

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

2 0 0 0 0 0	
Product Status	Active
Туре	Blackfin+
Interface	CAN, DSPI, EBI/EMI, I ² C, PPI, QSPI, SD/SDIO, SPI, SPORT, UART/USART, USB OTG
Clock Rate	300MHz
Non-Volatile Memory	ROM (512kB)
On-Chip RAM	1MB
Voltage - I/O	1.8V, 3.3V
Voltage - Core	1.10V
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	88-VFQFN Exposed Pad, CSP
Supplier Device Package	88-LFCSP-VQ (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/analog-devices/adsp-bf706kcpz-3

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

system event or fault if enabled. ECC protection is fully transparent to the user, even if L2 memory is read or written by 8-bit or 16-bit entities.

CRC-Protected Memories

While parity bit and ECC protection mainly protect against random soft errors in L1 and L2 memory cells, the CRC engines can be used to protect against systematic errors (pointer errors) and static content (instruction code) of L1, L2, and even L3 memories (DDR2, LPDDR). The processor features two CRC engines which are embedded in the memory-to-memory DMA controllers. CRC checksums can be calculated or compared on the fly during memory transfers, or one or multiple memory regions can be continuously scrubbed by a single DMA work unit as per DMA descriptor chain instructions. The CRC engine also protects data loaded during the boot process.

Memory Protection

The Blackfin+ core features a memory protection concept, which grants data and/or instruction accesses to enabled memory regions only. A supervisor mode vs. user mode programming model supports dynamically varying access rights. Increased flexibility in memory page size options supports a simple method of static memory partitioning.

System Protection

The system protection unit (SPU) guards against accidental or unwanted access to the MMR space of a peripheral by providing a write-protection mechanism. The user is able to choose and configure the peripherals that are protected as well as configure which ones of the four system MMR masters (core, memory DMA, the SPI host port, and Coresight debug) the peripherals are guarded against.

The SPU is also part of the security infrastructure. Along with providing write-protection functionality, the SPU is employed to define which resources in the system are secure or non-secure and to block access to secure resources from non-secure masters.

Synonymously, the system memory protection unit (SMPU) provides memory protection against read and/or write transactions to defined regions of memory. There are two SMPU units in the ADSP-BF70x processors. One is for the L2 memory and the other is for the external DDR memory.

The SMPU is also part of the security infrastructure. It allows the user to not only protect against arbitrary read and/or write transactions, but it also allows regions of memory to be defined as secure and prevent non-secure masters from accessing those memory regions.

Watchpoint Protection

The primary purpose of watchpoints and hardware breakpoints is to serve emulator needs. When enabled, they signal an emulator event whenever user-defined system resources are accessed or the core executes from user-defined addresses. Watchpoint events can be configured such that they signal the events to the fault management unit of the SEC.

Watchdog

The on-chip software watchdog timer can supervise the Blackfin+ core.

Bandwidth Monitor

Memory-to-memory DMA channels are equipped with a bandwidth monitor mechanism. They can signal a system event or fault when transactions tend to starve because system buses are fully loaded with higher-priority traffic.

Signal Watchdogs

The eight general-purpose timers feature modes to monitor offchip signals. The watchdog period mode monitors whether external signals toggle with a period within an expected range. The watchdog width mode monitors whether the pulse widths of external signals are within an expected range. Both modes help to detect undesired toggling (or lack thereof) of system-level signals.

Up/Down Count Mismatch Detection

The GP counter can monitor external signal pairs, such as request/grant strobes. If the edge count mismatch exceeds the expected range, the GP counter can flag this to the processor or to the fault management unit of the SEC.

Fault Management

The fault management unit is part of the system event controller (SEC). Any system event, whether a dual-bit uncorrectable ECC error, or any peripheral status interrupt, can be defined as being a fault. Additionally, the system events can be defined as an interrupt to the core. If defined as such, the SEC forwards the event to the fault management unit, which may automatically reset the entire device for reboot, or simply toggle the SYS_FAULT output pin to signal off-chip hardware. Optionally, the fault management unit can delay the action taken through a keyed sequence, to provide a final chance for the Blackfin+ core to resolve the issue and to prevent the fault action from being taken.

ADDITIONAL PROCESSOR PERIPHERALS

The processor contains a rich set of peripherals connected to the core through several high-bandwidth buses, providing flexibility in system configuration as well as excellent overall system performance (see the block diagram on Page 1). The processor contains high-speed serial and parallel ports, an interrupt controller for flexible management of interrupts from the on-chip peripherals or external sources, and power management control functions to tailor the performance and power characteristics of the processor and system to many application scenarios.

The following sections describe additional peripherals that were not previously described.

Timers

The processor includes several timers which are described in the following sections.

General-Purpose Timers

There is one GP timer unit, and it provides eight general-purpose programmable timers. Each timer has an external pin that can be configured either as a pulse width modulator (PWM) or timer output, as an input to clock the timer, or as a mechanism for measuring pulse widths and periods of external events. These timers can be synchronized to an external clock input on the TIMER_TMRx pins, an external TIMER_CLK input pin, or to the internal SCLK0.

These timer units can be used in conjunction with the UARTs and the CAN controller to measure the width of the pulses in the data stream to provide a software auto-baud detect function for the respective serial channels.

The GP timers can generate interrupts to the processor core, providing periodic events for synchronization to either the system clock or to external signals. Timer events can also trigger other peripherals through the TRU (for instance, to signal a fault). Each timer may also be started and/or stopped by any TRU master without core intervention.

Core Timer

The processor core also has its own dedicated timer. This extra timer is clocked by the internal processor clock and is typically used as a system tick clock for generating periodic operating system interrupts.

Watchdog Timer

The core includes a 32-bit timer, which may be used to implement a software watchdog function. A software watchdog can improve system availability by forcing the processor to a known state, through generation of a hardware reset, nonmaskable interrupt (NMI), or general-purpose interrupt, if the timer expires before being reset by software. The programmer initializes the count value of the timer, enables the appropriate interrupt, then enables the timer. Thereafter, the software must reload the counter before it counts down to zero from the programmed value. This protects the system from remaining in an unknown state where software that would normally reset the timer has stopped running due to an external noise condition or software error.

After a reset, software can determine if the watchdog was the source of the hardware reset by interrogating a status bit in its timer control register that is set only upon a watchdog-generated reset.

Serial Ports (SPORTs)

Two synchronous serial ports (comprised of four half-SPORTs) provide an inexpensive interface to a wide variety of digital and mixed-signal peripheral devices such as Analog Devices' audio codecs, ADCs, and DACs. Each half-SPORT is made up of two data lines, a clock, and frame sync. The data lines can be programmed to either transmit or receive and each data line has a dedicated DMA channel.

Serial port data can be automatically transferred to and from on-chip memory/external memory through dedicated DMA channels. Each of the serial ports can work in conjunction with another serial port to provide TDM support. In this configuration, one SPORT provides two transmit signals while the other SPORT provides the two receive signals. The frame sync and clock are shared.

Serial ports operate in six modes:

- Standard DSP serial mode
- Multichannel (TDM) mode
- I²S mode
- Packed I²S mode
- Left-justified mode
- Right-justified mode

General-Purpose Counters

A 32-bit counter is provided that can operate in general-purpose up/down count modes and can sense 2-bit quadrature or binary codes as typically emitted by industrial drives or manual thumbwheels. Count direction is either controlled by a levelsensitive input pin or by two edge detectors.

A third counter input can provide flexible zero marker support and can alternatively be used to input the push-button signal of thumbwheel devices. All three pins have a programmable debouncing circuit.

