

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

E·XFI

Product Status	Active
Туре	Blackfin+
Interface	CAN, DSPI, EBI/EMI, I ² C, PPI, QSPI, SD/SDIO, SPI, SPORT, UART/USART, USB OTG
Clock Rate	300MHz
Non-Volatile Memory	ROM (512kB)
On-Chip RAM	1MB
Voltage - I/O	1.8V, 3.3V
Voltage - Core	1.10V
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	184-LFBGA, CSPBGA
Supplier Device Package	184-CSPBGA (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/analog-devices/adsp-bf707kbcz-3

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The program sequencer controls the flow of instruction execution, including instruction alignment and decoding. For program flow control, the sequencer supports PC relative and indirect conditional jumps (with dynamic branch prediction), and subroutine calls. Hardware supports zero-overhead looping. The architecture is fully interlocked, meaning that the programmer need not manage the pipeline when executing instructions with data dependencies.

The address arithmetic unit provides two addresses for simultaneous dual fetches from memory. It contains a multiported register file consisting of four sets of 32-bit index, modify, length, and base registers (for circular buffering), and eight additional 32-bit pointer registers (for C-style indexed stack manipulation).

The Blackfin processor supports a modified Harvard architecture in combination with a hierarchical memory structure. Level 1 (L1) memories are those that typically operate at the full processor speed with little or no latency. At the L1 level, the instruction memory holds instructions only. The data memory holds data, and a dedicated scratchpad data memory stores stack and local variable information.

In addition, multiple L1 memory blocks are provided, offering a configurable mix of SRAM and cache. The memory management unit (MMU) provides memory protection for individual tasks that may be operating on the core and can protect system registers from unintended access.

The architecture provides three modes of operation: user mode, supervisor mode, and emulation mode. User mode has restricted access to certain system resources, thus providing a protected software environment, while supervisor mode has unrestricted access to the system and core resources.

INSTRUCTION SET DESCRIPTION

The Blackfin processor instruction set has been optimized so that 16-bit opcodes represent the most frequently used instructions, resulting in excellent compiled code density. Complex DSP instructions are encoded into 32-bit opcodes, representing fully featured multifunction instructions. The Blackfin processor supports a limited multi-issue capability, where a 32-bit instruction can be issued in parallel with two 16-bit instructions, allowing the programmer to use many of the core resources in a single instruction cycle.

The Blackfin processor family assembly language instruction set employs an algebraic syntax designed for ease of coding and readability. The instructions have been specifically tuned to provide a flexible, densely encoded instruction set that compiles to a very small final memory size. The instruction set also provides fully featured multifunction instructions that allow the programmer to use many of the processor core resources in a single instruction. Coupled with many features more often seen on microcontrollers, this instruction set is very efficient when compiling C and C++ source code. In addition, the architecture supports both user (algorithm/application code) and supervisor (O/S kernel, device drivers, debuggers, ISRs) modes of operation, allowing multiple levels of access to core processor resources. The assembly language, which takes advantage of the processor's unique architecture, offers the following advantages:

- Seamlessly integrated DSP/MCU features are optimized for both 8-bit and 16-bit operations.
- A multi-issue load/store modified-Harvard architecture, which supports two 16-bit MAC or four 8-bit ALU + two load/store + two pointer updates per cycle.
- All registers, I/O, and memory are mapped into a unified 4G byte memory space, providing a simplified programming model.
- Control of all asynchronous and synchronous events to the processor is handled by two subsystems: the core event controller (CEC) and the system event controller (SEC).
- Microcontroller features, such as arbitrary bit and bit-field manipulation, insertion, and extraction; integer operations on 8-, 16-, and 32-bit data-types; and separate user and supervisor stack pointers.
- Code density enhancements, which include intermixing of 16-bit and 32-bit instructions (no mode switching, no code segregation). Frequently used instructions are encoded in 16 bits.

PROCESSOR INFRASTRUCTURE

The following sections provide information on the primary infrastructure components of the ADSP-BF70x processor.

DMA Controllers

The processor uses direct memory access (DMA) to transfer data within memory spaces or between a memory space and a peripheral. The processor can specify data transfer operations and return to normal processing while the fully integrated DMA controller carries out the data transfers independent of processor activity.

DMA transfers can occur between memory and a peripheral or between one memory and another memory. Each memory-tomemory DMA stream uses two channels, where one channel is the source channel, and the second is the destination channel.

All DMAs can transport data to and from all on-chip and offchip memories. Programs can use two types of DMA transfers, descriptor-based or register-based. Register-based DMA allows the processor to directly program DMA control registers to initiate a DMA transfer. On completion, the control registers may be automatically updated with their original setup values for continuous transfer. Descriptor-based DMA transfers require a set of parameters stored within memory to initiate a DMA sequence. Descriptor-based DMA transfers allow multiple DMA sequences to be chained together and a DMA channel can be programmed to automatically set up and start another DMA transfer after the current sequence completes.

The DMA controller supports the following DMA operations.

- A single linear buffer that stops on completion.
- A linear buffer with negative, positive, or zero stride length.
- A circular, auto-refreshing buffer that interrupts when each buffer becomes full.

General-Purpose Timers

There is one GP timer unit, and it provides eight general-purpose programmable timers. Each timer has an external pin that can be configured either as a pulse width modulator (PWM) or timer output, as an input to clock the timer, or as a mechanism for measuring pulse widths and periods of external events. These timers can be synchronized to an external clock input on the TIMER_TMRx pins, an external TIMER_CLK input pin, or to the internal SCLK0.

These timer units can be used in conjunction with the UARTs and the CAN controller to measure the width of the pulses in the data stream to provide a software auto-baud detect function for the respective serial channels.

The GP timers can generate interrupts to the processor core, providing periodic events for synchronization to either the system clock or to external signals. Timer events can also trigger other peripherals through the TRU (for instance, to signal a fault). Each timer may also be started and/or stopped by any TRU master without core intervention.

Core Timer

The processor core also has its own dedicated timer. This extra timer is clocked by the internal processor clock and is typically used as a system tick clock for generating periodic operating system interrupts.

Watchdog Timer

The core includes a 32-bit timer, which may be used to implement a software watchdog function. A software watchdog can improve system availability by forcing the processor to a known state, through generation of a hardware reset, nonmaskable interrupt (NMI), or general-purpose interrupt, if the timer expires before being reset by software. The programmer initializes the count value of the timer, enables the appropriate interrupt, then enables the timer. Thereafter, the software must reload the counter before it counts down to zero from the programmed value. This protects the system from remaining in an unknown state where software that would normally reset the timer has stopped running due to an external noise condition or software error.

After a reset, software can determine if the watchdog was the source of the hardware reset by interrogating a status bit in its timer control register that is set only upon a watchdog-generated reset.

