD_USB	VDD for USB	Not Muxed	VDD_USB

Table 7. ADSP-BF70x 184-Ball CSP_BGA Signal Descriptions (Continued)

Signal Name	Description	Port	Pin Name
SMC0_D11	SMC0 Data 11	В	PB_11
SMC0_D12	SMC0 Data 12	В	PB_12
SMC0_D13	SMC0 Data 13	В	PB_13
SMC0_D14	SMC0 Data 14	В	PB_14
SMC0_D15	SMC0 Data 15	В	PB_15
SPI0_CLK	SPI0 Clock	В	PB_00
SPI0_CLK	SPI0 Clock	С	PC_04
SPI0_D2	SPI0 Data 2	В	PB_03
SPI0_D2	SPI0 Data 2	С	PC_08
SPI0_D3	SPI0 Data 3	В	PB_07
SPI0_D3	SPI0 Data 3	С	PC_09
SPI0_MISO	SPI0 Master In, Slave Out	В	PB_01
SPI0_MISO	SPI0 Master In, Slave Out	С	PC_06
SPI0_MOSI	SPI0 Master Out, Slave In	В	PB_02
SPI0_MOSI	SPI0 Master Out, Slave In	С	PC_07
SPI0_RDY	SPI0 Ready	А	PA_06
SPI0_SEL1	SPI0 Slave Select Output 1	А	PA_05
SPI0_SEL2	SPI0 Slave Select Output 2	А	PA_06
SPI0_SEL4	SPI0 Slave Select Output 4	В	PB_04
SPI0_SEL5	SPI0 Slave Select Output 5	В	PB_05
SPI0_SEL6	SPI0 Slave Select Output 6	В	PB_06
SPI0_SS	SPI0 Slave Select Input	А	PA_05
SPI1_CLK	SPI1 Clock	А	PA_00
SPI1_MISO	SPI1 Master In, Slave Out	А	PA_01
SPI1_MOSI	SPI1 Master Out, Slave In	А	PA_02
	SPI1 Ready	А	 PA_03
SPI1_SEL1	SPI1 Slave Select Output 1	А	 PA_04
	SPI1 Slave Select Output 2	А	 PA_03
	SPI1 Slave Select Output 3	с	 PC_10
SPI1_SEL4	SPI1 Slave Select Output 4	A	PA_14
SPI1_SS	SPI1 Slave Select Input	A	PA_04
SPI2_CLK	SPI2 Clock	В	PB_10
SPI2_D2	SPI2 Data 2	В	PB_13
SPI2_D3	SPI2 Data 3	В	PB_14
SPI2_MISO	SPI2 Master In, Slave Out	В	PB_11
SPI2_MOSI	SPI2 Master Out, Slave In	В	PB_12
SPI2_RDY	SPI2 Ready	A	PA_04
SPI2_SEL1	SPI2 Slave Select Output 1	В	PB_15
SPI2_SEL2	SPI2 Slave Select Output 1	В	PB_08
SPI2_SEL3	SPI2 Slave Select Output 2 SPI2 Slave Select Output 3	B	PB_09
SPI2_SELS	SPI2 Slave Select Output	B	PB_15
SPT0_ACLK	SPORTO Channel A Clock	A	PA_13
SPT0_ACLK	SPORTO Channel A Clock	C	PC_09
SPT0_ACLK SPT0_AD0	SPORTO Channel A Data 0		PC_09 PA_14
		A	
SPT0_AD0 SPT0_AD0 SPT0_AD1	SPORTO Channel A Data 0 SPORTO Channel A Data 0 SPORTO Channel A Data 1	C C	PC_08 PC_00

Table 11. ADSP-BF70x 12 mm × 12 mm 88-Lead LFCSP (QFN) Signal Descriptions (Continued)

GPIO MULTIPLEXING FOR 12 mm × 12 mm 88-LEAD LFCSP (QFN)

Table 12 through Table 14 identify the pin functions that aremultiplexed on the general-purpose I/O pins of the12 mm \times 12 mm 88-Lead LFCSP (QFN) package.