Internal signals forwarded to a GP timer enable this timer to measure the intervals between count events. Boundary registers enable auto-zero operation or simple system warning by interrupts when programmed count values are exceeded.

Parallel Peripheral Interface (PPI)

The processor provides a parallel peripheral interface (PPI) that supports data widths up to 18 bits. The PPI supports direct connection to TFT LCD panels, parallel analog-to-digital and digital-to-analog converters, video encoders and decoders, image sensor modules, and other general-purpose peripherals.

The following features are supported in the PPI module:

- Programmable data length: 8 bits, 10 bits, 12 bits, 14 bits, 16 bits, and 18 bits per clock.
- Various framed, non-framed, and general-purpose operating modes. Frame syncs can be generated internally or can be supplied by an external device.
- ITU-656 status word error detection and correction for ITU-656 receive modes and ITU-656 preamble and status word decode.
- Optional packing and unpacking of data to/from 32 bits from/to 8 bits, 16 bits and 24 bits. If packing/unpacking is enabled, endianness can be configured to change the order of packing/unpacking of bytes/words.
- RGB888 can be converted to RGB666 or RGB565 for transmit modes.
- Various de-interleaving/interleaving modes for receiving/transmitting 4:2:2 YCrCb data.
- Configurable LCD data enable (DEN) output available on Frame Sync 3.

Table 3. Clock Dividers

	Divider (if Available on
Clock Source	SYS_CLKOUT)
CCLK (Core Clock)	By 16
SYSCLK (System Clock)	Ву 8
SCLK0 (System Clock, All Peripherals not Covered by SCLK1)	Not available on SYS_CLKOUT
SCLK1 (System Clock for Crypto Engines and MDMA)	Ву 8
DCLK (LPDDR/DDR2 Clock)	Ву 8
OCLK (Output Clock)	Programmable
CLKBUF	None, direct from SYS_CLKIN

Power Management

As shown in Table 4, the processor supports multiple power domains, which maximizes flexibility while maintaining compliance with industry standards and conventions. There are no sequencing requirements for the various power domains, but all domains must be powered according to the appropriate Specifications table for processor operating conditions; even if the feature/peripheral is not used.

Table 4. Power Domains

Power Domain	V _{DD} Range
All Internal Logic	V _{DD_INT}
DDR2/LPDDR	V _{DD_DMC}
USB	$V_{DD_{USB}}$
OTP Memory	V _{DD_OTP}
HADC	V _{DD_HADC}
RTC	V _{DD_RTC}
All Other I/O (Includes SYS, JTAG, and Ports Pins)	V _{DD_EXT}

The dynamic power management feature of the processor allows the processor's core clock frequency (f_{CCLK}) to be dynamically controlled.

The power dissipated by a processor is largely a function of its clock frequency and the square of the operating voltage. For example, reducing the clock frequency by 25% results in a 25% reduction in dynamic power dissipation.

See Table 5 for a summary of the power settings for each mode.

Full-On Operating Mode—Maximum Performance

In the full-on mode, the PLL is enabled and is not bypassed, providing capability for maximum operational frequency. This is the power-up default execution state in which maximum performance can be achieved. The processor core and all enabled peripherals run at full speed.

Deep Sleep Operating Mode—Maximum Dynamic Power Savings

The deep sleep mode maximizes dynamic power savings by disabling the clocks to the processor core and to all synchronous peripherals. Asynchronous peripherals may still be running but cannot access internal resources or external memory.

Table 5. Power Settings

Mode/State	PLL	PLL Bypassed		f _{sysclk} , f _{DCLK} , f _{sclk0} , f _{sclk1}	Core Power
Full On	Enabled	No	Enabled	Enabled	On
Deep Sleep	Disabled	_	Disabled	Disabled	On
Hibernate	Disabled	—	Disabled	Disabled	Off

Hibernate State—Maximum Static Power Savings

The hibernate state maximizes static power savings by disabling the voltage and clocks to the processor core and to all of the peripherals. This setting signals the external voltage regulator supplying the VDD_INT pins to shut off using the SYS_ EXTWAKE signal, which provides the lowest static power dissipation.

Any critical information stored internally (for example, memory contents, register contents, and other information) must be written to a nonvolatile storage device (or self-refreshed DRAM) prior to removing power if the processor state is to be preserved.

Because the V_{DD_EXT} pins can still be supplied in this mode, all of the external pins three-state, unless otherwise specified. This allows other devices that may be connected to the processor to still have power applied without drawing unwanted current.

Reset Control Unit

Reset is the initial state of the whole processor or the core and is the result of a hardware- or software-triggered event. In this state, all control registers are set to their default values and functional units are idle. Exiting a full system reset starts with the core being ready to boot.

The reset control unit (RCU) controls how all the functional units enter and exit reset. Differences in functional requirements and clocking constraints define how reset signals are generated. Programs must guarantee that none of the reset functions puts the system into an undefined state or causes resources to stall. This is particularly important when the core is reset (programs must ensure that there is no pending system activity involving the core when it is being reset).

From a system perspective, reset is defined by both the reset target and the reset source described as follows in the following list.

Target defined:

- Hardware Reset—All functional units are set to their default states without exception. History is lost.
- System Reset—All functional units except the RCU are set to their default states.
- Core-only Reset—Affects the core only. The system software should guarantee that the core, while in reset state, is not accessed by any bus master.

Source defined:

- Hardware Reset—The <u>SYS_HWRST</u> input signal is asserted active (pulled down).
- System Reset—May be triggered by software (writing to the RCU_CTL register) or by another functional unit such as the dynamic power management (DPM) unit (hibernate) or any of the system event controller (SEC), trigger routing unit (TRU), or emulator inputs.
- Core-only Reset—Triggered by software.
- Trigger request (peripheral).

Voltage Regulation

The processor requires an external voltage regulator to power the VDD_INT pins. To reduce standby power consumption, the external voltage regulator can be signaled through SYS_EXTWAKE to remove power from the processor core. This signal is high-true for power-up and may be connected directly to the low-true shut-down input of many common regulators.

While in the hibernate state, all external supply pins (VDD_ EXT, VDD_USB, and VDD_DMC) can still be powered, eliminating the need for external buffers. The external voltage regulator can be activated from this power down state by asserting the SYS_HWRST pin, which then initiates a boot sequence. SYS_EXTWAKE indicates a wake-up to the external voltage regulator.

SYSTEM DEBUG

The processor includes various features that allow for easy system debug. These are described in the following sections.

System Watchpoint Unit

The system watchpoint unit (SWU) is a single module which connects to a single system bus and provides for transaction monitoring. One SWU is attached to the bus going to each system slave. The SWU provides ports for all system bus address channel signals. Each SWU contains four match groups of registers with associated hardware. These four SWU match groups operate independently, but share common event (interrupt, trigger, and others) outputs.

Debug Access Port

The debug access port (DAP) provides IEEE-1149.1 JTAG interface support through its JTAG debug and serial wire debug port (SWJ-DP). SWJ-DP is a combined JTAG-DP and SW-DP that enables either serial wire debug (SWD) or a JTAG emulator to be connected to a target. SWD signals share the same pins as

JTAG. The DAP provides an optional instrumentation trace for both the core and system. It provides a trace stream that conforms to MIPI System Trace Protocol version 2 (STPv2).

DEVELOPMENT TOOLS

Analog Devices supports its processors with a complete line of software and hardware development tools, including integrated development environments (CrossCore[®] Embedded Studio), evaluation products, emulators, and a wide variety of software add-ins.

Integrated Development Environments (IDEs)

CrossCore Embedded Studio is based on the Eclipse[™] framework. Supporting most Analog Devices processor families, it is the IDE of choice for future processors, including multicore devices. CrossCore Embedded Studio seamlessly integrates available software add-ins to support real time operating systems, file systems, TCP/IP stacks, USB stacks, algorithmic software modules, and evaluation hardware board support packages. For more information, visit www.analog.com/cces.

