

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	-
Core Size	8-Bit
Speed	12MHz
Connectivity	SIO, UART/USART
Peripherals	LCD, POR, PWM, WDT
Number of I/O	23
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 5.5V
Data Converters	A/D 12x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-BQFP
Supplier Device Package	64-QIPE (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/sanyo-denki-sanups-products/lc87f7j32au-qip-e

■Ports

• Normal withstand voltage I/O ports

Ports whose I/O direction can be designated in 1 bit units 15 (P1n, P30 to P31, P70 to P73, XT2)

Ports whose I/O direction can be designated in 4 bit units 8 (P0n)

(When N-channel open drain output is selected, data can be input in bit units.)

• Normal withstand voltage input port 1 (XT1)

• LCD ports

Segment output 24 (S00 to S23)

Common output 4 (COM0 to COM3)

Bias terminals for LCD driver 3 (V1 to V3)

Other functions

Input/output ports 24 (PAn, PBn, PCn,)

Input ports 7 (PLn)

• Dedicated oscillator ports 2 (CF1, CF2)

• Reset pin 1 (RES)

• Power pins 6 (VSS1 to VSS3, VDD1 to VDD3)

■LCD Controller

- 1) Seven display modes are available (static, 1/2, 1/3, 1/4 duty \times 1/2, 1/3 bias)
- 2) Segment output and common output can be switched to general-purpose input/output ports

■Timers

• Timer 0: 16-bit timer/counter with two capture registers.

Mode 0: 8-bit timer with an 8-bit programmable prescaler (with two 8-bit capture registers) \times 2 channels

Mode 1: 8-bit timer with an 8-bit programmable prescaler (with two 8-bit capture registers)

+ 8-bit counter (with two 8-bit capture registers)

Mode 2: 16-bit timer with an 8-bit programmable prescaler (with two 16-bit capture registers)

Mode 3: 16-bit counter (with two 16-bit capture registers)

• Timer 1: 16-bit timer that supports PWM/toggle outputs

Mode 0: 8-bit timer with an 8-bit prescaler (with toggle outputs)

+ 8-bit timer/counter with an 8-bit prescaler (with toggle outputs)

Mode 1: 8-bit PWM with an 8-bit prescaler × 2 channels

Mode 2: 16-bit timer/counter with an 8-bit prescaler (with toggle outputs)

(toggle outputs also possible from the lower-order 8 bits)

Mode 3: 16-bit timer with an 8-bit prescaler (with toggle outputs)

(The lower-order 8 bits can be used as PWM.)

- Timer 4: 8-bit timer with a 6-bit prescaler
- Timer 5: 8-bit timer with a 6-bit prescaler
- Timer 6: 8-bit timer with a 6-bit prescaler (with toggle output)
- Timer 7: 8-bit timer with a 6-bit prescaler (with toggle output)
- Timer 8: 16-bit timer

Mode 0: 8-bit timer with an 8-bit prescaler \times 2 channels (with toggle output)

Mode 1: 16-bit timer with an 8-bit prescaler (with toggle output)

- Base timer
 - 1) The clock is selectable from the subclock (32.768kHz crystal oscillation), system clock, and timer 0 prescaler output.
 - 2) Interrupts programmable in 5 different time schemes
- Day and time counter
 - 1) Using with a base timer, it can be used as 65000 day + minute + second counter.

■High-speed Clock Counter

- 1) Can count clocks with a maximum clock rate of 20MHz (at a main clock of 10MHz).
- 2) Can generate output real-time.

■SIO

- SIO0: 8-bit synchronous serial interface
 - 1) LSB first/MSB first mode selectable
 - 2) Built-in 8-bit baudrate generator (maximum transfer clock cycle = 4/3 tCYC)
 - 3) Automatic continuous data transmission (1 to 256 bits specifiable in 1-bit units, suspension and resumption of data transmission possible in 1-byte units)
- SIO1: 8-bit asynchronous/synchronous serial interface
 - Mode 0: Synchronous 8-bit serial I/O (2- or 3-wire configuration, 2 to 512 tCYC transfer clocks)
 - Mode 1: Asynchronous serial I/O (half-duplex, 8-data bits, 1-stop bit, 8 to 2048 tCYC baudrates)
 - Mode 2: Bus mode 1 (start bit, 8-data bits, 2 to 512 tCYC transfer clocks)
 - Mode 3: Bus mode 2 (start detect, 8-data bits, stop detect)

■UART

- Full duplex
- 7/8/9 bit data bits selectable
- 1 stop bit (2-bit in continuous data transmission)
- Built-in baudrate generator
- ■AD Converter: 12-bits/8-bits × 12 channels
 - 12 bits/8 bits AD converter resolution selectable
- ■PWM: Multi frequency 12-bit PWM × 2 channels
- ■Infrared Remote Control Receiver Circuit
 - Noise reduction function (noise filter time constant: Approx. 120μs, when the 32.768kHz crystal oscillator is selected as the reference voltage source.)
 - 2) Supports data encoding systems such as PPM (Pulse Position Modulation) and Manchester encoding
 - 3) X'tal HOLD mode release function
- ■Watchdog Timer
 - External RC watchdog timer
 - Basetimer watchdog timer
 - Interrupt and reset signals selectable
- ■Clock Output Function
 - 1) Able to output selected oscillation clock 1/1, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64 as system clock.
 - 2) Able to output oscillation clock of sub clock.