Table 12. Signal Multiplexing for Port A

	Multiplexed	Multiplexed	Multiplexed	Multiplexed	Multiplexed
Signal Name	Function 0	Function 1	Function 2	Function 3	Function Input Tap
PA_00	SPI1_CLK		TRACE0_D07	SMC0_ABE0	
PA_01	SPI1_MISO		TRACE0_D06	SMC0_ABE1	
PA_02	SPI1_MOSI		TRACE0_D05	SMC0_AMS1	
PA_03	SPI1_SEL2	SPI1_RDY		SMC0_ARDY	
PA_04	SPI1_SEL1	TM0_TMR7	SPI2_RDY	SMC0_A08	SPI1_SS
PA_05	TM0_TMR0	SPI0_SEL1		SMC0_A07	SPI0_SS
PA_06	TM0_TMR1	SPI0_SEL2	SPI0_RDY	SMC0_A06	
PA_07	TM0_TMR2	SPT1_BTDV	SPT1_ATDV	SMC0_A05	CNT0_DG
PA_08	PPI0_D11	MSI0_CD	SPT1_ACLK	SMC0_A01	
PA_09	PPI0_D10	TM0_TMR4	SPT1_AFS	SMC0_A02	
PA_10	PPI0_D09	TM0_TMR5	SPT1_AD0	SMC0_A03	
PA_11	PPI0_D08	TM0_TMR6	SPT1_AD1	SMC0_A04	
PA_12	PPI0_FS1	CAN1_RX	SPTO_AFS	SMC0_AOE	TM0_ACI6/SYS_ WAKE4
PA_13	PPI0_FS2	CAN1_TX	SPT0_ACLK	SMC0_ARE	CNT0_ZM
PA_14	PPI0_CLK	SPI1_SEL4	SPT0_AD0	SMC0_AWE	TM0_ACLK5
PA_15	PPI0_FS3	SPT0_ATDV	SPT0_BTDV	SMC0_AMS0	CNT0_UD

Table 13. Signal Multiplexing for Port B

	Multiplexed	Multiplexed	Multiplexed	Multiplexed	Multiplexed
Signal Name	Function 0	Function 1	Function 2	Function 3	Function Input Tap
PB_00	PPI0_D07	SPT1_BCLK	SPI0_CLK	SMC0_D07	TM0_ACLK3
PB_01	PPI0_D06	SPT1_BFS	SPI0_MISO	SMC0_D06	TM0_ACI1
PB_02	PPI0_D05	SPT1_BD0	SPI0_MOSI	SMC0_D05	
PB_03	PPI0_D04	SPT1_BD1	SPI0_D2	SMC0_D04	
PB_04	PPI0_D03	SPT0_BCLK	SPI0_SEL4	SMC0_D03	TM0_ACLK6
PB_05	PPI0_D02	SPT0_BD0	SPI0_SEL5	SMC0_D02	
PB_06	PPI0_D01	SPT0_BFS	SPI0_SEL6	SMC0_D01	TM0_CLK
PB_07	PPI0_D00	SPT0_BD1	SPI0_D3	SMC0_D00	SYS_WAKE0
PB_08	UART0_TX	PPI0_D16	SPI2_SEL2	SMC0_D08	SYS_WAKE1
PB_09	UARTO_RX	PPI0_D17	SPI2_SEL3	SMC0_D09	TM0_ACI3
PB_10	SPI2_CLK		TRACE0_CLK	SMC0_D10	TM0_ACLK4
PB_11	SPI2_MISO		TRACE0_D04	SMC0_D11	
PB_12	SPI2_MOSI		TRACE0_D03	SMC0_D12	SYS_WAKE2
PB_13	SPI2_D2	UART1_RTS	TRACE0_D02	SMC0_D13	
PB_14	SPI2_D3	UART1_CTS	TRACE0_D01	SMC0_D14	
PB_15	SPI2_SEL1		TRACE0_D00	SMC0_D15	SPI2_SS