EZ-KIT Lite Evaluation Board

For processor evaluation, Analog Devices provides a wide range of EZ-KIT Lite[®] evaluation boards. Including the processor and key peripherals, the evaluation board also supports on-chip emulation capabilities and other evaluation and development features. Also available are various EZ-Extenders[®], which are daughter cards delivering additional specialized functionality, including audio and video processing. For more information, visit www.analog.com and search on "ezkit" or "ezextender".

EZ-KIT Lite Evaluation Kits

For a cost-effective way to learn more about developing with Analog Devices processors, Analog Devices offer a range of EZ-KIT Lite evaluation kits. Each evaluation kit includes an EZ-KIT Lite evaluation board, directions for downloading an evaluation version of the available IDE, a USB cable, and a power supply. The USB controller on the EZ-KIT Lite board connects to the USB port of the user's PC, enabling the chosen IDE evaluation suite to emulate the on-board processor in-circuit. This permits the customer to download, execute, and debug programs for the EZ-KIT Lite system. It also supports in-circuit programming of the on-board Flash device to store user-specific boot code, enabling standalone operation. With the full version of Cross-Core Embedded Studio installed (sold separately), engineers can develop software for supported EZ-KITs or any custom system utilizing supported Analog Devices processors.

ADSP-BF706 EZ-KIT Mini

The ADSP-BF706 EZ-KIT Mini[™] product (ADZS-BF706-EZMini) contains the ADSP-BF706 processor and is shipped with all of the necessary hardware. Users can start their evaluation immediately. The EZ-KIT Mini product includes the standalone evaluation board and USB cable. The EZ-KIT Mini ships with an on-board debug agent.

The evaluation board is designed to be used in conjunction with the CrossCore Embedded Studio (CCES) development tools to test capabilities of the ADSP-BF706 Blackfin processor.

Port Name	Direction	Description
HADC_VREFN	Input	Ground Reference for ADC. Connect to an external voltage reference that meets data sheet specifications.
HADC_VREFP	Input	External Reference for ADC. Connect to an external voltage reference that meets data sheet specifications.
MSI_CD	Input	Card Detect. Connects to a pull-up resistor and to the card detect output of an SD socket.
MSI_CLK	Output	Clock. The clock signal applied to the connected device from the MSI.
MSI_CMD	I/O	Command. Used to send commands to and receive responses from the connected device.
MSI_Dn	I/O	Data n. Bidirectional data bus.
MSI_INT	Input	eSDIO Interrupt Input. Used only for eSDIO. Connects to an eSDIO card's interrupt output. An interrupt may be sampled even when the MSI clock to the card is switched off.
Px_nn	I/O	Position n. General purpose input/output. See the GP Ports chapter of the HRM for programming information.
RTC_CLKIN	Input	Crystal input/external oscillator connection. Connect to an external clock source or crystal.
RTC_XTAL	Output	Crystal output. Drives an external crystal. Must be left unconnected if an external clock is driving RTC_CLKIN.
SMC_ABEn	Output	Byte Enable n. Indicate whether the lower or upper byte of a memory is being accessed. When an asynchronous write is made to the upper byte of a 16-bit memory, SMC_ABE1b=0 and SMC_ABE0b=1. When an asynchronous write is made to the lower byte of a 16-bit memory, SMC_ABE1b=1 and SMC_ABE0b=0.
SMC_AMSn	Output	Memory Select n. Typically connects to the chip select of a memory device.
SMC_AOE	Output	Output Enable. Asserts at the beginning of the setup period of a read access.
SMC_ARDY	Input	Asynchronous Ready. Flow control signal used by memory devices to indicate to the SMC when further transactions may proceed.
SMC_ARE	Output	Read Enable. Asserts at the beginning of a read access.
SMC_AWE	Output	Write Enable. Asserts for the duration of a write access period.
SMC_Ann	Output	Address n. Address bus.
SMC_Dnn	I/O	Data n. Bidirectional data bus.
SPI_CLK	I/O	Clock. Input in slave mode, output in master mode.
SPI_D2	I/O	Data 2. Used to transfer serial data in Quad mode. Open-drain when ODM mode is enabled.
SPI_D3	I/O	Data 3. Used to transfer serial data in Quad mode. Open-drain when ODM mode is enabled.
SPI_MISO	I/O	Master In, Slave Out. Used to transfer serial data. Operates in the same direction as SPI_MOSI in Dual and Quad modes. Open-drain when ODM mode is enabled.
SPI_MOSI	I/O	Master Out, Slave In. Used to transfer serial data. Operates in the same direction as SPI_MISO in Dual and Quad modes. Open-drain when ODM mode is enabled.
SPI_RDY	I/O	Ready. Optional flow signal. Output in slave mode, input in master mode.
SPI_SELn	Output	Slave Select Output n. Used in Master mode to enable the desired slave.
SPI_SS	Input	Slave Select Input. Slave mode - Acts as the slave select input. Master mode- Optionally serves as an error detection input for the SPI when there are multiple masters.
SPT_ACLK	I/O	Channel A Clock. Data and Frame Sync are driven/sampled with respect to this clock. This signal can be either internally or externally generated.
SPT_AD0	I/O	Channel A Data 0. Primary bidirectional data I/O. This signal can be configured as an output to transmit serial data, or as an input to receive serial data.
SPT_AD1	I/O	Channel A Data 1. Secondary bidirectional data I/O. This signal can be configured as an output to transmit serial data, or as an input to receive serial data.
SPT_AFS	I/O	Channel A Frame Sync. The frame sync pulse initiates shifting of serial data. This signal is either generated internally or externally.
SPT_ATDV	Output	Channel A Transmit Data Valid. This signal is optional and only active when SPORT is configured in multichannel transmit mode. It is asserted during enabled slots.

Table 6. ADSP-BF70x Detailed Signal Descriptions (Continued)

184-BALL CSP_BGA SIGNAL DESCRIPTIONS

The processor's pin definitions are shown in Table 7. The columns in this table provide the following information:

- Signal Name: The Signal Name column in the table includes the signal name for every pin and (where applicable) the GPIO multiplexed pin function for every pin.
- Description: The Description column in the table provides a verbose (descriptive) name for the signal.

Table 7. ADSP-BF70x 184-Ball CSP_BGA Signal Descriptions

- General-Purpose Port: The Port column in the table shows whether or not the signal is multiplexed with other signals on a general-purpose I/O port pin.
- Pin Name: The Pin Name column in the table identifies the name of the package pin (at power on reset) on which the signal is located (if a single function pin) or is multiplexed (if a general-purpose I/O pin).