■Standby Function

- HALT mode: Halts instruction execution while allowing the peripheral circuits to continue operation. (Some parts of the serial transfer function stops operation)
 - 1) Oscillation is not halted automatically.
 - 2) Canceled by a system reset or occurrence of an interrupt
- HOLD mode: Suspends instruction execution and the operation of the peripheral circuits.
 - 1) The CF, RC, X'tal, and frequency variable RC oscillators automatically stop operation.
 - 2) There are three ways of resetting the HOLD mode.
 - (1) Setting the reset pin to the low level
 - (2) Setting at least one of the INT0, INT1, INT2, INT4, and INT5, pins to the specified level
 - (3) Having an interrupt source established at port 0
- X'tal HOLD mode: Suspends instruction execution and the operation of the peripheral circuits except the base timer and the remote control circuit.
 - 1) The CF, RC, and frequency variable RC oscillators automatically stop operation
 - 2) The state of crystal oscillation established when the X'tal HOLD mode is entered is retained.
 - 3) There are five ways of resetting the X'tal HOLD mode.
 - (1) Setting the reset pin to the low level
 - (2) Setting at least one of the INT0, INT1, INT2, INT4, and INT5 pins to the specified level
 - (3) Having an interrupt source established at port 0
 - (4) Having an interrupt source established in the base timer circuit
 - (5) Having an interrupt source established in the infrared remote control receiver circuit

■On-chip Debugger

• Supports software debugging with the IC mounted on the target board.

■Package Form

QIP64E(14×14): Lead-free type
TQFP64J(10×10): Lead-free type

■Development Tools

• On-chip debugger: TCB87-TypeB + LC87F7J32A

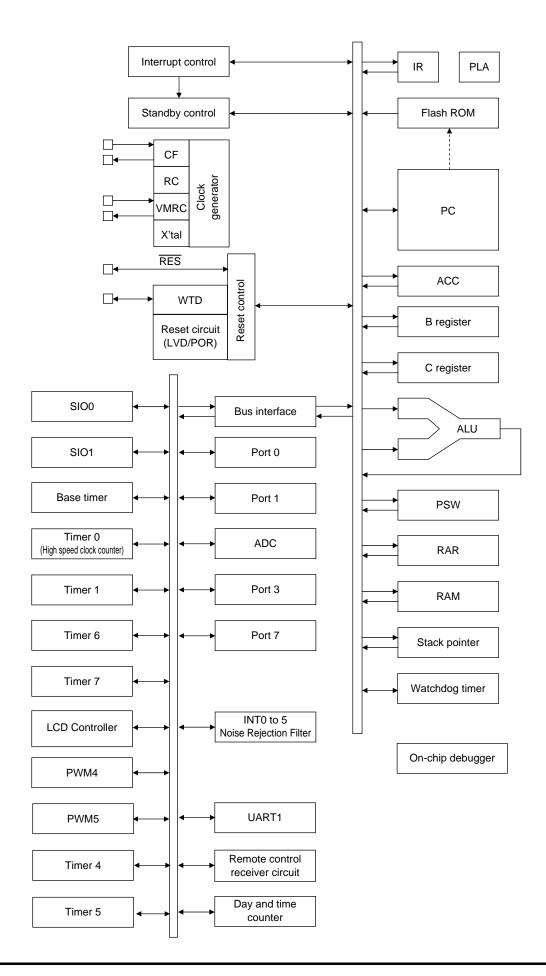
■Flash ROM Programming Board

Package	Programming boards
QIP64E(14×14)	W87F50256Q
TQFP64J(10×10)	W87F57256SQ

■Flash ROM Programmer

Maker	Model		Supported Version (Note)	Device
Flash Support Group, Inc. (Formerly Ando Electric Co., Ltd.)	Single	AF9708/AF9709/ AF9709B	After 0x.xx	
	0	AF9723 (Main body)	After 0x.xx	
	Gang	AF9833 (Unit)	After 0x.xx	
Our company	SKK (SANYO FWS)		After x.xxA	LC87F7J32A

Note: Please check the latest version.


■Same Package and Pin Assignment as Mask ROM Version.

- 1) LC877J00 series options can be set by using flash ROM data. Thus the board used for mass production can be used for debugging and evaluation without modifications.
- 2) If the program for the mask ROM version is used, the usable ROM/RAM capacity is the same as the mask ROM version.