Signal Name	Туре	Driver Type	Int Term	Reset Term	Reset Drive	Hiber Term	Hiber Drive	Power Domain	Description and Notes
PA_12	1/0	A	none	none	none	none	none	VDD_EXT	Desc: PPI0 Frame Sync 1 (HSYNC) CAN1 Receive SPORT0 Channel A Frame Sync SMC0 Output Enable SYS Power Saving Mode Wakeup 4 TM0 Alternate Capture Input 6 Notes: If hibernate mode is used one of the following must be true during hibernate. Either this pin must be actively driven by another IC, or it must have a pull-up or pull-down.
PA_13	I/O	A	none	none	none	none	none	VDD_EXT	Desc: PPI0 Frame Sync 2 (VSYNC) CAN1 Transmit SPORT0 Channel A Clock SMC0 Read Enable CNT0 Count Zero Marker Notes: No notes.
PA_14	I/O	A	none	none	none	none	none	VDD_EXT	Desc: PPI0 Clock SPI1 Slave Select Output 4 SPORT0 Channel A Data 0 SMC0 Write Enable TM0 Alternate Clock 5 Notes: SPI slave select outputs require a pull-up when used.
PA_15	I/O	A	none	none	none	none	none	VDD_EXT	Desc: PPI0 Frame Sync 3 (FIELD) SPT0 Channel A Transmit Data Valid SPT0 Channel B Transmit Data Valid SMC0 Memory Select 0 CNT0 Count Up and Direction Notes: May require a pull-up if used as an SMC memory select. Check the data sheet requirements of the IC it connects to.
PB_00	I/O	A	none	none	none	none	none	VDD_EXT	Desc: PPI0 Data 7 SPT1 Channel B Clock SPI0 Clock SMC0 Data 7 TM0 Alternate Clock 3 Notes: SPI clock requires a pull-down when controlling most SPI flash devices.
PB_01	I/O	A	none	none	none	none	none	VDD_EXT	Desc: PPI0 Data 6 SPT1 Channel B Frame Sync SPI0 Master In, Slave Out SMC0 Data 6 TM0 Alternate Capture Input 1 Notes: Pull-up required for SPI_MISO if SPI master boot is used.
PB_02	I/O	A	none	none	none	none	none	VDD_EXT	Desc: PPI0 Data 5 SPT1 Channel B Data 0 SPI0 Master Out, Slave In SMC0 Data 5 Notes: No notes.
PB_03	I/O	A	none	none	none	none	none	VDD_EXT	Desc: PPI0 Data 4 SPT1 Channel B Data 1 SPI0 Data 2 SMC0 Data 4 Notes: No notes.

Table 15. ADSP-BF70x Designer Quick Reference (Continued)

Table 15. ADSP-BF70x Designer Quick Reference (Continued)

Signal Name	Туре	Driver Type	Int Term	Reset Term	Reset Drive	Hiber Term	Hiber Drive	Power Domain	Description and Notes
TWI0_SCL	1/0	D	none	none	none	none	none	VDD_EXT	Desc: TWI0 Serial Clock Notes: Open drain, requires external pull up. Consult version 2.1 of the I2C specification for the proper resistor value. If TWI is not used, connect to ground.
TWI0_SDA	1/0	D	none	none	none	none	none	VDD_EXT	Desc: TWI0 Serial Data Notes: Open drain, requires external pull up. Consult version 2.1 of the I2C specification for the proper resistor value. If TWI is not used, connect to ground.
USB0_CLKIN	a	na	none	none	none	none	none	VDD_USB	Desc: USB0 Clock/Crystal Input Notes: If USB is not used, connect to ground. Active during reset
USB0_DM	I/O	F	none	none	none	none	none	VDD_USB	Desc: USB0 Data – Notes: Pull low if not using USB. For complete documentation of hibernate behavior when USB is used, see the USB chapter in the HRM.
USB0_DP	I/O	F	none	none	none	none	none	VDD_USB	Desc: USB0 Data + Notes: Pull low if not using USB. For complete documentation of hibernate behavior when USB is used, see the USB chapter in the HRM.
USB0_ID	1/0	na	none	none	none	none	none	VDD_USB	Desc: USB0 OTG ID Notes: If USB is not used connect to ground. When USB is being used, the internal pull-up that is present during hibernate is programmable. See the USB chapter in the HRM. Active during reset.
USB0_VBC	I/O	E	none	none	none	none	none	VDD_USB	Desc: USB0 VBUS Control Notes: If USB is not, used pull low.
USB0_VBUS	I/O	G	none	none	none	none	none	VDD_USB	Desc: USB0 Bus Voltage Notes: If USB is not used, connect to ground.
USB0_XTAL	а	na	none	none	none	none	none	VDD_USB	Desc: USB0 Crystal Notes: No notes.
VDD_DMC	s	na	none	none	none	none	none	na	Desc: VDD for DMC Notes: If the DMC is not used, connect to VDD_INT.
VDD_EXT	S	na	none	none	none	none	none	na	Desc: External VDD Notes: Must be powered.
VDD_HADC	S	na	none	none	none	none	none	na	Desc: VDD for HADC Notes: If HADC is not used, connect to ground.
VDD_INT	s	na	none	none	none	none	none	na	Desc: Internal VDD Notes: Must be powered.