Signal Name	Description	Port	Pin Name
CAN0_RX	CAN0 Receive	С	PC_02
CAN0_TX	CAN0 Transmit	С	PC_03
CAN1_RX	CAN1 Receive	A	PA_12
CAN1_TX	CAN1 Transmit	A	PA_13
CNT0_DG	CNT0 Count Down and Gate	A	PA_07
CNT0_UD	CNT0 Count Up and Direction	A	PA_15
CNT0_ZM	CNT0 Count Zero Marker	A	PA_13
DMC0_A00	DMC0 Address 0	Not Muxed	DMC0_A00
DMC0_A01	DMC0 Address 1	Not Muxed	DMC0_A01
DMC0_A02	DMC0 Address 2	Not Muxed	DMC0_A02
DMC0_A03	DMC0 Address 3	Not Muxed	DMC0_A03
DMC0_A04	DMC0 Address 4	Not Muxed	DMC0_A04
DMC0_A05	DMC0 Address 5	Not Muxed	DMC0_A05
DMC0_A06	DMC0 Address 6	Not Muxed	DMC0_A06
DMC0_A07	DMC0 Address 7	Not Muxed	DMC0_A07
DMC0_A08	DMC0 Address 8	Not Muxed	DMC0_A08
DMC0_A09	DMC0 Address 9	Not Muxed	DMC0_A09
DMC0_A10	DMC0 Address 10	Not Muxed	DMC0_A10
DMC0_A11	DMC0 Address 11	Not Muxed	DMC0_A11
DMC0_A12	DMC0 Address 12	Not Muxed	DMC0_A12
DMC0_A13	DMC0 Address 13	Not Muxed	DMC0_A13
DMC0_BA0	DMC0 Bank Address Input 0	Not Muxed	DMC0_BA0
DMC0_BA1	DMC0 Bank Address Input 1	Not Muxed	DMC0_BA1
DMC0_BA2	DMC0 Bank Address Input 2	Not Muxed	DMC0_BA2
DMC0_CAS	DMC0 Column Address Strobe	Not Muxed	DMC0_CAS
DMC0_CK	DMC0 Clock	Not Muxed	DMC0_CK
DMC0_CKE	DMC0 Clock enable	Not Muxed	DMC0_CKE
DMC0_CK	DMC0 Clock (complement)	Not Muxed	DMC0_CK
DMC0_CS0	DMC0 Chip Select 0	Not Muxed	DMC0_CS0
DMC0_DQ00	DMC0 Data 0	Not Muxed	DMC0_DQ00
DMC0_DQ01	DMC0 Data 1	Not Muxed	DMC0_DQ01
DMC0_DQ02	DMC0 Data 2	Not Muxed	DMC0_DQ02
DMC0_DQ03	DMC0 Data 3	Not Muxed	DMC0_DQ03
DMC0_DQ04	DMC0 Data 4	Not Muxed	DMC0_DQ04
DMC0_DQ05	DMC0 Data 5	Not Muxed	DMC0_DQ05
DMC0_DQ06	DMC0 Data 6	Not Muxed	DMC0_DQ06

Table 7. ADSP-BF70x 184-Ball CSP_BGA Signal Descriptions (Continued)

Signal Name	Description	Port	Pin Name
MSIO_INT	MSI0 eSDIO Interrupt Input	C	PC_14
PA_00-PA_15	Position 00 through Position 15	A	PA_00-PA_15
PB_00-PB_15	Position 00 through Position 15	В	PB_00-PB_15
PC_00-PC_14	Position 00 through Position 14	с	PC_00-PC_14
PPI0_CLK	EPPI0 Clock	А	PA_14
PPI0_D00	EPPIO Data 0	В	PB_07
PPI0_D01	EPPIO Data 1	В	PB_06
PPI0_D02	EPPIO Data 2	В	PB_05
PPI0_D03	EPPIO Data 3	В	PB_04
PPI0_D04	EPPIO Data 4	В	PB_03
PPI0_D05	EPPIO Data 5	В	PB_02
PPI0_D06	EPPIO Data 6	В	PB_01
PPI0_D07	EPPIO Data 7	В	PB_00
PPI0_D08	EPPIO Data 8	A	PA_11
 PPI0_D09	EPPI0 Data 9	A	 PA_10
PPI0_D10	EPPIO Data 10	A	PA_09
PPI0_D11	EPPIO Data 11	А	PA_08
PPI0_D12	EPPIO Data 12	с	PC_03
PPI0_D13	EPPIO Data 13	с	PC_02
PPI0_D14	EPPIO Data 14	С	PC_01
PPI0_D15	EPPIO Data 15	с	PC_00
PPI0_D16	EPPIO Data 16	В	PB_08
PPI0_D17	EPPIO Data 17	В	PB_09
PPI0_FS1	EPPI0 Frame Sync 1 (HSYNC)	А	PA_12
PPI0_FS2	EPPI0 Frame Sync 2 (VSYNC)	A	PA_13
PPI0_FS3	EPPI0 Frame Sync 3 (FIELD)	A	PA_15
RTC0_CLKIN	RTC0 Crystal input/external oscillator connection	Not Muxed	RTC0_CLKIN
RTC0_XTAL	RTC0 Crystal output	Not Muxed	RTC0_XTAL
SMC0_A01	SMC0 Address 1	А	PA_08
5MC0_A02	SMC0 Address 2	А	PA_09
	SMC0 Address 3	А	 PA_10
	SMC0 Address 4	A	 PA_11
SMC0_A05	SMC0 Address 5	А	PA_07
	SMC0 Address 6	А	 PA_06
	SMC0 Address 7	А	 PA_05
	SMC0 Address 8	А	 PA_04
SMC0_A09	SMC0 Address 9	С	PC_01
5MC0_A10	SMC0 Address 10	C	PC_02
5MC0_A11	SMC0 Address 11	C	PC_03
5MC0_A12	SMC0 Address 12	C	PC_04
SMC0_ABE0	SMC0 Byte Enable 0	A	PA_00
SMC0_ABE1	SMC0 Byte Enable 1	A	PA_01
SMC0_AMS0	SMC0 Memory Select 0	A	PA_15
SMC0_AMS1	SMC0 Memory Select 1	A	PA_02
SMC0_AOE	SMC0 Output Enable	A	PA_12
SMC0_ARDY	SMC0 Asynchronous Ready	A	PA_03

Signal Name	Description	Port	Pin Name
SYS_FAULT	Active-Low Fault Output	Not Muxed	SYS_FAULT
SYS_HWRST	Processor Hardware Reset Control	Not Muxed	SYS_HWRST
SYS_NMI	Nonmaskable Interrupt	Not Muxed	SYS_NMI
SYS_RESOUT	Reset Output	Not Muxed	SYS_RESOUT
SYS_WAKE0	Power Saving Mode Wake-up 0	В	PB_07
SYS_WAKE1	Power Saving Mode Wake-up 1	В	PB_08
SYS_WAKE2	Power Saving Mode Wake-up 2	В	PB_12
SYS_WAKE3	Power Saving Mode Wake-up 3	с	PC_02
SYS_WAKE4	Power Saving Mode Wake-up 4	А	PA_12
SYS_XTAL	Crystal Output	Not Muxed	SYS_XTAL
	TIMER0 Alternate Capture Input 0	с	PC_03
 FM0_ACI1	TIMER0 Alternate Capture Input 1	В	 PB_01
M0_ACI2	TIMER0 Alternate Capture Input 2	C	PC_07
FM0_ACI3	TIMERO Alternate Capture Input 3	В	PB_09
TM0_ACI4	TIMERO Alternate Capture Input 4	C	PC_01
FM0_ACI5	TIMERO Alternate Capture Input 5	c	PC_02
FM0_ACI6	TIMERO Alternate Capture Input 6	A	PA_12
FM0_ACLK0	TIMERO Alternate Clock 0	c	PC_04
TM0_ACLK1	TIMERO Alternate Clock 1	c	PC_10
TM0_ACLK2	TIMERO Alternate Clock 2	c	PC_09
TM0_ACLK3	TIMERO Alternate Clock 3	В	PB_00
FM0_ACLK4	TIMERO Alternate Clock 4	В	PB_10
TM0_ACLK5	TIMERO Alternate Clock 5	A	PA_14
TM0_ACLK6	TIMERO Alternate Clock 6	В	PB_04
TM0_CLK	TIMERO Clock	В	PB_06
TM0_TMR0	TIMERO Timer 0	A	PA_05
TM0_TMR1	TIMERO Timer 1	A	PA_06
TM0_TMR2	TIMERO Timer 2	A	PA_07
TM0_TMR2	TIMERO Timer 3	c	PC_05
TM0_TMR4	TIMERO Timer 4	A	PA_09
TM0_TMR5	TIMERO Timer 5	A	PA_10
TM0_TMR6	TIMERO Timer 6	A	PA_11
TMO_TMR7	TIMERO Timer 7	A	PA_04
TRACE0_CLK	TPIU0 Trace Clock	В	PB_10
TRACE0_CER	TPIU0 Trace Data 0	В	PB_15
TRACE0_D00	TPIU0 Trace Data 1	В	PB_14
TRACE0_D01	TPIU0 Trace Data 2	В	PB_14 PB_13
TRACE0_D02	TPIU0 Trace Data 3	В	PB_12
TRACE0_D04	TPIU0 Trace Data 4	В	PB_11
TRACEO_DOS	TPIU0 Trace Data 5	A	PA_02
TRACE0_D06	TPIU0 Trace Data 6	A	PA_01
TRACE0_D07	TPIU0 Trace Data 7	A	PA_00
TWI0_SCL	TWI0 Serial Clock	Not Muxed	TWI0_SCL
TWIO_SDA	TWI0 Serial Data	Not Muxed	TWI0_SDA
JARTO_CTS	UARTO Clear to Send	C	PC_03
JARTO_RTS	UARTO Request to Send	C	PC_02