PIN No.	NAME
1	P12/SCK0
2	P13/SO1
3	P14/SI1/SB1
4	P15/SCK1
5	P16/T1PWML
6	P17/T1PWMH/BUZ
7	P30/INT4/T1IN/T0LCP1/PWM4
8	P31/INT5/T1IN/T0HCP1/PWM5
9	V _{DD} 2
10	V _{SS} 2
11	P00/AN3
12	P01/AN4
13	P02/AN5
14	P03/AN6
15	P04/AN7
16	P05/CKO
17	P06/T6O
18	P07/T7O
19	S0/PA0/UTX1
20	S1/PA1/URX1
21	S2/PA2
22	S3/PA3
23	S4/PA4
24	S5/PA5
25	S6/PA6
26	S7/PA7
27	S8/PB0
28	S9/PB1
29	S10/PB2
30	S11/PB3
31	S12/PB4
32	S13/PB5

PIN No.	NAME
33	S14/PB6
34	S15/PB7
35	V _{SS} 3
36	V _{DD} 3
37	S16/PC0
38	S17/PC1
39	S18/PC2
40	S19/PC3
41	S20/PC4
42	S21/PC5
43	S22/PC6
44	S23/PC7
45	COM0/PL0
46	COM1/PL1
47	COM2/PL2
48	COM3/PL3
49	P70/INT0/T0LCP/AN8
50	P71/INT1/T0HCP/AN9
51	P72/INT2/T0IN
52	P73/INT3/T0IN
53	RES
54	XT1/AN10
55	XT2/AN11
56	V _{SS} 1
57	CF1
58	CF2
59	V _{DD} 1
60	V1/PL4/AN0/DBGP0
61	V2/PL5/AN1/DBGP1
62	V3/PL6/AN2/DBGP2
63	P10/S00
64	P11/SI0/SB0

System Block Diagram

Pin Description

Pin Name	I/O			Des	scription			Option
V _{SS} 1	-	- power supply	pin					No
V_{SS}^2								
V _{SS} 3								
V_{DD} 1	-	+ power supply	pin					No
V_{DD}^2								
V_{DD}^3								
PORT0	I/O	• 8-bit I/O port						Yes
P00 to P07		I/O specifiable	in 4-bit units					
		Pull-up resistor	ors can be turned	d on and off in 4-l	bit units.			
		 Input for HOL 	D release					
		Input for port	0 interrupt					
		 Shared pins 						
		P00 to P04: A	D converter inpu	it (AN3 to AN7)				
		P05: Clock ou	tput (system clo	ck/can selected f	rom sub clock)			
		P06: Timer 6	oggle output					
		P07: Timer 7	oggle output					
PORT1	I/O	• 8-bit I/O port						Yes
P10 to P17		I/O specifiable	in 1-bit units					
		Pull-up resistor	ors can be turned	d on and off in 1-l	bit units.			
		Shared pins						
		P10: SIO0 dat	a output					
		P11: SIO0 dat	a input/bus I/O					
		P12: SIO0 clo	ck I/O					
		P13: SIO1 dat	a output					
			a input/bus I/O					
		P15: SIO1 clo	ck I/O					
		P16: Timer 1F	WML output					
		P17: Timer 1F	WMH output/be	eper output				
PORT3	I/O	• 2-bit I/O port						Yes
P30 to P31		I/O specifiable						
		Pull-up resistor						
		Shared pins						
		-		•	· ·	_ capture input/P\		
		· ·		e input/timer 1 ev	ent input/timer 01	_ capture input/P\	/VM5	
		Interrupt ackn	owleage type	1		1		
			Rising	Falling	Rising &	H level	L level	
				. ag	Falling		2.070.	
		INT4	enable	enable	enable	disable	disable	
		INT5	enable	enable	enable	disable	disable	
PORT7	I/O	• 4-bit I/O port						No
	- "	I/O specifiable	e in 1-bit units					140
P70 to P73		•		d on and off in 1-l	hit units			
		Shared pins			on anno			
			ut/HOLD release	e input/timer 0L c	apture input/wato	chdog timer outpu	ıt	
				e input/timer 0H c	•			
				e input/timer 0 ev		_ capture input/		
		·	ed clock counter	-				
				er)/timer 0 event	input/timer 0H ca	apture input/		
			ontrol receiver ir		·			
		AD converter in	put ports: AN8 (P70), AN9 (P71)				
		Interrupt ackn		, , ,				
			5 71 -		Rising &]
			Rising	Falling	Falling &	H level	L level	
		INTO	onahla	onable	· -	onoble	onabla	
	1	INT0	enable	enable	disable	enable enable	enable	
		INITA	onah!-	anahi-				
		INT1	enable	enable	disable		enable	
		INT1 INT2 INT3	enable enable enable	enable enable enable	enable enable	disable disable	disable disable	

Continued from preceding page.

Pin Name	I/O	Description	Option
S0/PA0 to	I/O	Segment output for LCD	No
S7/PA7		Can be used as general-purpose I/O port (PA)	
S8/PB0 to	I/O	Segment output for LCD	No
S15/PB7		Can be used as general-purpose I/O port (PB)	
S16/PC0 to	I/O	Segment output for LCD	No
S23/PC7		Can be used as general-purpose I/O port (PC)	
COM0/PL0 to	I/O	Common output for LCD	No
COM3/PL3		Can be used as general-purpose input port (PL)	
V1/PL4 to	I/O	LCD output bias power supply	No
V3/PL7		Can be used as general-purpose input port (PL)	
		Shared pins	
		AD converter input ports: AN0 (V1) to AN2 (V3)	
		On-chip debugger pins: DBGP0 (V1) to DBGP2 (V3)	
RES	Input	Reset pin	No
XT1	Input	32.768kHz crystal oscillator input pin	No
		Shared pins	
		General-purpose input port	
		AD converter input port: AN10	
		Must be connected to V _{DD} 1 if not to be used.	
XT2	I/O	32.768kHz crystal oscillator output pin	No
		Shared pins	
		General-purpose I/O port	
		AD converter input port: AN11	
		Must be set for oscillation and kept open if not to be used.	
CF1	Input	Ceramic resonator input pin	No
CF2	Output	Ceramic resonator output pin	No

Port Output Types

The table below lists the types of port outputs and the presence/absence of a pull-up resistor.