Serial Ports (SPORTs)

Two synchronous serial ports (comprised of four half-SPORTs) provide an inexpensive interface to a wide variety of digital and mixed-signal peripheral devices such as Analog Devices' audio codecs, ADCs, and DACs. Each half-SPORT is made up of two data lines, a clock, and frame sync. The data lines can be programmed to either transmit or receive and each data line has a dedicated DMA channel.

Serial port data can be automatically transferred to and from on-chip memory/external memory through dedicated DMA channels. Each of the serial ports can work in conjunction with another serial port to provide TDM support. In this configuration, one SPORT provides two transmit signals while the other SPORT provides the two receive signals. The frame sync and clock are shared.

Serial ports operate in six modes:

- Standard DSP serial mode
- Multichannel (TDM) mode
- I²S mode
- Packed I²S mode
- Left-justified mode
- Right-justified mode

General-Purpose Counters

A 32-bit counter is provided that can operate in general-purpose up/down count modes and can sense 2-bit quadrature or binary codes as typically emitted by industrial drives or manual thumbwheels. Count direction is either controlled by a levelsensitive input pin or by two edge detectors.

A third counter input can provide flexible zero marker support and can alternatively be used to input the push-button signal of thumbwheel devices. All three pins have a programmable debouncing circuit.

Internal signals forwarded to a GP timer enable this timer to measure the intervals between count events. Boundary registers enable auto-zero operation or simple system warning by interrupts when programmed count values are exceeded.

Parallel Peripheral Interface (PPI)

The processor provides a parallel peripheral interface (PPI) that supports data widths up to 18 bits. The PPI supports direct connection to TFT LCD panels, parallel analog-to-digital and digital-to-analog converters, video encoders and decoders, image sensor modules, and other general-purpose peripherals.

The following features are supported in the PPI module:

- Programmable data length: 8 bits, 10 bits, 12 bits, 14 bits, 16 bits, and 18 bits per clock.
- Various framed, non-framed, and general-purpose operating modes. Frame syncs can be generated internally or can be supplied by an external device.
- ITU-656 status word error detection and correction for ITU-656 receive modes and ITU-656 preamble and status word decode.
- Optional packing and unpacking of data to/from 32 bits from/to 8 bits, 16 bits and 24 bits. If packing/unpacking is enabled, endianness can be configured to change the order of packing/unpacking of bytes/words.
- RGB888 can be converted to RGB666 or RGB565 for transmit modes.
- Various de-interleaving/interleaving modes for receiving/transmitting 4:2:2 YCrCb data.
- Configurable LCD data enable (DEN) output available on Frame Sync 3.

ADSP-BF70x DETAILED SIGNAL DESCRIPTIONS

Table 6 provides a detailed description of each pin.

Table 6. ADSP-BF70x Detailed Signal Descriptions

Port Name	Direction	Description			
CAN_RX	Input	Receive. Typically an external CAN transceiver's RX output.			
CAN_TX	Output	Transmit. Typically an external CAN transceiver's TX input.			
CNT_DG	Input	Count Down and Gate. Depending on the mode of operation this input acts either as a count down signal or a gate signal Count Down - This input causes the GP counter to decrement Gate - Stops the GP counter from incrementing or decrementing.			
CNT_UD	Input	Count Up and Direction. Depending on the mode of operation this input acts either as a count up signal or a direction signal Count Up - This input causes the GP counter to increment Direction - Selects whether the GP counter is incrementing or decrementing.			
CNT_ZM	Input	Count Zero Marker. Input that connects to the zero marker output of a rotary device or detects the pressing of a pushbutton.			
DMC_Ann	Output	Address n. Address bus.			
DMC_BAn	Output	Bank Address Input n. Defines which internal bank an ACTIVATE, READ, WRITE, or PRECHARGE			
Dime_DAin	output	command is being applied to on the dynamic memory. Also defines which mode registers (MR, EMR, EMR2, and/or EMR3) are loaded during the LOAD MODE REGISTER command.			
DMC_CAS	Output	Column Address Strobe. Defines the operation for external dynamic memory to perform in conjunction with other DMC command signals. Connect to the CAS input of dynamic memory.			
DMC_CK	Output	Clock. Outputs DCLK to external dynamic memory.			
DMC_CK	Output	Clock (Complement). Complement of DMC_CK.			
DMC_CKE	Output	Clock enable. Active high clock enables. Connects to the dynamic memory's CKE input.			
DMC_CSn	Output	Chip Select n. Commands are recognized by the memory only when this signal is asserted.			
DMC_DQnn	I/O	Data n. Bidirectional Data bus.			
DMC_LDM	Output	Data Mask for Lower Byte. Mask for DMC_DQ07:DMC_DQ00 write data when driven high. Sampled on both edges of the data strobe by the dynamic memory.			
DMC_LDQS	I/O	Data Strobe for Lower Byte. DMC_DQ07:DMC_DQ00 data strobe. Output with Write Data. Input with Read Data. May be single-ended or differential depending on register settings.			
DMC_LDQS	I/O	Data Strobe for Lower Byte (complement). Complement of LDQS. Not used in single-ended mode.			
DMC_ODT	Output	On-die termination. Enables dynamic memory termination resistances when driven high (assuming the memory is properly configured). ODT is enabled/disabled regardless of read or write commands.			
DMC_RAS	Output	Row Address Strobe. Defines the operation for external dynamic memory to perform in conjunction with other DMC command signals. Connect to the RAS input of dynamic memory.			
DMC_UDM	Output	Data Mask for Upper Byte. Mask for DMC_DQ15:DMC_DQ08 write data when driven high. Sampled on both edges of the data strobe by the dynamic memory.			
DMC_UDQS	I/O	Data Strobe for Upper Byte. DMC_DQ15:DMC_DQ08 data strobe. Output with Write Data. Input with Read Data. May be single-ended or differential depending on register settings.			
DMC_UDQS	I/O	Data Strobe for Upper Byte (complement). Complement of UDQSb. Not used in single-ended mode.			
DMC_VREF	Input	Voltage Reference. Connect to half of the VDD_DMC voltage.			
DMC_WE	Output	Write Enable. Defines the operation for external dynamic memory to perform in conjunction with other DMC command signals. Connect to the \overline{WE} input of dynamic memory.			
PPI_CLK	I/O	Clock. Input in external clock mode, output in internal clock mode.			
PPI_Dnn	I/O	Data n. Bidirectional data bus.			
PPI_FS1	I/O	Frame Sync 1 (HSYNC). Behavior depends on EPPI mode. See the EPPI HRM chapter for more details.			
PPI_FS2	I/O	Frame Sync 2 (VSYNC). Behavior depends on EPPI mode. See the EPPI HRM chapter for more details.			
PPI_FS3	I/O	Frame Sync 3 (FIELD). Behavior depends on EPPI mode. See the EPPI HRM chapter for more details.			
HADC_VINn	Input	Analog Input at channel n. Analog voltage inputs for digital conversion.			