Table 7. ADSP-BF70x 184-Ball CSP_BGA Signal Descriptions (Continued)

Signal Name	Description	Port	Pin Name
TM0_ACLK1	TIMER0 Alternate Clock 1	С	PC_10
TM0_ACLK2	TIMER0 Alternate Clock 2	С	PC_09
TM0_ACLK3	TIMER0 Alternate Clock 3	В	PB_00
TM0_ACLK4	TIMER0 Alternate Clock 4	В	PB_10
TM0_ACLK5	TIMER0 Alternate Clock 5	А	PA_14
TM0_ACLK6	TIMER0 Alternate Clock 6	В	PB_04
TM0_CLK	TIMER0 Clock	В	 PB_06
TM0_TMR0	TIMER0 Timer 0	А	 PA_05
 TM0_TMR1	TIMER0 Timer 1	А	_ PA_06
TM0_TMR2	TIMER0 Timer 2	А	PA_07
TM0_TMR3	TIMERO Timer 3	C	PC_05
TM0_TMR4	TIMER0 Timer 4	A	PA_09
TM0_TMR5	TIMERO Timer 5	A	PA_10
TM0_TMR6	TIMERO Timer 6	A	PA_11
TM0_TMR7	TIMERO Timer 7	A	PA_04
TRACE0_CLK	TPIU0 Trace Clock	В	PB_10
TRACE0_CER	TPIU0 Trace Data 0	В	PB_15
TRACE0_D00	TPIU0 Trace Data 1	В	PB_14
TRACE0_D01	TPIU0 Trace Data 2	В	PB_13
	TPIU0 Trace Data 3	В	
TRACE0_D03			PB_12
TRACE0_D04	TPIU0 Trace Data 4	В	PB_11
TRACE0_D05	TPIU0 Trace Data 5	A	PA_02
TRACE0_D06	TPIU0 Trace Data 6	A	PA_01
TRACE0_D07	TPIU0 Trace Data 7	A	PA_00
TWI0_SCL	TWI0 Serial Clock	Not Muxed	TWI0_SCL
TWI0_SDA	TWI0 Serial Data	Not Muxed	TWI0_SDA
UARTO_CTS	UARTO Clear to Send	С	PC_03
UARTO_RTS	UARTO Request to Send	C	PC_02
UARTO_RX	UARTO Receive	В	PB_09
UARTO_TX	UARTO Transmit	В	PB_08
UART1_CTS	UART1 Clear to Send	В	PB_14
UART1_RTS	UART1 Request to Send	В	PB_13
UART1_RX	UART1 Receive	С	PC_01
UART1_TX	UART1 Transmit	С	PC_00
USB0_CLKIN	USB0 Clock/Crystal Input	Not Muxed	USB0_CLKIN
USB0_DM	USB0 Data –	Not Muxed	USB0_DM
USB0_DP	USB0 Data +	Not Muxed	USB0_DP
USB0_ID	USB0 OTG ID	Not Muxed	USB0_ID
USB0_VBC	USB0 VBUS Control	Not Muxed	USB0_VBC
USB0_VBUS	USB0 Bus Voltage	Not Muxed	USB0_VBUS
USB0_XTAL	USB0 Crystal	Not Muxed	USB0_XTAL
VDD_EXT	External VDD	Not Muxed	VDD_EXT
VDD_INT	Internal VDD	Not Muxed	VDD_INT
VDD_OTP	VDD for OTP	Not Muxed	VDD_OTP
VDD_RTC	VDD for RTC	Not Muxed	VDD_RTC
VDD_USB	VDD for USB	Not Muxed	VDD_USB

Table 11. ADSP-BF70x 12 mm × 12 mm 88-Lead LFCSP (QFN) Signal Descriptions (Continued)

		Driver	Int	Reset	Reset	Hiber	Hiber	Power	Description
Signal Name	Туре	Туре	Term	Term	Drive	Term	Drive	Domain	and Notes
PB_12	I/O	A	none	none	none	none	none	VDD_EXT	Desc: SPI2 Master Out, Slave In TRACE0 Trace Data 3 SMC0 Data 12 SYS Power Saving Mode Wakeup 2
									Notes: If hibernate mode is used, one of the following must be true during hibernate. Either this pin must be actively driven by another IC, or it must have a pull-up or pull-down.
PB_13	I/O	A	none	none	none	none	none	VDD_EXT	Desc: SPI2 Data 2 UART1 Request to Send TRACE0 Trace Data 2 SMC0 Data 13 Notes: No notes.
PB_14	I/O	A	none	none	none	none	none	VDD_EXT	Desc: SPI2 Data 3 UART1 Clear to Send TRACE0 Trace Data 1 SMC0 Data 14 Notes: No notes.
PB_15	I/O	A	none	none	none	none	none	VDD_EXT	Desc: SPI2 Slave Select Output 1 TRACE0 Trace Data 0 SMC0 Data 15 SPI2 Slave Select Input Notes: SPI slave select outputs require a pull-up when used.
PC_00	I/O	A	none	none	none	none	none	VDD_EXT	Desc: UART1 Transmit SPT0 Channel A Data 1 PPI0 Data 15 Notes: No notes.
PC_01	I/O	A	none	none	none	none	none	VDD_EXT	Desc: UART1 Receive SPT0 Channel B Data 1 PPI0 Data 14 SMC0 Address 9 TM0 Alternate Capture Input 4 Notes: No notes.
PC_02	Ι/Ο	A	none	none	none	none	none	VDD_EXT	Desc: UART0 Request to Send CAN0 Receive PPI0 Data 13 SMC0 Address 10 SYS Power Saving Mode Wakeup 3 TM0 Alternate Capture Input 5 Notes: If hibernate mode is used, one of the following must be true during hibernate. Either this pin must be actively driven by another IC, or it must have a pull-up or pull-down.
PC_03	I/O	A	none	none	none	none	none	VDD_EXT	Desc: UARTO Clear to Send CANO Transmit PPIO Data 12 SMCO Address 11 TMO Alternate Capture Input 0 Notes: No notes.
PC_04	Ι/Ο	A	none	none	none	none	none	VDD_EXT	Desc: SPT0 Channel B Clock SPI0 Clock MSI0 Data 1 SMC0 Address 12 TM0 Alternate Clock 0 Notes: An external pull-up may be required for MSI modes, see the MSI chapter in the hardware reference for details.