SPECIFICATIONS

For information about product specifications, contact your Analog Devices, Inc. representative.

OPERATING CONDITIONS

Parameter		Test Conditions/Comments	Min	Nominal	Max	Unit
V _{DD_INT}	Internal Supply Voltage	CCLK ≤ 400 MHz	1.045	1.100	1.155	V
$V_{DD_EXT}^{1}$	External Supply Voltage		1.7	1.8	1.9	v
$V_{DD_EXT}^{1}$	External Supply Voltage		3.13	3.30	3.47	v
V _{DD_DMC}	DDR2/LPDDR Supply Voltage		1.7	1.8	1.9	v
$V_{DD_USB}^{2}$	USB Supply Voltage		3.13	3.30	3.47	v
$V_{DD_{RTC}}$	Real-Time Clock Supply Voltage		2.00	3.30	3.47	v
V_{DD_HADC}	Housekeeping ADC Supply Voltage		3.13	3.30	3.47	v
$V_{DD_OTP}^{1}$	OTP Supply Voltage					
	For Reads		2.25	3.30	3.47	V
	For Writes		3.13	3.30	3.47	v
V _{DDR_VREF}	DDR2 Reference Voltage		$0.49 \times V_{DD_DMC}$	$0.50 \times V_{DD_DMC}$	$0.51 \times V_{DD_DMC}$	v
$V_{HADC_{REF}}^{3}$	HADC Reference Voltage		2.5	3.30	V _{DD_HADC}	v
V_{IH}^{4}	High Level Input Voltage	$V_{DD_{EXT}} = 3.47 V$	2.0			v
V_{IH}^{4}	High Level Input Voltage	$V_{DD_EXT} = 1.9 V$	$0.7 \times V_{DD_EXT}$			V
V _{IHTWI} ^{5, 6}	High Level Input Voltage	$V_{DD_EXT} = maximum$	$0.7 \times V_{VBUSTWI}$		V _{VBUSTWI}	V
$V_{\text{IH}_{DDR2}}^{7}$		$V_{DD_DMC} = 1.9 V$	$V_{DDR_REF} + 0.25$			v
$V_{\text{IH_LPDDR}}^{8}$		$V_{DD_DMC} = 1.9 V$	$0.8 \times V_{DD_DMC}$			V
V _{ID_DDR2} 9	Differential Input Voltage	$V_{IX} = 1.075 V$	0.50			V
V _{ID_DDR2} 9	Differential Input Voltage	$V_{IX} = 0.725 V$	0.55			V
V_{IL}^{4}	Low Level Input Voltage	$V_{DD_{EXT}} = 3.13 V$			0.8	V
V_{IL}^{4}	Low Level Input Voltage	$V_{DD_EXT} = 1.7 V$			$0.3 \times V_{\text{DD}_\text{EXT}}$	V
V _{ILTWI} 5, 6	Low Level Input Voltage	$V_{DD_EXT} = minimum$			$0.3 imes V_{VBUSTWI}$	V
$V_{IL_DDR2}^{7}$		$V_{DD_DMC} = 1.7 V$			$V_{DDR_{REF}} - 0.25$	V
$V_{IL_LPDDR}^{8}$		$V_{DD_DMC} = 1.7 V$			$0.2 \times V_{DD_DMC}$	V
TJ	Junction Temperature	$T_{AMBIENT} = 0^{\circ}C \text{ to } +70^{\circ}C$	0		105	°C
TJ	Junction Temperature	$T_{AMBIENT} = -40^{\circ}C \text{ to } +85^{\circ}C$	-40		+105	°C
T	Junction Temperature	$T_{AMBIENT} = -40^{\circ}C \text{ to } +105^{\circ}C$	-40		+125	°C

¹Must remain powered (even if the associated function is not used).