Multiplexed Multiplexed Multiplexed Multiplexed Multiplexed Signal Name **Function 0 Function 1 Function 2** Function 3 Function Input Tap PC_00 UART1_TX SPT0_AD1 PPI0_D15 PC_01 UART1_RX SPT0_BD1 PPI0_D14 SMC0_A09 TM0_ACI4 PC_02 UARTO_RTS CAN0_RX PPI0_D13 SMC0_A10 TM0_ACI5/SYS_ WAKE3 UARTO_CTS PC_03 CAN0_TX PPI0_D12 SMC0_A11 TM0_ACI0 PC_04 SPT0_BCLK SPI0_CLK MSI0_D1 SMC0_A12 TM0_ACLK0 SPT0_AFS TM0_TMR3 MSI0_CMD PC_05 PC_06 SPT0_BD0 SPI0_MISO MSI0_D3 SPI0_MOSI MSI0_D2 PC_07 SPT0_BFS TM0_ACI2 MSI0_D0 PC_08 SPT0_AD0 SPI0_D2 SPI0_D3 MSI0_CLK PC_09 SPT0_ACLK TM0_ACLK2 SPI1_SEL3 PC_10 SPT1_BCLK MSI0_D4 TM0_ACLK1 SPI0_SEL3 PC_11 SPT1_BFS MSI0_D5 PC_12 SPT1_BD0 MSI0_D6 PC_13 SPT1_BD1 MSI0_D7 MSI0_INT PC_14 SPT1_BTDV

Table 10. Signal Multiplexing for Port C

Signal Name	Description	Port	Pin Name
SMC0_D11	SMC0 Data 11	В	PB_11
SMC0_D12	SMC0 Data 12	В	PB_12
SMC0_D13	SMC0 Data 13	В	PB_13
SMC0_D14	SMC0 Data 14	В	PB_14
SMC0_D15	SMC0 Data 15	В	PB_15
SPI0_CLK	SPI0 Clock	В	PB_00
SPI0_CLK	SPI0 Clock	С	PC_04
SPI0_D2	SPI0 Data 2	В	PB_03
SPI0_D2	SPI0 Data 2	С	PC_08
SPI0_D3	SPI0 Data 3	В	PB_07
SPI0_D3	SPI0 Data 3	С	PC_09
SPI0_MISO	SPI0 Master In, Slave Out	В	PB_01
SPI0_MISO	SPI0 Master In, Slave Out	С	PC_06
SPI0_MOSI	SPI0 Master Out, Slave In	В	PB_02
SPI0_MOSI	SPI0 Master Out, Slave In	С	PC_07
SPI0_RDY	SPI0 Ready	А	PA_06
SPI0_SEL1	SPI0 Slave Select Output 1	А	PA_05
SPI0_SEL2	SPI0 Slave Select Output 2	А	PA_06
SPI0_SEL4	SPI0 Slave Select Output 4	В	PB_04
SPI0_SEL5	SPI0 Slave Select Output 5	В	PB_05
SPI0_SEL6	SPI0 Slave Select Output 6	В	PB_06
SPI0_SS	SPI0 Slave Select Input	А	PA_05
SPI1_CLK	SPI1 Clock	А	PA_00
SPI1_MISO	SPI1 Master In, Slave Out	А	PA_01
SPI1_MOSI	SPI1 Master Out, Slave In	А	PA_02
	SPI1 Ready	А	 PA_03
SPI1_SEL1	SPI1 Slave Select Output 1	А	 PA_04
	SPI1 Slave Select Output 2	А	 PA_03
	SPI1 Slave Select Output 3	с	 PC_10
SPI1_SEL4	SPI1 Slave Select Output 4	A	PA_14
SPI1_SS	SPI1 Slave Select Input	A	PA_04
SPI2_CLK	SPI2 Clock	В	PB_10
SPI2_D2	SPI2 Data 2	В	PB_13
SPI2_D3	SPI2 Data 3	В	PB_14
SPI2_MISO	SPI2 Master In, Slave Out	В	PB_11
SPI2_MOSI	SPI2 Master Out, Slave In	В	PB_12
SPI2_RDY	SPI2 Ready	A	PA_04
SPI2_SEL1	SPI2 Slave Select Output 1	В	PB_15
SPI2_SEL2	SPI2 Slave Select Output 1	В	PB_08
SPI2_SEL3	SPI2 Slave Select Output 2 SPI2 Slave Select Output 3	B	PB_09
SPI2_SELS	SPI2 Slave Select Output	B	PB_15
SPT0_ACLK	SPORTO Channel A Clock	A	PA_13
SPT0_ACLK	SPORTO Channel A Clock	C	PC_09
SPT0_ACLK SPT0_AD0	SPORTO Channel A Data 0		PC_09 PA_14
		A	
SPT0_AD0 SPT0_AD0 SPT0_AD1	SPORTO Channel A Data 0 SPORTO Channel A Data 1	C C	PC_08 PC_00

Table 11. ADSP-BF70x 12 mm × 12 mm 88-Lead LFCSP (QFN) Signal Descriptions (Continued)

		Driver	Int	Reset	Reset	Hiber	Hiber	Power	Description
Signal Name	Туре	Туре	Term	Term	Drive	Term	Drive	Domain	and Notes
PB_04	I/O	A	none	none	none	none	none	VDD_EXT	Desc: PPI0 Data 3 SPT0 Channel B Clock SPI0 Slave Select Output 4 SMC0 Data 3 TM0 Alternate Clock 6 Notes: SPI slave select outputs require a pull-up when used.
PB_05	I/O	A	none	none	none	none	none	VDD_EXT	Desc: PPI0 Data 2 SPT0 Channel B Data 0 SPI0 Slave Select Output 5 SMC0 Data 2 Notes: SPI slave select outputs require a
									pull-up when used.
PB_06	I/O	A	none	none	none	none	none	VDD_EXT	Desc: PPI0 Data 1 SPT0 Channel B Frame Sync SPI0 Slave Select Output 6 SMC0 Data 1 TM0 Clock
									Notes: SPI slave select outputs require a pull-up when used.
PB_07	I/O	A	none	none	none	none	none	VDD_EXT	Desc: PPI0 Data 0 SPT0 Channel B Data 1 SPI0 Data 3 SMC0 Data 0 SYS Power Saving Mode Wakeup 0
									Notes: If hibernate mode is used, one of the following must be true during hibernate. Either this pin must be actively driven by another IC, or it must have a pull-up or pull-down.
PB_08	I/O	A	none	none	none	none	none	VDD_EXT	Desc: UARTO Transmit PPI0 Data 16 SPI2 Slave Select Output 2 SMC0 Data 8 SYS Power Saving Mode Wakeup 1 Notes: SPI slave select outputs require a pull-up when used. If hibernate mode is used, one of the following must be true during hibernate. Either this pin must be actively driven by another IC, or it must have a pull-up or pull-down.
PB_09	I/O	A	none	none	none	none	none	VDD_EXT	Desc: UARTO Receive PPI0 Data 17 SPI2 Slave Select Output 3 SMC0 Data 9 TM0 Alternate Capture Input 3 Notes: SPI slave select outputs require a pull-up when used.
PB_10	I/O	A	none	none	none	none	none	VDD_EXT	Desc: SPI2 Clock TRACE0 Trace Clock SMC0 Data 10 TM0 Alternate Clock 4 Notes: SPI clock requires a pull-down when controlling most SPI flash devices.
PB_11	I/O	A	none	none	none	none	none	VDD_EXT	Desc: SPI2 Master In, Slave Out TRACE0 Trace Data 4 SMC0 Data 11 Notes: Pull-up required for SPI_MISO if SPI master boot is used.