Data can be read into any input port even if it is in the output mode.

Port Name	Option Selected in Units of	Option Type	Output Type	Pull-up Resistor
P00 to P07	1 bit	1	CMOS	Programmable (Note)
		2	N-channel open drain	No
P10 to P17	1 bit	1	CMOS	Programmable
		2	N-channel open drain	Programmable
P30 to P31	1 bit	1	CMOS	Programmable
		2	N-channel open drain	Programmable
P70	-	No	N-channel open drain	Programmable
P71 to P73	-	No	CMOS	Programmable
S0/PA0 to S23/PC7	-	No	CMOS	Programmable
COM0/PL0 to COM3/PL3	-	No	Input only	No
V1/PL4 to V3/PL6	-	No	Input only	No
XT1	-	No	Input for 32.768 kHz crystal oscillator (Input only)	No
XT2	-	No	Output for 32.768kHz crystal oscillator (Nch-open drain when in general-purpose output mode)	No

Note1: Programmable pull-up resistors for port 0 are controlled in 4 bit units (P00 to 03, P04 to 07).

*1 Connect the IC as shown below to minimize the noise input to the $V_{DD}1$ pin. Be sure to electrically short the $V_{SS}1$, $V_{SS}2$, and $V_{SS}3$ pins.

*2 The internal memory is sustained by V_{DD}1. If none of V_{DD}2 and V_{DD}3 are backed up, the high level output at the ports are unstable in the HOLD backup mode, allowing through current to flow into the input buffer and thus shortening the backup time.

Make sure that the port outputs are held at the low level in the HOLD backup mode.

Absolute Maximum Ratings at $Ta=25^{\circ}C,\ V_{SS}1=V_{SS}2=V_{SS}3=0V$

				7 88 88			Specifi	cation	
Param	neter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Maximum :	supply	V _{DD} max	V _{DD} 1, V _{DD} 2, V _{DD} 3	V _{DD} 1=V _{DD} 2=V _{DD} 3	DDL 1	-0.3		+6.5	
supply volt	tage for	VLCD	V1/PL4, V2/PL5, V3/PL6	V _{DD} 1=V _{DD} 2=V _{DD} 3		-0.3		V _{DD}	
Input volta	ige	V _I (1)	Port L XT1, CF1, RES			-0.3		V _{DD} +0.3	V
Input/output voltage	ut	V _{IO} (1)	Port 0, 1, 3, 7 Port A, B, C XT2			-0.3		V _{DD} +0.3	
Peak currer	output nt	IOPH(1)	Ports 0, 1 Ports A, B, C	CMOS output selected Current at each pin		-10			
		IOPH(2)	Port 3	CMOS output selected Current at each pin		-20			
		IOPH(3)	Port 71 to 73	Current at each pin		-5			
currer	output	IOMH(1)	Ports 0, 1 Ports A, B, C	CMOS output selected Current at each pin		-7.5			
High level output current current current	1-1)	IOMH(2)	Port 3	CMOS output selected Current at each pin		-15			
thort		IOMH(3)	Ports 71 to 73	Current at each pin		-3			
Total	output	ΣΙΟΑΗ(1)	Ports 71 to 73	Total of all pins		-5			
g currer	nt	ΣΙΟΑΗ(2)	Port 1	Total of all pins		-20			
-figh		ΣΙΟΑΗ(3)	Ports 1, 71 to 73	Total of all pins		-20			
_		ΣΙΟΑΗ(4)	Port 3	Total of all pins		-25			
		ΣΙΟΑΗ(5)	Port 0	Total of all pins		-20			
		ΣΙΟΑΗ(6)	Ports 0, 3	Total of all pins		-40			
		ΣΙΟΑΗ(7)	Ports A, B	Total of all pins		-25			
		ΣΙΟΑΗ(8)	Port C	Total of all pins		-20			
		ΣΙΟΑΗ(9)	Ports A, B, C	Total of all pins		-10			mA
Peak currer	output	IOPL(1)	Ports 0, 1 Ports A, B, C	Current at each pin				20	
04.701		IOPL(2)	Port 3	Current at each pin				30	
		IOPL(3)	Ports 7, XT2	Current at each pin				10	
Mean	output	IOML(1)	Ports 0, 1 Ports A, B, C	Current at each pin				15	
(Note		IOML(2)	Port 3	Current at each pin				20	
Total of currer		IOML(3)	Ports 7, XT2	Current at each pin				7.5	
Total	output	ΣIOAL(1)	Ports 7, XT2	Total of all pins				15	
ਰ currer		ΣIOAL(2)	Ports 1	Total of all pins				40	
<u> e</u>		ΣIOAL(3)	Ports 1, 7, XT2	Total of all pins				50	
Low		ΣIOAL(4)	Port 3	Total of all pins				45	
		ΣIOAL(5)	Port 0	Total of all pins				40	
		ΣIOAL(6)	Ports 0, 3	Total of all pins				80	
		ΣIOAL(7)	Ports A, B	Total of all pins				45	
		ΣIOAL(8)	Port C	Total of all pins				40	
		ΣIOAL(9)	Ports A, B, C	Total of all pins				80	
Power diss	sipation	Pd max	QIP64E(14×14)	Ta=-40 to +85°C				298	
			TQFP64J(10×10)	Ta=-40 to +85°C				200	mW
Operating temperatur		Topr				-40		+85	
	mbient	Tstg							°C

Note 1-1: The mean output current is a mean value measured over 100ms.