Table 15. ADSP-BF70x Designer Quick Reference (Continued)

Parameter		Test Conditions/Comments	Min	Тур	Мах	Uni
I _{OZH_TWI} ¹⁴	Three-State Leakage Current	$V_{DD_EXT} = 3.47 \text{ V}, V_{DD_DMC} = 1.9 \text{ V}, V_{DD_USB} = 3.47 \text{ V}, V_{IN} = 5.5 \text{ V}$			10	μΑ
ADSP-BF701/	703/705/707 Input Capacitance					
C _{IN} (GPIO) ¹⁵	Input Capacitance	$T_{AMBIENT} = 25^{\circ}C$		5.2	6.0	pF
C _{IN_TWI} ¹⁴	Input Capacitance	$T_{AMBIENT} = 25^{\circ}C$		6.9	7.4	pF
C _{IN_DDR} ¹⁶	Input Capacitance	$T_{AMBIENT} = 25^{\circ}C$		6.1	6.9	pF
ADSP-BF700/	702/704/706 Input Capacitance	1				
C _{IN} (GPIO) ¹⁵	Input Capacitance	$T_{AMBIENT} = 25^{\circ}C$		5.0	5.3	pF
C _{IN_TWI} ¹⁴	Input Capacitance	$T_{AMBIENT} = 25^{\circ}C$		6.8	7.4	pF
I _{DD_DEEPSLEEP} ^{17, 1}	⁸ V _{DD_INT} Current in Deep Sleep Mode	Clocks disabled T ₁ = 25°C		1.4		mA
I _{DD_IDLE} ¹⁸	V _{DD_INT} Current in Idle	$f_{PLLCLK} = 300 \text{ MHz}$ $f_{CCLK} = 100 \text{ MHz}$ $ASF = 0.05 \text{ (idle)}$ $f_{SYSCLK} = f_{SCLK0} = 25 \text{ MHz}$ $USBCLK = DCLK = OUTCLK =$ $SCLK1 = DISABLED$ $Peripherals disabled$ $T_1 = 25^{\circ}C$		13		mA
I _{DD_TYP} ¹⁸	V _{DD_INT} Current	$f_{PLLCLK} = 800 \text{ MHz}$ $f_{CCLK} = 400 \text{ MHz}$ $ASF = 1.0 \text{ (full-on typical)}$ $f_{SYSCLK} = f_{SCLK0} = 25 \text{ MHz}$ $USBCLK = DCLK = OUTCLK =$ $SCLK1 = DISABLED$ $Peripherals disabled$		90		mA
I _{DD_TYP} ¹⁸	V _{DD_INT} Current	$T_{J} = 25^{\circ}C$ $f_{PLLCLK} = 300 \text{ MHz}$ $f_{CCLK} = 300 \text{ MHz}$ $ASF = 1.0 \text{ (full-on typical)}$ $f_{SYSCLK} = f_{SCLK0} = 25 \text{ MHz}$ $USBCLK = DCLK = OUTCLK =$ $SCLK1 = DISABLED$ $Peripherals disabled$ $T_{J} = 25^{\circ}C$		66		mA
I _{DD_TYP} ¹⁸	V _{DD_INT} Current	$f_{PLLCLK} = 400 \text{ MHz}$ $f_{CCLK} = 200 \text{ MHz}$ $ASF = 1.0 \text{ (full-on typical)}$ $f_{SYSCLK} = f_{SCLK0} = 25 \text{ MHz}$ $USBCLK = DCLK = OUTCLK =$ $SCLK1 = DISABLED$ $Peripherals disabled$ $T_J = 25^{\circ}C$		49		mA
I _{DD_TYP} ¹⁸	V _{DD_INT} Current	$f_{PLLCLK} = 300 \text{ MHz}$ $f_{CCLK} = 100 \text{ MHz}$ $ASF = 1.0 \text{ (full-on typical)}$ $f_{SYSCLK} = f_{SCLK0} = 25 \text{ MHz}$ $USBCLK = DCLK = OUTCLK =$ $SCLK1 = DISABLED$ $Peripherals disabled$ $T_J = 25^{\circ}C$		30		mA

Parameter		Test Conditions/Comments	Min	Тур	Max	Unit
I _{DD_HIBERNATE} ^{17, 15}	⁹ Hibernate State Current			33		μΑ
I _{DD_HIBERNATE} ^{17, 15}	⁹ Hibernate State Current Without USB	$V_{DD_{INT}} = 0 V,$ $V_{DD_{DMC}} = 1.8 V,$ $V_{DD_{EXT}} = V_{DD_{HADC}} = V_{DD_{OTP}} =$ $V_{DD_{RTC}} = V_{DD_{USB}} = 3.3 V,$ $T_{J} = 25^{\circ}C,$ $f_{CLKIN} = 0,$ $USB protection disabled$ $(USB_{PHY_{CTLDIS}} = 1)$		15		μΑ
I _{DD_INT} ¹⁸	V _{DD_INT} Current	V _{DD_INT} within operating conditions table specifications			See I _{DDINT_TOT} equation on on Page 56	
I _{DD_RTC}	I _{DD_RTC} Current	$V_{DD_{RTC}} = 3.3 \text{ V}, \text{ T}_{J} = 125^{\circ}\text{C}$			10	μA

¹ Applies to all output and bidirectional signals except DMC0 signals, TWI signals, and USB0 signals.

² Applies to DMC0_Axx, DMC0_CAS, DMC0_CKE, DMC0_CK, DMC0_CK, DMC0_CS, DMC0_DQxx, DMC0_LDM, DMC0_LDQS, DMC0_LDQS,

DMC0_ODT, DMC0_RAS, DMC0_UDM, DMC0_UDQS, DMC0_UDQS, and DMC0_WE signals.

³ Applies to all output and bidirectional signals except DMC0 signals and USB0 signals.

⁴ Applies to SMC0_ARDY, SYS_BMODEx, SYS_CLKIN, <u>SYS_HWRST</u>, JTG_TDI, and JTG_TMS_SWDIO signals.

⁵ Applies to DMC0_VREF signal.

⁶ Applies to JTG_TCK_SWCLK and JTG_TRST signals.

⁷ Applies to SMC0_ARDY, SYS_BMODEx, SYS_CLKIN, <u>SYS_HWRST</u>, JTG_TCK, and <u>JTG_TRST</u> signals.

⁸ Applies to JTG_TDI, JTG_TMS_SWDIO, PA_xx, PB_xx, and PC_xx signals when internal GPIO pull-ups are enabled. For information on when internal pull-ups are enabled for GPIOs. See ADSP-BF70x Designer Quick Reference on Page 38.

⁹ Applies to USB0_CLKIN signal.

¹⁰Applies to PA_xx, PB_xx, PC_xx, <u>SMC0_AMS0</u>, <u>SMC0_ARE</u>, <u>SMC0_AWE</u>, <u>SMC0_A0E</u>, <u>SMC0_A0E</u>, <u>SMC0_Dxx</u>, <u>SYS_FAULT</u>, JTG_TDO_SWO, USB0_DM, USB0_DP, USB0_ID, and USB0_VBC signals.

¹¹ Applies to DMC0_Axx, DMC0_BAxx, DMC0_CAS, DMC0_CS0, DMC0_DQxx, DMC0_LDQS, DMC0_LDQS, DMC0_UDQS, DMC0_UDQS, DMC0_LDM, DMC0_UDM, DMC0_ODT, DMC0_RAS, and DMC0_WE signals.