² If not used, connect to 1.8 V or 3.3 V.

 $^{3}\mathrm{V}_{\mathrm{HADC_VREF}}$ should always be less than $\mathrm{V}_{\mathrm{DD_HADC}}.$

⁴ Parameter value applies to all input and bidirectional signals except RTC signals, TWI signals, DMC0 signals, and USB0 signals.

⁵ Parameter applies to TWI signals.

 6 TWI signals are pulled up to V_{BUSTWI} . See Table 16.

⁷ Parameter applies to DMC0 signals in DDR2 mode.

⁸ Parameter applies to DMC0 signals in LPDDR mode.

⁹ Parameter applies to signals DMC0_LDQS, <u>DMC0_LDQS</u>, DMC0_UDQS, <u>DMC0_UDQS</u> when used in DDR2 differential input mode.

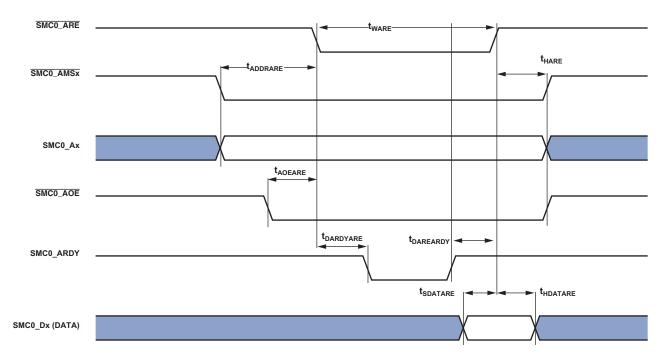


Figure 10. Asynchronous Read

Asynchronous Write

Table 35 and Figure 14 show asynchronous memory write timing, related to the static memory controller (SMC).

Table 35. Asynchronous Memory Write (BxMODE = b#00)

		V _{DD} 1.8V N	_ _{EXT} ominal	V _{DD} 3.3 V No		
Parameter	r	Min	Max	Min	Max	Unit
Timing Req	uirement					
t _{DARDYAWE} 1	SMC0_ARDY Valid After SMC0_AWE Low ²		(WAT – 2.5) × t _{SCLK0} – 17.5		(WAT – 2.5) × t _{SCLK0} – 17.5	ns
Switching (Characteristics					
t _{endat}	DATA Enable After SMC0_AMSx Assertion	-3		-2		ns
t _{DDAT}	DATA Disable After <u>SMC0_AMSx</u> Deassertion		4.5		4	ns
t _{AMSAWE}	SMC0_Ax/SMC0_AMSx Assertion Before SMC0_AWE Low ³	$(PREST + WST + PREAT) \times t_{SCLK0} - 2$		$(PREST + WST + PREAT) \times t_{SCLK0} - 4$		ns
t _{HAWE}	Output ⁴ Hold After <mark>SMC0_AWE</mark> High⁵	$WHT \times t_{SCLK0}$		$WHT \times t_{SCLK0}$		ns
t _{WAWE} ⁶	SMC0_AWE Active Low Width ⁶	WAT \times t _{SCLK0} – 2		WAT \times t _{SCLK0} – 2		ns
t _{DAWEARDY} 1	SMC0_AWE High Delay After SMC0_ARDY Assertion		$3.5 \times t_{SCLK0} + 17.5$		$3.5 \times t_{SCLK0} + 17.5$	ns

¹SMC_BxCTL.ARDYEN bit = 1.

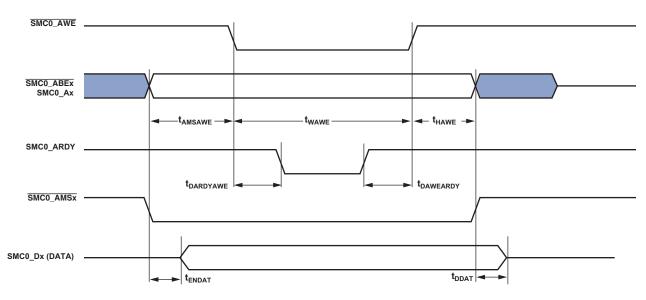
 $^2\,\rm WAT$ value set using the SMC_BxTIM.WAT bits.