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Allowable Operating Condtions at $Ta = -40^{\circ}C$ to $+85^{\circ}C$, $V_{SS}1 = V_{SS}2 = V_{SS}3 = 0V$

	0	Div (Day of La	O Property		Specification			
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Operating	V _{DD} (1)	V _{DD} 1=V _{DD} 2=V _{DD} 3	0-237μs≤tCYC≤200μs		3.0		5.5	
supply voltage			0-356μs≤tCYC≤200μs		2.5		5.5	
(Note 2-1)			0-712μs≤tCYC≤200μs		2.2		5.5	
Memory sustaining supply voltage	VHD	V _{DD} 1=V _{DD} 2=V _{DD} 3	RAM and register contents sustained in HOLD mode		2.0		5.5	
High level input voltage	V _{IH} (1)	Ports 0, 3Ports A, B, CPort L	Output disabled	2.2 to 5.5	0.3V _{DD} +0.7		V _{DD}	
	V _{IH} (2)	Port 1Ports 71 to 73Port 70 port input/ interrupt side	Output disabled When INT1VTSL=0 (P71only)	2.2 to 5.5	0.3V _{DD} +0.7		V _{DD}	
	V _{IH} (3)	Port 71 interrupt side	Output disabled When INT1VTSL=1	2.2 to 5.5	0.85V _{DD}		V _{DD}	
	V _{IH} (4)	Port 70 watchdog timer side	Output disabled	2.2 to 5.5	0.9V _{DD}		V _{DD}	V
	V _{IH} (5)	XT1, XT2, CF1, RES		2.2 to 5.5	0.75V _{DD}		V _{DD}	
Low level input voltage	V _{IL} (1)	• Ports 0, 3 • Ports A, B, C	Output disabled	4.0 to 5.5	Vss		0.15V _{DD} +0.4	
		• Port L		2.2 to 4.0	V _{SS}		0.2V _{DD}	
	VIL(2)	• Port 1 • Ports 71 to 73	Output disabled When INT1VTSL=0	4.0 to 5.5	V _{SS}		0.1V _{DD} +0.4	
		Port 70 port input/interrupt side	(P71 only)	2.2 to 4.0	V _{SS}		0.2V _{DD}	
	V _{IL} (3)	Port 71 interrupt side	Output disabled When INT1VTSL=1	2.2 to 5.5	V _{SS}		0.45V _{DD}	
	V _{IL} (4)	Port 70 watchdog timer side		2.2 to 5.5	V _{SS}		0.8V _{DD} -1.0	
	V _{IL} (5)	XT1, XT2, CF1, RES		2.2 to 5.5	V _{SS}		0.25V _{DD}	
Instruction cycle	tCYC			3.0 to 5.5	0.237		200	
time				2.5 to 5.5	0.356		200	μs
(Note 2-2)				2.2 to 5.5	0.712		200	
External system clock frequency	FEXCF(1)	CF1	CF2 pin open System clock frequency	3.0 to 5.5	0.1		12	
			division ratio=1/1 • External system clock	2.5 to 5.5	0.1		8	
			DUTY=50±5%	2.2 to 5.5	0.1		4	MHz
			CF2 pin open	3.0 to 5.5	0.2		24.4	
			System clock frequency division ratio 1/2	2.5 to 5.5	0.2		16	
			division ratio=1/2	2.2 to 5.5	0.2		8	

Note 2-1: V_{DD} must be held greater than or equal to 3.0V in the flash ROM onboard programming mode.

Note 2-2: Relationship between tCYC and oscillation frequency is 3/FmCF at a division ratio of 1/1 and 6/FmCF at a division ratio of 1/2.

Continued from preceding page.

Parameter	Symbol	Pin/Remarks	Conditions			Specifi	cation	
Farameter	Symbol	FIII/Remarks			min	typ	max	unit
Oscillation frequency	FmCF(1)	CF1, CF2	12MHz ceramic oscillation See figure 1.	3.0 to 5.5		12		
range (Note 2-3)	FmCF(2)	CF1, CF2	8MHz ceramic oscillation See figure 1.	2.5 to 5.5		8		
	FmCF(3)	CF1, CF2	4MHz ceramic oscillation See figure 1.	2.2 to 5.5		4		
	FmRC		Internal RC oscillation	2.2 to 5.5	0.3	1.0	2.0	
	FmVMRC(1)		 Frequency variable RC source oscillation When VMRAJ2 to 0=4, VMFAJ2 to 0=0, VMSL4M=0 	2.2 to 5.5		10		MHz
	FmVMRC(2)		Frequency variable RC source oscillation When VMRAJ2 to 0=4, VMFAJ2 to 0=0, VMSL4M=1	2.2 to 5.5		4		
	FsX'tal	XT1, XT2	32.768kHz crystal oscillation See figure 2.	2.2 to 5.5		32.768		kHz
Frequency	OpVMRC(1)		When VMSL4M=0	2.2 to 5.5	8	10	12	
variable RC oscillation usable range	OpVMRC(2)		When VMSL4M=1	2.2 to 5.5	3.5	4	4.5	MHz
Frequency variable RC	VmADJ(1)		Each step of VMRAJn (Wide range)	2.2 to 5.5	8	24	64	
oscillation adjustment range	VmADJ(2)		Each step of VMFAJn (Small range)	2.2 to 5.5	1	4	8	%