Table 15. ADSP-BF70x Designer Quick Reference (Continued)

		Driver	Int	Reset	Reset	Hiber	Hiber	Power	Description
Signal Name	Туре	Туре	Term	Term	Drive	Term	Drive	Domain	and Notes
PB_12	I/O	A	none	none	none	none	none	VDD_EXT	Desc: SPI2 Master Out, Slave In TRACE0 Trace Data 3 SMC0 Data 12 SYS Power Saving Mode Wakeup 2
									Notes: If hibernate mode is used, one of the following must be true during hibernate. Either this pin must be actively driven by another IC, or it must have a pull-up or pull-down.
PB_13	I/O	A	none	none	none	none	none	VDD_EXT	Desc: SPI2 Data 2 UART1 Request to Send TRACE0 Trace Data 2 SMC0 Data 13 Notes: No notes.
PB_14	I/O	A	none	none	none	none	none	VDD_EXT	Desc: SPI2 Data 3 UART1 Clear to Send TRACE0 Trace Data 1 SMC0 Data 14 Notes: No notes.
PB_15	I/O	A	none	none	none	none	none	VDD_EXT	Desc: SPI2 Slave Select Output 1 TRACE0 Trace Data 0 SMC0 Data 15 SPI2 Slave Select Input Notes: SPI slave select outputs require a pull-up when used.
PC_00	I/O	A	none	none	none	none	none	VDD_EXT	Desc: UART1 Transmit SPT0 Channel A Data 1 PPI0 Data 15 Notes: No notes.
PC_01	I/O	A	none	none	none	none	none	VDD_EXT	Desc: UART1 Receive SPT0 Channel B Data 1 PPI0 Data 14 SMC0 Address 9 TM0 Alternate Capture Input 4 Notes: No notes.
PC_02	Ι/Ο	A	none	none	none	none	none	VDD_EXT	Desc: UART0 Request to Send CAN0 Receive PPI0 Data 13 SMC0 Address 10 SYS Power Saving Mode Wakeup 3 TM0 Alternate Capture Input 5 Notes: If hibernate mode is used, one of the following must be true during hibernate. Either this pin must be actively driven by another IC, or it must have a pull-up or pull-down.
PC_03	I/O	A	none	none	none	none	none	VDD_EXT	Desc: UARTO Clear to Send CANO Transmit PPIO Data 12 SMCO Address 11 TMO Alternate Capture Input 0 Notes: No notes.
PC_04	Ι/Ο	A	none	none	none	none	none	VDD_EXT	Desc: SPT0 Channel B Clock SPI0 Clock MSI0 Data 1 SMC0 Address 12 TM0 Alternate Clock 0 Notes: An external pull-up may be required for MSI modes, see the MSI chapter in the hardware reference for details.

Table 15. ADSP-BF70x Designer Quick Reference (Continued)

TWI_DT Setting	V _{DD_EXT} Nominal	V _{BUSTWI} Min	V _{BUSTWI} Nominal	V _{BUSTWI} Max	Unit
TWI000 ¹	3.30	3.13	3.30	3.47	V
TWI001	1.80	1.70	1.80	1.90	V
TWI011	1.80	3.13	3.30	3.47	V
TWI100	3.30	4.75	5.00	5.25	V

Table 16.	TWI	_VSEL	Selections and	V _{DD}	EXT/VBUSTWI
-----------	-----	-------	----------------	-----------------	-------------

¹Designs must comply with the V_{DD_EXT} and V_{BUSTWI} voltages specified for the default TWI_DT setting for correct JTAG boundary scan operation during reset.

Clock Related Operating Conditions

Table 17 and Table 18 describe the core clock, system clock, and peripheral clock timing requirements. The data presented in the tables applies to all speed grades (found in the Ordering Guide) except where expressly noted. Figure 6 provides a graphical representation of the various clocks and their available divider values.

Table 17. Core and System Clock Operating Conditions

Param	eter	Ratio Restriction	PLLCLK Restriction	Min	Max	Unit
\mathbf{f}_{CCLK}	Core Clock Frequency	$f_{CCLK} \ge f_{SYSCLK}$	PLLCLK = 800		400	MHz
\mathbf{f}_{CCLK}	Core Clock Frequency	$f_{CCLK} \geq f_{SYSCLK}$	$600 \le PLLCLK < 800$		390	MHz
\mathbf{f}_{CCLK}	Core Clock Frequency	$f_{CCLK} \geq f_{SYSCLK}$	$380 \le PLLCLK < 600$		380	MHz
\mathbf{f}_{CCLK}	Core Clock Frequency	$f_{CCLK} \geq f_{SYSCLK}$	230.2 ≤ PLLCLK < 380		PLLCLK	MHz
f _{SYSCLK}	SYSCLK Frequency ¹		PLLCLK = 800	60	200	MHz
f _{SYSCLK}	SYSCLK Frequency ¹		$600 \le PLLCLK < 800$	60	195	MHz
f _{SYSCLK}	SYSCLK Frequency ¹		380 ≤ PLLCLK < 600	60	190	MHz
f _{SYSCLK}	SYSCLK Frequency ¹		230.2 ≤ PLLCLK < 380	60	PLLCLK ÷ 2	MHz
f _{SCLK0}	SCLK0 Frequency ¹	$f_{\text{SYSCLK}} \geq f_{\text{SCLK0}}$		30	100	MHz
f _{SCLK1}	SCLK1 Frequency	$f_{\text{SYSCLK}} \geq f_{\text{SCLK1}}$			200	MHz
\mathbf{f}_{DCLK}	DDR2 Clock Frequency	$f_{\text{SYSCLK}} \geq f_{\text{DCLK}}$		125	200	MHz
\mathbf{f}_{DCLK}	LPDDR Clock Frequency	$f_{\text{SYSCLK}} \geq f_{\text{DCLK}}$		10	200	MHz

¹ The minimum frequency for SYSCLK and SCLK0 applies only when the USB is used.