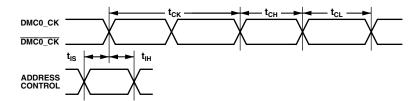
³ PREST, WST, PREAT values set using the SMC_BxETIM.PREST bits, SMC_BxTIM.WST bits, SMC_BxETIM.PREAT bits, and the SMC_BxTIM.RAT bits.

⁴ Output signals are DATA, SMC0_Ax, <u>SMC0_AMSx</u>, <u>SMC0_ABEx</u>.

⁵ WHT value set using the SMC_BxTIM.WHT bits.

⁶SMC_BxCTL.ARDYEN bit = 0.




Figure 14. Asynchronous Write

Mobile DDR SDRAM Clock and Control Cycle Timing

Table 42 and Figure 20 show mobile DDR SDRAM clock and control cycle timing, related to the dynamic memory controller (DMC).

Table 42. Mobile DDR SDRAM Clock and Control Cycle Timing, V_{DD_DMC} Nominal 1.8 V

Parameter		Min	Мах	Unit
Switching	Characteristics			
t _{CK}	Clock Cycle Time (CL = 2 Not Supported)	5		ns
t _{CH}	Minimum Clock Pulse Width	0.45	0.55	t _{CK}
t _{CL}	Maximum Clock Pulse Width	0.45	0.55	t _{CK}
t _{IS}	Control/Address Setup Relative to DMC0_CK Rise	1.5		ns
t _{IH}	Control/Address Hold Relative to DMC0_CK Rise	1.5		ns

NOTE: CONTROL = DMC0_CS0, DMC0_CKE, DMC0_RAS, DMC0_CAS, AND DMC0_WE. ADDRESS = DMC0_A00-13, AND DMC0_BA0-2.

Figure 20. Mobile DDR SDRAM Clock and Control Cycle Timing

Up/Down Counter/Rotary Encoder Timing

Table 47 and Figure 25 describe timing, related to the general-purpose counter (CNT).

Table 47. Up/Down Counter/Rotary Encoder Timing

		V _{DD_EXT} 1.8 V Nominal		V _{DD_EXT} 3.3 V Nominal		
Parameter		Min	Max	Min	Max	Unit
Timing Requirement						
t _{wcount}	Up/Down Counter/Rotary Encoder Input Pulse Width	$2 \times t_{SCLK0}$		$2 \times t_{SCLK0}$		ns

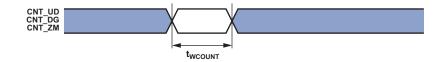


Figure 25. Up/Down Counter/Rotary Encoder Timing

Serial Peripheral Interface (SPI) Port—Slave Timing

Table 55 and Figure 32 describe serial peripheral interface (SPI) port slave operations. Note that:

- In dual mode data transmit, the SPI_MOSI signal is also an output.
- In quad mode data transmit, the SPI_MOSI, SPI_D2, and SPI_D3 signals are also outputs.
- In dual mode data receive, the SPI_MISO signal is also an input.
- In quad mode data receive, the SPI_MISO, SPI_D2, and SPI_D3 signals are also inputs.
- In SPI slave mode, the SPI clock is supplied externally and is called f_{SPICLKEXT}:

$$t_{SPICLKEXT} = \frac{1}{f_{SPICLKEXT}}$$

Table 55. Serial Peripheral Interface (SPI) Port—Slave Timing

			V _{DD_EXT} 1.8V Nominal		V _{DD_EXT} 3.3V Nominal	
Parameter		Min	Мах	Min	Max	Unit
Timing Red	quirements					
t _{SPICHS}	SPI_CLK High Period ¹	$(0.5 \times t_{SPICLKEXT})$	- 1.5	$(0.5 \times t_{SPICLKEXT})$	_r) – 1.5	ns
t _{SPICLS}	SPI_CLK Low Period ¹	$(0.5 \times t_{SPICLKEXT})$	- 1.5	$(0.5 \times t_{SPICLKEXT})$	_r) – 1.5	ns
t _{SPICLK}	SPI_CLK Period ¹	t _{SPICLKEXT} – 1.5		t _{SPICLKEXT} – 1.5		ns
t _{HDS}	Last SPI_CLK Edge to SPI_SS Not Asserted (NonSPIHP)	5		5		ns
t _{HDS}	Last SPI_CLK Edge to SPI_SS Not Asserted (Using SPIHP)	$1.5 \times t_{SCLK0}$		$1.5 imes t_{SCLK0}$		ns
t _{SPITDS}	Sequential Transfer Delay (NonSPIHP)	$0.5 \times t_{SPICLK} - 1.5$	5	$0.5 \times t_{SPICLK} - 1$	1.5	ns
t _{SPITDS}	Sequential Transfer Delay (Using SPIHP)	$3 \times t_{\text{SCLK0}}$		$3 \times t_{SCLK0}$		ns
t _{SDSCI}	SPI_SS Assertion to First SPI_CLK Edge	11.5		11.5		ns
t _{SSPID}	Data Input Valid to SPI_CLK Edge (Data Input Setup)	1.5		1		ns
t _{HSPID}	SPI_CLK Sampling Edge to Data Input Invalid	3.3		3		ns
Switching	Characteristics					
t _{DSOE}	SPI_SS Assertion to Data Out Active	0	17.5	0	14.5	ns
t _{DSDHI}	SPI_SS Deassertion to Data High Impedance	0	13	0	11.5	ns
t _{DDSPID}	SPI_CLK Edge to Data Out Valid (Data Out Delay)		17.5		14.5	ns
t _{HDSPID}	SPI_CLK Edge to Data Out Invalid (Data Out Hold)	2.5		2.5		ns

¹This specification indicates the minimum instantaneous width or period that can be tolerated due to duty cycle variation or jitter on the external SPI_CLK. For the external SPI_CLK ideal maximum frequency see the f_{SPICLKTEXT} specification in Table 18 on Page 52 of Clock Related Operating Conditions.

Serial Peripheral Interface (SPI) Port—SPI_RDY Slave Timing

Table 56. SPI Port—SPI_RDY Slave Timing

		V _{DD_EXT} 1.8 V/3.3 V Nominal		
Parameter		Min	Max	Unit
Switching C	haracteristics			
t _{dspisckrdysr}	SPI_RDY De-assertion from Valid Input SPI_CLK Edge in Slave Mode Receive	$2.5 imes t_{\text{SCLK0}} + t_{\text{HDSPID}}$	$3.5 \times t_{SCLK0} + t_{DDSPID}$	ns
t _{dspisckrdyst}	SPI_RDY De-assertion from Valid Input SPI_CLK Edge in Slave Mode Transmit	$3.5 imes t_{\text{SCLK0}} + t_{\text{HDSPID}}$	$4.5 \times t_{SCLK0} + t_{DDSPID}$	ns

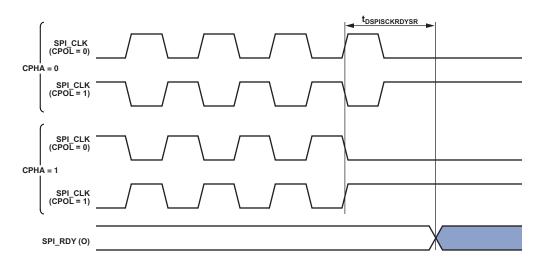


Figure 33. SPI_RDY De-assertion from Valid Input SPI_CLK Edge in Slave Mode Receive (FCCH = 0)

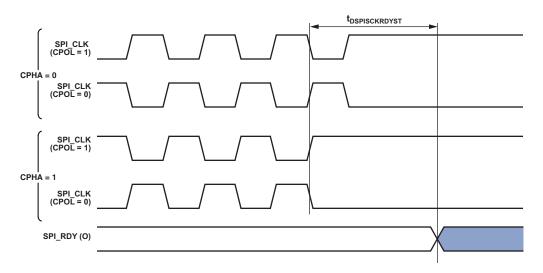


Figure 34. SPI_RDY De-assertion from Valid Input SPI_CLK Edge in Slave Mode Transmit (FCCH = 1)