Note 2-3: See Tables 1 and 2 for the oscillation constants.

Electrical Characteristics at Ta = -40 °C to +85 °C, $V_{SS}1 = V_{SS}2 = V_{SS}3 = 0V$

Parameter		2	0 111		Specification			
	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
High level input current	I _{IH} (1)	• Ports 0, 1, 3, 7 • Ports A, B, C • Port L	Output disabled Pull-up resistor off VIN=VDD (including output Tr's off	2.2 to 5.5			1	
	I _{IH} (2)	RES	leakage current) VIN=VDD	2.2 to 5.5			1	
	I _{IH} (3)	XT1, XT2	For input port specification VIN=VDD	2.2 to 5.5			1	
	I _{IH} (4)	CF1	V _{IN} =V _{DD}	2.2 to 5.5			15	
Low level input current	I _{IL} (1)	• Ports 0, 1, 3, 7 • Ports A, B, C • Port L	Output disabled Pull-up resistor off VIN=VSS (including output Tr's off leakage current)	2.2 to 5.5	-1			μА
	I _{IL} (2)	RES	V _{IN} =V _{SS}	2.2 to 5.5	-1			
	I _{IL} (3)	XT1, XT2	For input port specification VIN=VSS	2.2 to 5.5	-1			
	IIL(4)	CF1	V _{IN} =V _{SS}	2.2 to 5.5	-15			

Serial I/O Characteristics at Ta = -40 °C to +85 °C, $V_{SS}1 = V_{SS}2 = V_{SS}3 = 0V$

1. SIO0 Serial I/O Characteristics (Note 4-1-1)

	D.	arameter	Symbol	Pin/Remarks	Conditions			Speci	fication	
	F 6	arameter	Symbol	Fill/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
		Frequency	tSCK(1)	SCK0(P12)	See Fig. 6.		2			
	×	Low level pulse width	tSCKL(1)				1			
	Input clock	High level pulse width	tSCKH(1)			2.2 to 5.5	1			
clock	Inl	Frequency	tSCKHA(1)		Continuous data transmission/reception mode See Fig. 6. (Note 4-1-2)		4			tCYC
Serial clock		Frequency	tSCK(2)	SCK0(P12)	CMOS output selected See Fig. 6.		4/3			
	ck	Low level pulse width	tSCKL(2)		-		1/2			*CO!
	Output clock	High level tSCKH(2) pulse width	tSCKH(2)			2.2 to 5.5		1/2		tSCK
	Ō		tSCKHA(2)		Continuous data transmission/reception mode CMOS output selected See Fig. 6.		tSCKH(2) +2tCYC		tSCKH(2) +(10/3) tCYC	tCYC
Serial input	Da	ta setup time	tsDI(1)	SB0(P11), SI0(P11)	Must be specified with respect to rising edge of SIOCLK	2.2 to 5.5	0.03			
Serial	Da	ta hold time	thDI(1)		• See Fig. 6.	2.2 to 5.5	0.03			
	clock	Output delay time	tdDO(1)	SO0(P10), SB0(P11)	Continuous data transmission/reception mode (Note 4-1-3)	2.2 to 5.5			(1/3)tCYC +0.05	μs
Serial output	Input clock		tdDO(2)		Synchronous 8-bit mode (Note 4-1-3)	2.2 to 5.5			1tCYC +0.05	
Seria	Output clock		tdDO(3)		(Note 4-1-3)	2.2 to 5.5			(1/3)tCYC +0.15	

Note 4-1-1: These specifications are theoretical values. Add margin depending on its use.

Note 4-1-2: To use serial-clock-input in continuous trans/rec mode, a time from SIORUN being set when serial clock is "H" to the first negative edge of the serial clock must be longer than tSCKHA.

Note 4-1-3: Must be specified with respect to falling edge of SIOCLK. Must be specified as the time to the beginning of output state change in open drain output mode. See Fig. 6.