Table 18. Peripheral Clock Operating Conditions

Parameter		Restriction	Min	Тур	Мах	Unit
f _{OCLK}	Output Clock Frequency				50	MHz
f _{sys_clkoutj}	SYS_CLKOUT Period Jitter ^{1, 2}			±2		%
f _{PCLKPROG}	Programmed PPI Clock When Transmitting Data and Frame Sync				50	MHz
f _{PCLKPROG}	Programmed PPI Clock When Receiving Data or Frame Sync				50	MHz
f _{PCLKEXT}	External PPI Clock When Receiving Data and Frame Sync ^{3, 4}	$f_{\text{PCLKEXT}} \leq f_{\text{SCLK0}}$			50	MHz
f _{PCLKEXT}	External PPI Clock Transmitting Data or Frame Sync ^{3, 4}	$f_{\text{PCLKEXT}} \leq f_{\text{SCLK0}}$			50	MHz
f _{SPTCLKPROG}	Programmed SPT Clock When Transmitting Data and Frame Sync				50	MHz
f _{SPTCLKPROG}	Programmed SPT Clock When Receiving Data or Frame Sync				50	MHz
f _{SPTCLKEXT}	External SPT Clock When Receiving Data and Frame Sync ^{3, 4}	$f_{\text{SPTCLKEXT}} \leq f_{\text{SCLK0}}$			50	MHz
f _{SPTCLKEXT}	External SPT Clock Transmitting Data or Frame Sync ^{3, 4}	$f_{\text{SPTCLKEXT}} \leq f_{\text{SCLK0}}$			50	MHz
f _{SPICLKPROG}	Programmed SPI Clock When Transmitting Data				50	MHz
f _{SPICLKPROG}	Programmed SPI Clock When Receiving Data				50	MHz
f _{SPICLKEXT}	External SPI Clock When Receiving Data ^{3, 4}	$f_{SPICLKEXT} \leq f_{SCLK0}$			50	MHz
f _{spiclkext}	External SPI Clock When Transmitting Data ^{3, 4}	$f_{\text{SPICLKEXT}} \leq f_{\text{SCLK0}}$			50	MHz
f _{MSICLKPROG}	Programmed MSI Clock				50	MHz

¹SYS_CLKOUT jitter is dependent on the application system design including pin switching activity, board layout, and the jitter characteristics of the SYS_CLKIN source. Due to the dependency on these factors the measured jitter may be higher or lower than this typical specification for each end application.

² The value in the Typ field is the percentage of the SYS_CLKOUT period.

³ The maximum achievable frequency for any peripheral in external clock mode is dependent on being able to meet the setup and hold times in the ac timing specifications section for that peripheral. Pay particular attention to setup and hold times for VDD_EXT = 1.8 V which may preclude the maximum frequency listed here.

 4 The peripheral external clock frequency must also be less than or equal to the f_{SCLK} that clocks the peripheral.

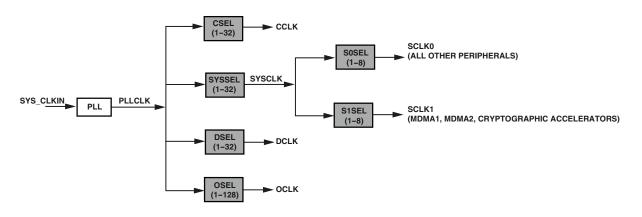


Figure 6. Clock Relationships and Divider Values

Table 19. Phase-Locked Loop Operating Conditions

Parameter		Min	Max	Unit
f _{PLLCLK}	PLL Clock Frequency	230.2	800	MHz
CGU_CTL.MSEL ¹	PLL Multiplier	8	41	

¹The CGU_CTL.MSEL setting must also be chosen to ensure that the f_{PLLCLK} specification is not violated.

		Voltage (V _{DD_INT})											
(°C) رT	1.045	1.050	1.060	1.070	1.080	1.090	1.100	1.110	1.120	1.130	1.140	1.150	1.155
-40	0.6	0.6	0.7	0.7	0.7	0.8	0.8	0.8	0.9	0.9	0.9	1.0	1.0
-20	1.1	1.1	1.2	1.2	1.2	1.3	1.4	1.4	1.5	1.5	1.6	1.7	1.7
0	2.0	2.0	2.1	2.2	2.3	2.4	2.5	2.5	2.6	2.7	2.8	3.0	3.0
25	4.3	4.3	4.5	4.7	4.8	5.0	5.2	5.3	5.5	5.7	5.9	6.1	6.2
40	6.7	6.8	7.0	7.3	7.5	7.8	8.0	8.3	8.6	8.8	9.1	9.4	9.6
55	10.3	10.5	10.8	11.2	11.5	11.9	12.3	12.6	13.0	13.4	13.9	14.3	14.5
70	15.7	15.9	16.4	16.8	17.4	17.9	18.4	18.9	19.5	20.1	20.7	21.3	21.6
85	23.3	23.6	24.3	25.0	25.7	26.4	27.2	27.9	28.7	29.5	30.4	31.2	31.7
100	34.2	34.6	35.5	36.5	37.5	38.5	39.5	40.6	41.7	42.8	43.9	45.1	45.7
105	38.7	39.2	40.2	41.3	42.4	43.5	44.6	45.8	47.0	48.2	49.5	50.8	51.5
115	48.9	49.5	50.7	52.0	53.4	54.7	56.0	57.5	59.0	60.5	62.0	63.6	64.4
125	61.5	62.1	63.6	65.1	66.7	68.3	69.9	71.7	73.4	75.2	77.0	79.0	79.9

Table 21. Static Current—IDD_DEEPSLEEP (mA)

Table 22. Activity Scaling Factors (ASF)

I _{DDINT} Power Vector	ASF
I _{DD-IDLE1}	0.05
I _{DD-IDLE2}	0.05
I _{DD-NOP1}	0.56
I _{DD-NOP2}	0.59
I _{DD-APP3}	0.78
I _{DD-APP1}	0.79
I _{DD-APP2}	0.83
I _{DD-TYP1}	1.00
I _{DD-TYP3}	1.01
I _{DD-TYP2}	1.03
I _{DD-HIGH1}	1.39
I _{DD-HIGH3}	1.39
I _{DD-HIGH2}	1.54

Table 23.	CCLK Dynamic	Current per core	(mA, with ASF = 1)
-----------	---------------------	------------------	--------------------