¹²Applies to PA_xx, PB_xx, PC_xx, <u>SMC0_A0E</u>, <u>SMC0_A0E</u>, <u>SMC0_Dxx</u>, <u>SYS_FAULT</u>, <u>JTG_TDO_SWO</u>, <u>USB0_DP</u>, <u>USB0_ID</u>, <u>USB0_ID</u>, <u>USB0_VBC</u>, <u>U</u>

¹³Applies to USB0_VBUS signals.

¹⁴Applies to all TWI signals.

¹⁵Applies to all signals, except DMC0 and TWI signals.

¹⁶Applies to all DMC0 signals.

¹⁷See the ADSP-BF70x Blackfin+ Processor Hardware Reference for definition of deep sleep and hibernate operating modes.

¹⁸Additional information can be found at Total Internal Power Dissipation.

¹⁹Applies to VDD_EXT, VDD_DMC, and VDD_USB supply signals only. Clock inputs are tied high or low.

Voltage (V _{DD_INT})													
(°C) رT	1.045	1.050	1.060	1.070	1.080	1.090	1.100	1.110	1.120	1.130	1.140	1.150	1.155
-40	0.6	0.6	0.7	0.7	0.7	0.8	0.8	0.8	0.9	0.9	0.9	1.0	1.0
-20	1.1	1.1	1.2	1.2	1.2	1.3	1.4	1.4	1.5	1.5	1.6	1.7	1.7
0	2.0	2.0	2.1	2.2	2.3	2.4	2.5	2.5	2.6	2.7	2.8	3.0	3.0
25	4.3	4.3	4.5	4.7	4.8	5.0	5.2	5.3	5.5	5.7	5.9	6.1	6.2
40	6.7	6.8	7.0	7.3	7.5	7.8	8.0	8.3	8.6	8.8	9.1	9.4	9.6
55	10.3	10.5	10.8	11.2	11.5	11.9	12.3	12.6	13.0	13.4	13.9	14.3	14.5
70	15.7	15.9	16.4	16.8	17.4	17.9	18.4	18.9	19.5	20.1	20.7	21.3	21.6
85	23.3	23.6	24.3	25.0	25.7	26.4	27.2	27.9	28.7	29.5	30.4	31.2	31.7
100	34.2	34.6	35.5	36.5	37.5	38.5	39.5	40.6	41.7	42.8	43.9	45.1	45.7
105	38.7	39.2	40.2	41.3	42.4	43.5	44.6	45.8	47.0	48.2	49.5	50.8	51.5
115	48.9	49.5	50.7	52.0	53.4	54.7	56.0	57.5	59.0	60.5	62.0	63.6	64.4
125	61.5	62.1	63.6	65.1	66.7	68.3	69.9	71.7	73.4	75.2	77.0	79.0	79.9

Table 21. Static Current—IDD_DEEPSLEEP (mA)

Table 22. Activity Scaling Factors (ASF)

I _{DDINT} Power Vector	ASF
I _{DD-IDLE1}	0.05
I _{DD-IDLE2}	0.05
I _{DD-NOP1}	0.56
I _{DD-NOP2}	0.59
I _{DD-APP3}	0.78
I _{DD-APP1}	0.79
I _{DD-APP2}	0.83
I _{DD-TYP1}	1.00
I _{DD-TYP3}	1.01
I _{DD-TYP2}	1.03
I _{DD-HIGH1}	1.39
I _{DD-HIGH3}	1.39
I _{DD-HIGH2}	1.54

Table 23.	CCLK Dynamic	Current per core	(mA, with ASF = 1)
-----------	---------------------	------------------	--------------------

		Voltage (V _{DD_INT})											
f _{CCLK} (MHz)	1.045	1.050	1.060	1.070	1.080	1.090	1.100	1.110	1.120	1.130	1.140	1.150	1.155
400	66.7	67.2	67.9	68.7	69.4	70.2	71.1	71.8	72.6	73.4	74.2	74.9	75.4
350	58.6	59.0	59.6	60.3	61.0	61.7	62.4	63.0	63.7	64.4	65.1	65.8	66.1
300	50.2	50.5	51.1	51.7	52.3	52.9	53.5	54.1	54.7	55.3	55.9	56.4	56.8
250	42.1	42.3	42.8	43.3	43.8	44.3	44.7	45.3	45.8	46.3	46.8	47.4	47.6
200	33.7	33.9	34.3	34.7	35.1	35.5	35.9	36.3	36.7	37.1	37.5	37.9	38.0
150	25.4	25.5	25.8	26.1	26.4	26.7	27.0	27.3	27.6	27.9	28.2	28.5	28.8
100	17.0	17.1	17.3	17.5	17.7	17.9	18.1	18.3	18.5	18.6	18.8	19.0	19.1

Asynchronous Page Mode Read

Table 34 and Figure 13 show asynchronous memory page mode read timing, related to the static memory controller (SMC).

Table 34. Asynchronous Page Mode Read

		V _{DD_EXT} 1.8V /3.3V Nominal		
Parame	ter	Min	Max	Unit
Switchin	g Characteristics			
t _{AV}	SMC0_Ax (Address) Valid for First Address Min Width ¹	$(PREST + RST + PREAT + RAT) \times t_{SCLK0} - 2$		ns
AV1	SMC0_Ax (Address) Valid for Subsequent SMC0_Ax (Address) Min Width	$PGWS \times t_{SCLK0} - 2$		ns
WADV	SMC0_NORDV Active Low Width ²	$RST \times t_{SCLK0} - 2$		ns
HARE	Output ³ Hold After SMC0_ARE High ⁴	$RHT \times t_{SCLK0} - 2$		ns
t _{WARE} 5	SMC0_ARE Active Low Width ⁶	$(RAT + (Nw - 1) \times PGWS) \times t_{SCLK0} - 2$		ns

¹PREST, RST, PREAT and RAT values set using the SMC_BXETIM.PREST bits, SMC_BXTIM.RST bits, SMC_BXETIM.PREAT bits, and the SMC_BXTIM.RAT bits.

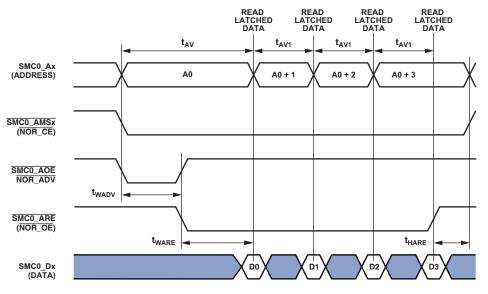
² RST value set using the SMC_BxTIM.RST bits.

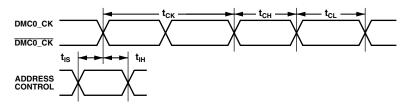
³Output signals are SMC0_Ax, <u>SMC0_AMSx</u>, <u>SMC0_AOE</u>.

⁴ RHT value set using the SMC_BxTIM.RHT bits.

⁵ SMC_BxCTL.ARDYEN bit = 0.

 $^6\,\rm RAT$ value set using the SMC_BxTIM.RAT bits.




Figure 13. Asynchronous Page Mode Read

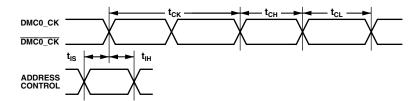
DDR2 SDRAM Clock and Control Cycle Timing

Table 39 and Figure 17 show DDR2 SDRAM clock and control cycle timing, related to the dynamic memory controller (DMC).