2. SIO1 Serial I/O Characteristics (Note 4-2-1)

	D		Cumahad	Din/Damarka	Conditions	Specification VDD[V] min typ max	fication			
	Pi	arameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
	ж	Frequency	tSCK(3)	SCK1(P15)	See Fig.6.		2			
	Input clock	Low level pulse width	tSCKL(3)			2.2 to 5.5	1			10)(0
Serial clock	드	High level pulse width	tSCKH(3)				1			tCYC
Serial	Output clock	Frequency	tSCK(4)	SCK1(P15)	CMOS output selected See Fig. 6.		2			
		Low level pulse width	tSCKL(4)			2.2 to 5.5		1/2		tSCK
	Ю	High level pulse width	tSCKH(4)					1/2		ISCK
Serial input	Da	ta setup time	tsDI(2)	SB1(P14), SI1(P14)	Must be specified with respect to rising edge of SIOCLK.	2.2 to 5.5	0.03			
Seria	Da	ta hold time	thDI(2)		• See Fig. 6.	2.2 to 5.5	0.03			
Serial output	Ou tim	itput delay e	tdDO(4)	SO1(P13), SB1(P14)	Must be specified with respect to falling edge of SIOCLK. Must be specified as the time to the beginning of output state change in open drain output mode. See Fig. 6.	2.2 to 5.5			(1/3)tCYC +0.05	μѕ

Note 4-2-1: These specifications are theoretical values. Add margin depending on its use.

Pulse Input Conditions at Ta = -40°C to +85°C, VSS1 = VSS2 = VSS3 = 0V

	0 1 1	D' (D	O Bith			Specif	fication	
Parameter	Symbol			V _{DD} [V]	min	typ	max	unit
High/low level	tPIH(1)	INT0(P70),	Interrupt source flag can be set.					
pulse width	tPIL(1)	INT1(P71),	Event inputs for timer 0 or 1 are					
		INT2(P72)	enabled.	2.2 to 5.5	1			
		INT4(P30),						
		INT5(P31)						
	tPIH(2)	INT3(P73) when noise	Interrupt source flag can be set.					
	tPIL(2)	filter time constant is	Event inputs for timer 0 are	2.2 to 5.5	2			tCYC
		1/1	enabled.					1010
	tPIH(3)	INT3(P73) when noise	Interrupt source flag can be set.					
	tPIL(3)	filter time constant is	Event inputs for timer 0 are	2.2 to 5.5	64			
		1/32	enabled.					
	tPIH(4)	INT3(P73) when noise	Interrupt source flag can be set.					
	tPIL(4)	filter time constant is	Event inputs for timer 0 are	2.2 to 5.5	256			
		1/128	enabled.					
	tPIH(5)	RMIN(P73)	Recognized by the infrared					RMCK
	tPIL(5)		remote controller receiver circuit	2.2 to 5.5	4			(Note5-1)
			as a signal.					(140169-1)
	tPIL(6)	RES	Resetting is enabled.	2.2 to 5.5	200			μs

Note 5-1: Represents the period of the reference clock (1tCYC to 128tCYC or the source frequency of the subclock) for the infrared remote controller receiver circuit

AD Converter Characteristics at $V_{SS}1 = V_{SS}2 = V_{SS}3 = 0V$

<12bits AD Converter Mode at Ta =-40 to +85°C>

	0	Dia/Damada	0 - 10		Specification			
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Resolution	N	AN0(V1) to		3.0 to 5.5		12		bit
Absolute accuracy	ET	AN2(V3), AN3(P00) to	(Note 6-1)	3.0 to 5.5			±16	LSB
Conversion time	TCAD	AN7(P04), AN8(P70),	See Conversion time calculation formulas.	4.0 to 5.5	32		115	μs
ume		AN9(P71),	(Note 6-2)	3.0 to 5.5	64		115	μο
Analog input voltage range	VAIN	AN10(XT1), AN11(XT2)		3.0 to 5.5	V _{SS}		V_{DD}	V
Analog port	IAINH		VAIN=V _{DD}	3.0 to 5.5			1	
input current	IAINL		VAIN=V _{SS}	3.0 to 5.5	-1		_	μΑ

<8bits AD Converter Mode at Ta =-40 to +85°C>

Danamatan	O wash at	Pin/Remarks	Conditions			Specif	fication	
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Resolution	N	AN0(V1) to		3.0 to 5.5		8		bit
Absolute accuracy	ET	AN2(V3), AN3(P00) to	(Note 6-1)	3.0 to 5.5			±1.5	LSB
Conversion	TCAD	AN7(P04),	See Conversion time calculation	4.0 to 5.5	20		90	
time		AN8(P70), AN9(P71),	formulas. (Note 6-2)	3.0 to 5.5	40		90	μs
Analog input voltage range	VAIN	AN10(XT1), AN11(XT2)		3.0 to 5.5	V _{SS}		V _{DD}	V
Analog port	IAINH		VAIN=V _{DD}	3.0 to 5.5			1	
input current	IAINL		VAIN=V _{SS}	3.0 to 5.5	-1			μΑ

Conversion time calculation formulas:

12bits AD Converter Mode: TCAD(Conversion time)= $((52/(\text{division ratio})) + 2) \times (1/3) \times \text{tCYC}$ 8bits AD Converter Mode: TCAD(Conversion time)= $((32/(\text{division ratio})) + 2) \times (1/3) \times \text{tCYC}$

External oscillation	Operating supply voltage range	System division ratio	Cycle time	AD division ratio	AD conversion time (TCAD)		
(FmCF)	(VDD)	(SYSDIV)	(tCYC)	(ADDIV)	12bit AD	8bit AD	
OF 40MH-	4.0V to 5.5V	1/1	250ns	1/8	34.8µs	21.5μs	
CF-12MHz	3.0V to 5.5V	1/1	250ns	1/16	69.5µs	42.8µs	
OF OMILE	4.0V to 5.5V	1/1	375ns	1/8	52.2µs	32.3µs	
CF-8MHz	3.0V to 5.5V	1/1	375ns	1/16	104.3μs	64.2µs	
CF-4MHz	3.0V to 5.5V	1/1	750ns	1/8	104.5μs	64.5µs	

Note 6-1: The quantization error ($\pm 1/2$ LSB) must be excluded from the absolute accuracy. The absolute accuracy must be measured in the microcontroller's state in which no I/O operations occur at the pins adjacent to the analog input channel.