	Voltage (V _{DD_INT})												
f _{CCLK} (MHz)	1.045	1.050	1.060	1.070	1.080	1.090	1.100	1.110	1.120	1.130	1.140	1.150	1.155
400	66.7	67.2	67.9	68.7	69.4	70.2	71.1	71.8	72.6	73.4	74.2	74.9	75.4
350	58.6	59.0	59.6	60.3	61.0	61.7	62.4	63.0	63.7	64.4	65.1	65.8	66.1
300	50.2	50.5	51.1	51.7	52.3	52.9	53.5	54.1	54.7	55.3	55.9	56.4	56.8
250	42.1	42.3	42.8	43.3	43.8	44.3	44.7	45.3	45.8	46.3	46.8	47.4	47.6
200	33.7	33.9	34.3	34.7	35.1	35.5	35.9	36.3	36.7	37.1	37.5	37.9	38.0
150	25.4	25.5	25.8	26.1	26.4	26.7	27.0	27.3	27.6	27.9	28.2	28.5	28.8
100	17.0	17.1	17.3	17.5	17.7	17.9	18.1	18.3	18.5	18.6	18.8	19.0	19.1

TIMING SPECIFICATIONS

Specifications are subject to change without notice.

Clock and Reset Timing

Table 29 and Figure 8 describe clock and reset operations related to the clock generation unit (CGU). Per the CCLK, SYSCLK, SCLK0, SCLK1, DCLK, and OCLK timing specifications in Table 17 on Page 51 and Table 18 on Page 52, combinations of SYS_CLKIN and clock multipliers must not select clock rates in excess of the processor's maximum instruction rate.

Table 29. Clock and Reset Timing

		1.1	V _{DD_EXT} 3V Nominal	3.:	V _{DD_EXT} 3V Nominal	
Parameter	r	Min	Max	Min	Max	Unit
Timing Req	uirement					
f _{CKIN}	SYS_CLKIN Crystal Frequency (CGU_CTL.DF = 0) ^{1, 2, 3}	19.2	35	19.2	50	MHz
f _{CKIN}	SYS_CLKIN Crystal Frequency (CGU_CTL.DF = 1) ^{1, 2, 3}	N/A	N/A	38.4	50	MHz
f _{CKIN}	SYS_CLKIN External Source Frequency (CGU_CTL.DF = 0) ^{1, 2, 3}	19.2	60	19.2	60	MHz
f _{CKIN}	SYS_CLKIN External Source Frequency (CGU_CTL.DF = 1) ^{1, 2, 3}	38.4	60	38.4	60	MHz
t _{CKINL}	SYS_CLKIN Low Pulse ¹	8.33		8.33		ns
t _{CKINH}	SYS_CLKIN High Pulse ¹	8.33		8.33		ns
t _{WRST}	SYS_HWRST Asserted Pulse Width Low ⁴	$11 \times t_{CKIN}$		$11 \times t_{CKIN}$		ns

¹ Applies to PLL bypass mode and PLL nonbypass mode.

² The t_{CKIN} period (see Figure 8) equals $1/f_{CKIN}$.

 3 Combinations of the CLKIN frequency and the PLL clock multiplier must not exceed the allowed f_{PLLCLK} setting discussed in Table 19.

⁴ Applies after power-up sequence is complete. See Table 30 and Figure 9 for power-up reset timing.

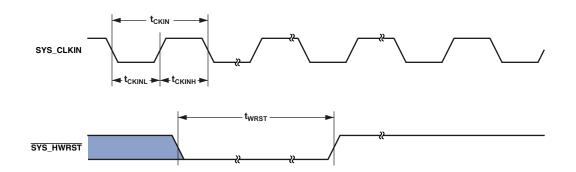


Figure 8. Clock and Reset Timing

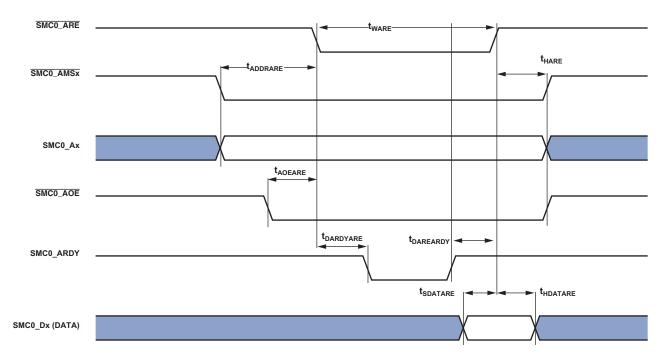


Figure 10. Asynchronous Read

Asynchronous Flash Write

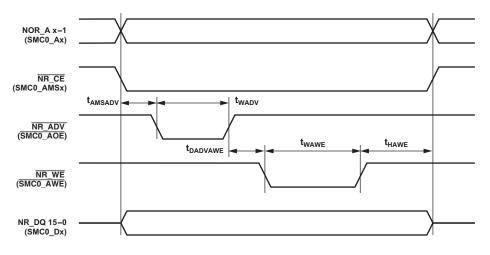
Table 37 and Figure 16 show asynchronous flash memory write timing, related to the static memory controller (SMC).

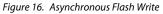
Table 37. Asynchronous Flash Write

		1.8\	V _{DD_EXT} //3.3 V Nominal		
Parameter		Min	Max	Unit	
Switching C	haracteristics				
t _{AMSADV}	SMC0_Ax/SMC0_AMSx Assertion Before ADV Low ¹	$PREST \times t_{SCLK0}$	- 2	ns	
t _{DADVAWE}	SMC0_AWE Low Delay From ADV High ²	$PREAT \times t_{SCLK0}$	- 4	ns	
t _{WADV}	NR_ADV Active Low Width ³	$WST \times t_{SCLK0} -$	2	ns	
t _{HAWE}	Output ⁴ Hold After SMC0_AWE High ⁵	$WHT \times t_{SCLK0}$		ns	
t _{wawe} 6	SMC0_AWE Active Low Width ⁷	WAT \times t _{SCLK0} –	2	ns	

¹ PREST value set using the SMC_BxETIM.PREST bits.

² PREAT value set using the SMC_BxETIM.PREAT bits.


³WST value set using the SMC_BxTIM.WST bits.


⁴Output signals are DATA, SMC0_Ax, <u>SMC0_AMSx</u>, <u>SMC0_ABEx</u>.

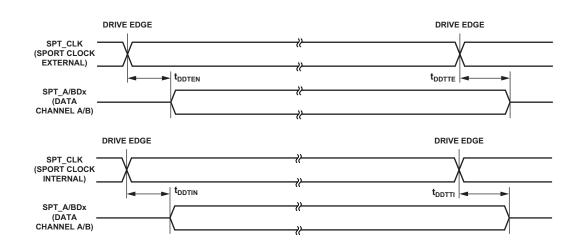
 $^5\,\rm WHT$ value set using the SMC_BxTIM.WHT bits.