Table 39. DDR2 SDRAM Read Cycle Timing, V_{DD_DMC} Nominal 1.8 V

			200 MHz	
Paramete	r	Min	Мах	Unit
Switching	Characteristics			
t _{CK}	Clock Cycle Time (CL = 2 Not Supported)	5		ns
t _{CH}	High Clock Pulse Width	0.45	0.55	t _{CK}
t _{CL}	Low Clock Pulse Width	0.45	0.55	t _{CK}
t _{IS}	Control/Address Setup Relative to DMC0_CK Rise	350		ps
t _{IH}	Control/Address Hold Relative to DMC0_CK Rise	475		ps

NOTE: CONTROL = DMC0_CS0, DMC0_CKE, DMC0_RAS, DMC0_CAS, AND DMC0_WE. ADDRESS = DMC0_A00-13, AND DMC0_BA0-2.


Figure 17. DDR2 SDRAM Clock and Control Cycle Timing

Mobile DDR SDRAM Clock and Control Cycle Timing

Table 42 and Figure 20 show mobile DDR SDRAM clock and control cycle timing, related to the dynamic memory controller (DMC).

Table 42. Mobile DDR SDRAM Clock and Control Cycle Timing, V_{DD_DMC} Nominal 1.8 V

			200 MHz	
Paramete	er	Min	Мах	Unit
Switching	Characteristics			
t _{CK}	Clock Cycle Time (CL = 2 Not Supported)	5		ns
t _{CH}	Minimum Clock Pulse Width	0.45	0.55	t _{CK}
t _{CL}	Maximum Clock Pulse Width	0.45	0.55	t _{CK}
t _{IS}	Control/Address Setup Relative to DMC0_CK Rise	1.5		ns
t _{IH}	Control/Address Hold Relative to DMC0_CK Rise	1.5		ns

NOTE: CONTROL = DMC0_CS0, DMC0_CKE, DMC0_RAS, DMC0_CAS, AND DMC0_WE. ADDRESS = DMC0_A00-13, AND DMC0_BA0-2.

Figure 20. Mobile DDR SDRAM Clock and Control Cycle Timing

Up/Down Counter/Rotary Encoder Timing

Table 47 and Figure 25 describe timing, related to the general-purpose counter (CNT).

Table 47. Up/Down Counter/Rotary Encoder Timing

			D_EXT Nominal	3.3		
Parameter		Min	Max	Min	Max	Unit
Timing Requirement	nt					
t _{wcount}	Up/Down Counter/Rotary Encoder Input Pulse Width	$2 \times t_{SCLK0}$		$2 \times t_{SCLK0}$		ns

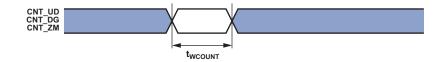


Figure 25. Up/Down Counter/Rotary Encoder Timing

Serial Ports

To determine whether serial port (SPORT) communication is possible between two devices at clock speed n, the following specifications must be confirmed: 1) frame sync delay and frame sync setup and hold, 2) data delay and data setup and hold, and 3) serial clock (SPT_CLK) width. In Figure 27 either the rising edge or the falling edge of SPT_CLK (external or internal) can be used as the active sampling edge.

When externally generated the SPORT clock is called $f_{SPTCLKEXT}$:

$$t_{SPTCLKEXT} = \frac{1}{f_{SPTCLKEXT}}$$

When internally generated, the programmed SPORT clock ($f_{SPTCLKPROG}$) frequency in MHz is set by the following equation where CLKDIV is a field in the SPORT_DIV register that can be set from 0 to 65,535:

$$f_{SPTCLKPROG} = \frac{f_{SCLK0}}{(CLKDIV + 1)}$$

$$t_{SPTCLKPROG} = \frac{1}{f_{SPTCLKPROG}}$$

Table 49. Serial Ports-External Clock

		V _{DD_EX} 1.8V Nom		V _{DD} 3.3 V No		
Paramet	ter	Min	Мах	Min	Max	Unit
Timing R	equirements					
t _{sfse}	Frame Sync Setup Before SPT_CLK (Externally Generated Frame Sync in Either Transmit or Receive Mode) ¹	1.5		1		ns
t _{HFSE}	Frame Sync Hold After SPT_CLK (Externally Generated Frame Sync in Either Transmit or Receive Mode) ¹	3		3		ns
t _{SDRE}	Receive Data Setup Before Receive SPT_CLK ¹	1.5		1		ns
t _{HDRE}	Receive Data Hold After SPT_CLK ¹	3		3		ns
t _{SCLKW}	SPT_CLK Width ²	$(0.5 \times t_{SPTCLKEXT}) - 1$		$(0.5 \times t_{SPTCLKEXT}) - 1$		ns
t _{sptclke}	SPT_CLK Period ²	t _{sptclkext} – 1		t _{sptclkext} – 1		ns
Switching	g Characteristics					
t _{DFSE}	Frame Sync Delay After SPT_CLK (Internally Generated Frame Sync in Either Transmit or Receive Mode) ³		18		15	ns
t _{HOFSE}	Frame Sync Hold After SPT_CLK (Internally Generated Frame Sync in Either Transmit or Receive Mode) ³	2.5		2.5		ns
t _{DDTE}	Transmit Data Delay After Transmit SPT_CLK ³		18		15	ns
t _{HDTE}	Transmit Data Hold After Transmit SPT_CLK ³	2.5		2.5		ns

¹Referenced to sample edge.

² This specification indicates the minimum instantaneous width or period that can be tolerated due to duty cycle variation or jitter on the external SPT_CLK. For the external SPT_CLK ideal maximum frequency, see the f_{SPTCLKEXT} specification in Table 18 on Page 52 in Clock Related Operating Conditions.

³Referenced to drive edge.

Table 58. SPI Port—ODM Slave Mode

		1	V _{DD_EXT} .8 V Nominal	V _{DD_EXT} 3.3 V Nominal			
Parameter		Min	Max	Min	Max	Unit	
Switching Ch	naracteristics						
t _{hdspiodms}	SPI_CLK Edge to High Impedance from Data Out Valid	2.5		2.5		ns	
t _{DDSPIODMS}	SPI_CLK Edge to Data Out Valid from High Impedance		17.5		14.5	ns	

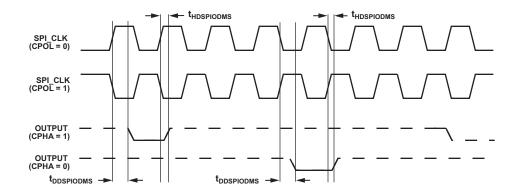
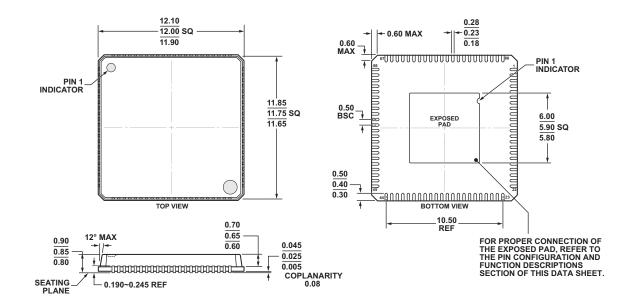



Figure 36. ODM Slave

Dimensions for the 12 mm \times 12 mm LFCSP_VQ package in Figure 72 are shown in millimeters.

COMPLIANT TO JEDEC STANDARDS MO-220

Figure 72. 88-Lead Lead Frame Chip Scale Package [LFCSP_VQ] (CP-88-8) Dimensions shown in millimeters

SURFACE-MOUNT DESIGN

Table 71 is provided as an aid to PCB design. For industry-
standard design recommendations, refer to IPC-7351, Generic
Requirements for Surface-Mount Design and Land Pattern
Standard.

Table 71. CSP_BGA Data for Use with Surface-Mount Design

Package	Package	Package	Package
	Ball Attach Type	Solder Mask Opening	Ball Pad Size
BC-184-1	Solder Mask Defined	0.4 mm Diameter	0.5 mm Diameter