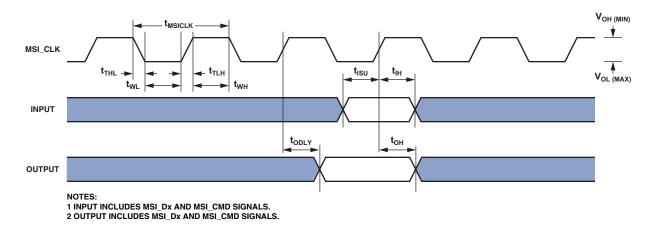


Figure 49. MSI Controller Timing

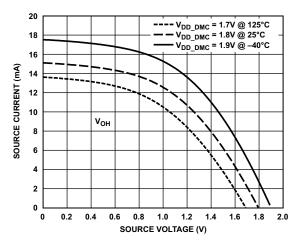


Figure 61. Driver Type B and Device Driver C (DDR Drive Strength 60Ω)

TEST CONDITIONS

All timing requirements appearing in this data sheet were measured under the conditions described in this section. Figure 62 shows the measurement point for ac measurements (except output enable/disable). The measurement point V_{MEAS} is $V_{\text{DD}_\text{EXT}}/2$ for V_{DD_EXT} (nominal) = 1.8 V/3.3 V.

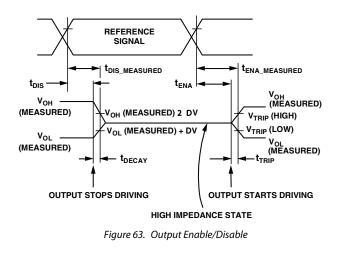


Figure 62. Voltage Reference Levels for AC Measurements (Except Output Enable/Disable)

Output Enable Time Measurement

Output balls are considered to be enabled when they have made a transition from a high impedance state to the point when they start driving.

The output enable time t_{ENA} is the interval from the point when a reference signal reaches a high or low voltage level to the point when the output starts driving as shown on the right side of Figure 63.

The time $t_{ENA_MEASURED}$ is the interval from when the reference signal switches to when the output voltage reaches V_{TRIP} (high) or V_{TRIP} (low). For V_{DD_EXT} (nominal) = 1.8 V, V_{TRIP} (high) is 1.05 V, and V_{TRIP} (low) is 0.75 V. For V_{DD_EXT} (nominal) = 3.3 V, V_{TRIP} (high) is 1.9 V, and V_{TRIP} (low) is 1.4 V. Time t_{TRIP} is the interval from when the output starts driving to when the output reaches the V_{TRIP} (high) or V_{TRIP} (low) trip voltage.

Time t_{ENA} is calculated as shown in the equation:

 $t_{ENA} = t_{ENA_MEASURED} - t_{TRIP}$

If multiple balls (such as the data bus) are enabled, the measurement value is that of the first ball to start driving.

Output Disable Time Measurement

Output balls are considered to be disabled when they stop driving, go into a high impedance state, and start to decay from their output high or low voltage. The output disable time t_{DIS} is the difference between $t_{DIS_MEASURED}$ and t_{DECAY} as shown on the left side of Figure 63.

$$t_{DIS} = t_{DIS_MEASURED} - t_{DECAY}$$

The time for the voltage on the bus to decay by ΔV is dependent on the capacitive load, C_L and the load current, I_L . This decay time can be approximated by the equation:

$$t_{DECAY} = (C_L \Delta V) / I_L$$

The time t_{DECAY} is calculated with test loads C_L and I_L , and with ΔV equal to 0.25 V for V_{DD_EXT} (nominal) = 3.3 V and 0.15 V for V_{DD_EXT} (nominal) = 1.8V.

The time $t_{DIS_MEASURED}$ is the interval from when the reference signal switches, to when the output voltage decays ΔV from the measured output high or output low voltage.

Example System Hold Time Calculation

To determine the data output hold time in a particular system, first calculate t_{DECAY} using the previous equation. Choose ΔV to be the difference between the processor's output voltage and the input threshold for the device requiring the hold time. C_L is the total bus capacitance (per data line), and I_L is the total leakage or three-state current (per data line). The hold time will be t_{DECAY} plus the various output disable times as specified in the Timing Specifications on Page 60.