⁶ SMC_BxCTL.ARDYEN bit = 0.

 $^7\,\rm WAT$ value set using the SMC_BxTIM.WAT bits.

All Accesses

Table 38 describes timing that applies to all memory accesses, related to the static memory controller (SMC).


Table 38. All Accesses

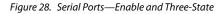

	1.4	V _{DD_EXT} 1.8 V Nominal		V _{DD_EXT} 3.3 V Nominal	
Parameter	Min	Max	Min	Max	Unit
Switching Characteristic					
t _{TURN} SMC0_AMSx Inactive Width	$(IT + TT) \times t_{SCLKO}$	- 2	$(IT + TT) \times t_{SC}$	_{LK0} – 2	ns

Table 51. Serial Ports—Enable and Three-State

		1.8	V _{DD_EXT} SV Nominal	3.3	V _{DD_EXT} SV Nominal		
Paramete	er	Min	Max	Min	Max	Unit	
Switching	Characteristics						
t _{DDTEN}	Data Enable from External Transmit SPT_CLK ¹	1		1		ns	
t _{DDTTE}	Data Disable from External Transmit SPT_CLK ¹		14		14	ns	
t _{DDTIN}	Data Enable from Internal Transmit SPT_CLK ¹	-1.12		-1		ns	
t _{DDTTI}	Data Disable from Internal Transmit SPT_CLK ¹		2.8		2.8	ns	

¹Referenced to drive edge.

Serial Peripheral Interface (SPI) Port—Master Timing

Table 54 and Figure 31 describe serial peripheral interface (SPI) port master operations.

When internally generated, the programmed SPI clock ($f_{SPICLKPROG}$) frequency in MHz is set by the following equation where BAUD is a field in the SPI_CLK register that can be set from 0 to 65,535:

$$f_{SPICLKPROG} = \frac{f_{SCLK0}}{(BAUD+1)}$$

$$t_{SPICLKPROG} = \frac{1}{f_{SPICLKPROG}}$$

Note that:

- In dual mode data transmit, the SPI_MISO signal is also an output.
- In quad mode data transmit, the SPI_MISO, SPI_D2, and SPI_D3 signals are also outputs.
- In dual mode data receive, the SPI_MOSI signal is also an input.
- In quad mode data receive, the SPI_MOSI, SPI_D2, and SPI_D3 signals are also inputs.
- To add additional frame delays, see the documentation for the SPI_DLY register in the hardware reference manual.

Table 54. Serial Peripheral Interface (SPI) Port-Master Timing

		V _{DD_EX} 1.8V Non		۷ _{DD_} ε) 3.3 V Nor		
Parameter		Min	Max	Min	Max	Unit
Timing Requ	irements					
t _{sspidm}	Data Input Valid to SPI_CLK Edge (Data Input Setup)	6.5		5.5		ns
t _{hspidm}	SPI_CLK Sampling Edge to Data Input Invalid	1		1		ns
Switching Ch	aracteristics					
t _{sdscim}	SPI_SEL low to First SPI_CLK Edge	$0.5 \times t_{SCLK0} - 2.5$		$0.5 imes t_{SCLK0} - 1.5$		ns
t _{spichm}	SPI_CLK High Period ¹	$0.5 \times t_{SPICLKPROG} - 1.5$		$0.5 imes t_{SPICLKPROG} - 1.5$		ns
t _{spiclm}	SPI_CLK Low Period ¹	$0.5 \times t_{SPICLKPROG} - 1.5$		$0.5 \times t_{SPICLKPROG} - 1.5$		ns
t _{spiclk}	SPI_CLK Period ¹	t _{spiclkprog} – 1.5		t _{SPICLKPROG} – 1.5		ns
t _{HDSM}	Last SPI_CLK Edge to SPI_SEL High	$(0.5 \times t_{SCLK0}) - 2.5$		$(0.5 imes t_{SCLK0}) - 1.5$		ns
t _{spitdm}	Sequential Transfer Delay ²	$(\text{STOP} \times \text{t}_{\text{SPICLK}}) - 1.5$		$(\text{STOP} \times \text{t}_{\text{SPICLK}}) - 1.5$		ns
t _{DDSPIDM}	SPI_CLK Edge to Data Out Valid (Data Out Delay)		2.5		2	ns
t _{hdspidm}	SPI_CLK Edge to Data Out Invalid (Data Out Hold)	-4.5		-3.5		ns

¹See Table 18 on Page 52 in Clock Related Operating Conditions for details on the minimum period that may be programmed for t_{SPICLKPROG}. ²STOP value set using the SPI_DLY.STOP bits.

Serial Peripheral Interface (SPI) Port—SPI_RDY Slave Timing

Table 56. SPI Port—SPI_RDY Slave Timing

			D_EXT V Nominal	
Parameter		Min	Max	Unit
Switching C	haracteristics			
t _{dspisckrdysr}	SPI_RDY De-assertion from Valid Input SPI_CLK Edge in Slave Mode Receive	$2.5 imes t_{SCLK0} + t_{HDSPID}$	$3.5 \times t_{SCLK0} + t_{DDSPID}$	ns
t _{dspisckrdyst}	SPI_RDY De-assertion from Valid Input SPI_CLK Edge in Slave Mode Transmit	$3.5 imes t_{\text{SCLK0}} + t_{\text{HDSPID}}$	$4.5 \times t_{SCLK0} + t_{DDSPID}$	ns

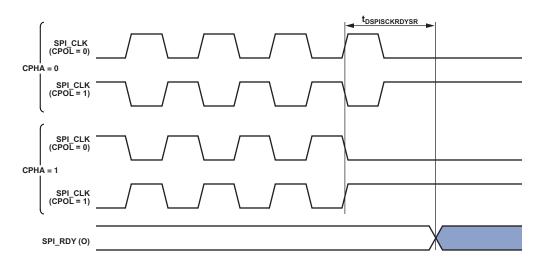


Figure 33. SPI_RDY De-assertion from Valid Input SPI_CLK Edge in Slave Mode Receive (FCCH = 0)

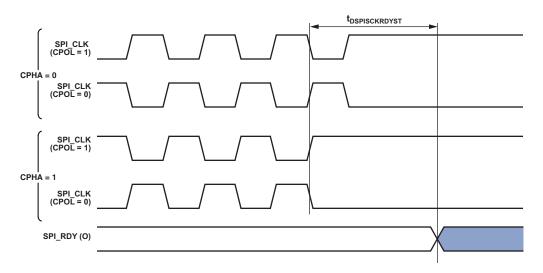


Figure 34. SPI_RDY De-assertion from Valid Input SPI_CLK Edge in Slave Mode Transmit (FCCH = 1)

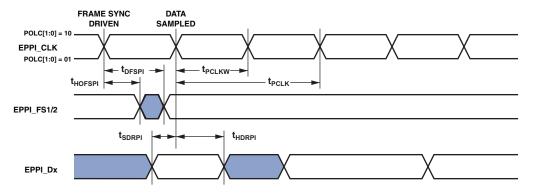
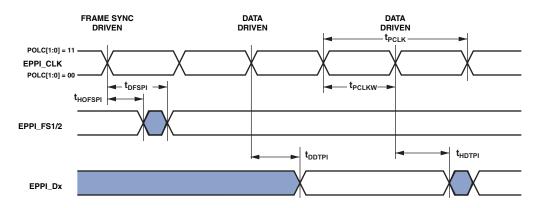



Figure 40. PPI Internal Clock GP Receive Mode with Internal Frame Sync Timing

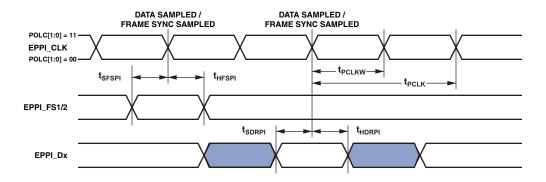


Figure 42. PPI Internal Clock GP Receive Mode with External Frame Sync Timing

Mobile Storage Interface (MSI) Controller Timing

Table 64 and Figure 49 show I/O timing, related to the mobile storage interface (MSI).

The MSI timing depends on the period of the input clock that has been routed to the MSI peripheral ($t_{MSICLKIN}$) by setting the MSI0_UHS_EXT register. See Table 63 for this information.

Table 63. t_{MSICLKIN} Settings

EXT_CLK_MUX_CTRL[31:30]	t _{MSICLKIN}
00	$t_{SCLK0} \times 2$
01	t _{SCLK0}
10	t _{SCLK1} × 3

$$t_{MSICLKIN} = \frac{1}{f_{MSICLKIN}}$$

 $(f_{MSICLKPROG})$ frequency in MHz is set by the following equation where DIV0 is a field in the MSI_CLKDIV register that can be set from 0 to 255. When DIV0 is set between 1 and 255, the following equation is used to determine $f_{MSICLKPROG}$:

$$f_{MSICLKPROG} = \frac{f_{MSICLKIN}}{DIV0 \times 2}$$

When DIV0 = 0,

$$f_{MSICLKPROG} = f_{MSICLKIN}$$

Also note the following:

$$t_{MSICLKPROG} = \frac{1}{f_{MSICLKPROG}}$$

Table 64. MSI Controller Timing

			^{DD_EXT} Nominal		d_ext Nominal	
Param	eter	Min	Max	Min	Max	Unit
Timing	Requirements					
t _{ISU}	Input Setup Time	5.5		4.7		ns
t _{IH}	Input Hold Time	2		0.5		ns
Switch	ing Characteristics					
t _{MSICLK}	Clock Period Data Transfer Mode ¹	t _{MSICLKPROG} – 1.5		t _{MSICLKPROG} – 1.5		ns
t _{WL}	Clock Low Time	7		7		ns
\mathbf{t}_{WH}	Clock High Time	7		7		ns
t _{TLH}	Clock Rise Time		3		3	ns
\mathbf{t}_{THL}	Clock Fall Time		3		3	ns
t _{ODLY}	Output Delay Time During Data Transfer Mode		$(0.5 \times t_{MSICLKIN}) + 3.2$		$(0.5 \times t_{MSICLKIN}) + 3$	ns
t _{OH}	Output Hold Time	$(0.5 imes t_{MSICLKIN}) - 4$		$(0.5 imes t_{MSICLKIN}) - 3$		ns

¹See Table 18 on Page 52 in Clock Related Operating Conditions for details on the minimum period that may be programmed for t_{MSICLKPROG}.

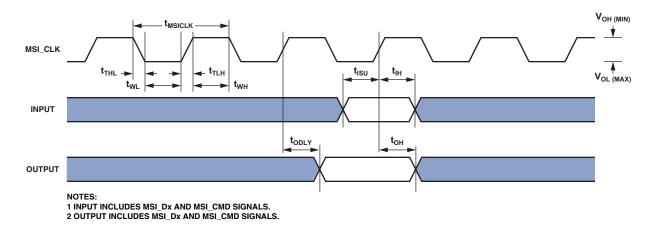


Figure 49. MSI Controller Timing

ENVIRONMENTAL CONDITIONS

To determine the junction temperature on the application printed circuit board, use the following equation:

$$T_J = T_{CASE} + (\Psi_{JT} \times P_D)$$

where:

 T_I = Junction temperature (°C).

 T_{CASE} = Case temperature (°C) measured by customer at top center of package.

 Ψ_{IT} = From Table 65 and Table 66.

 P_D = Power dissipation (see Total Internal Power Dissipation on Page 56 for the method to calculate P_D).

Values of θ_{JA} are provided for package comparison and printed circuit board design considerations. θ_{JA} can be used for a first order approximation of T_J by the equation:

$$T_J = T_A + (\theta_{JA} \times P_D)$$

where:

 T_A = Ambient temperature (°C).

Values of θ_{JC} are provided for package comparison and printed circuit board design considerations when an external heat sink is required.

In Table 65 and Table 66, airflow measurements comply with JEDEC standards JESD51-2 and JESD51-6. The junction-to-case measurement complies with MIL-STD-883 (Method 1012.1). All measurements use a 2S2P JEDEC test board.

Table 65. Thermal Characteristics for CSP_BGA

Parameter	Condition	Typical	Unit
θ_{JA}	0 linear m/s air flow	28.7	°C/W
θ_{JMA}	1 linear m/s air flow	26.2	°C/W
θ_{JMA}	2 linear m/s air flow	25.2	°C/W
θ_{JC}		10.1	°C/W
Ψ_{JT}	0 linear m/s air flow	0.24	°C/W
Ψ_{JT}	1 linear m/s air flow	0.40	°C/W
$\Psi_{ m JT}$	2 linear m/s air flow	0.51	°C/W

Table 66. Thermal Characteristics for LFCSP (Q)FN)	or LFCSP (Characteristics for	Thermal	Table 66.
--	------	------------	---------------------	---------	-----------

Parameter	Condition	Typical	Unit
θ_{JA}	0 linear m/s air flow	22.9	°C/W
θ_{JMA}	1 linear m/s air flow	17.9	°C/W
θ_{JMA}	2 linear m/s air flow	16.4	°C/W
θ_{JC}		2.26	°C/W
Ψ_{JT}	0 linear m/s air flow	0.14	°C/W
Ψ_{JT}	1 linear m/s air flow	0.27	°C/W
Ψ_{JT}	2 linear m/s air flow	0.30	°C/W