Note 6-2: The conversion time refers to the period from the time an instruction for starting a conversion process till the time the conversion results register(s) are loaded with a complete digital conversion value corresponding to the analog input value.

The conversion time is 2 times the normal-time conversion time when:

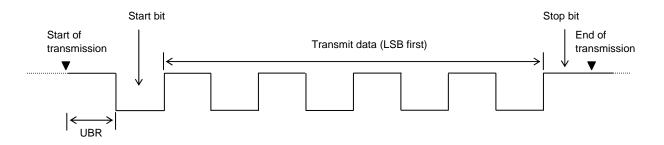
- The first AD conversion is performed in the 12-bit AD conversion mode after a system reset.
- The first AD conversion is performed after the AD conversion mode is switched from 8-bit to 12-bit conversion mode.

Consumption Current Characteristics at $Ta = -40^{\circ}C$ to $+85^{\circ}C$, $V_{SS}1 = V_{SS}2 = V_{SS}3 = 0V$

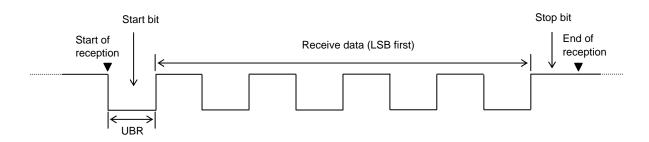
Parameter	Symbol	Pin/	Conditions			Specific		
N	IDDOD(4)	Remarks	5.05.4040	V _{DD} [V]	min	typ	max	unit
Normal mode consumption current	IDDOP(1)	$V_{DD}1$ $=V_{DD}2$ $=V_{DD}3$	FmCF=12MHz ceramic oscillation mode FmX'tal=32.768kHz crystal oscillation mode System clock set to 12MHz side	4.5 to 5.5		8.5	23	
(Note 9-1)	IDDOP(2)		Internal RC oscillation stopped. Frequency variable RC oscillation stopped. 1/1 frequency division ratio	3.0 to 3.6		4.8	13	
	IDDOP(3)		FmCF=8MHz ceramic oscillation mode FmX'tal=32.768kHz crystal oscillation mode	4.5 to 5.5		6.9	19	
	IDDOP(4)		System clock set to 8MHz side Internal RC oscillation stopped.	3.0 to 3.6		3.9	11	
	IDDOP(5)		Frequency variable RC oscillation stopped. 1/1 frequency division ratio	2.5 to 3.0		3.1	8.8	
	IDDOP(6)		FmCF=4MHz ceramic oscillation mode FmX'tal=32.768kHz crystal oscillation mode	4.5 to 5.5		2.4	6.6	
	IDDOP(7)		System clock set to 4MHz side Internal RC oscillation stopped.	3.0 to 3.6		1.3	3.5	
	IDDOP(8)		Frequency variable RC oscillation stopped. 1/2 frequency division ratio	2.2 to 3.0		1.1	3.2	mA
	IDDOP(9)		FmCF=0Hz (oscillation stopped) FmX'tal=32.768kHz crystal oscillation mode	4.5 to 5.5		0.7	3.3	
	IDDOP(10)		System clock set to internal RC oscillation	3.0 to 3.6		0.4	1.9	
	IDDOP(11)		Frequency variable RC oscillation stopped. 1/2 frequency division ratio	2.2 to 3.0		0.3	1.5	
	IDDOP(12)		FmCF=0Hz (oscillation stopped) FmX'tal=32.768kHz crystal oscillation mode Internal RC oscillation stopped.	4.5 to 5.5		7.8	21	
	IDDOP(13)		System clock set to 10MHz wifh frequency variable RC oscillation 1/1 frequency division ratio	3.0 to 3.6		4.5	12	
	IDDOP(14)		FmCF=0Hz (oscillation stopped) FmX'tal=32.768kHz crystal oscillation mode	4.5 to 5.5		3.6	10	-
	IDDOP(15)		Internal RC oscillation stopped. System clock set to 4MHz wifh frequency	3.0 to 3.6		2.8	7.7	
	IDDOP(16)		variable RC oscillation • 1/1 frequency division ratio	2.2 to 3.0		1.8	5.5	
	IDDOP(17)		FmCF=0Hz (oscillation stopped) FmX'tal=32.768kHz crystal oscillation mode	4.5 to 5.5		35	120	
	IDDOP(18)		System clock set to 32.768kHz side Internal RC oscillation stopped.	3.0 to 3.6		18	72	μΑ
	IDDOP(19)		Frequency variable RC oscillation stopped. 1/2 frequency division ratio	2.2 to 3.0		13	53	
HALT mode consumption current	IDDHALT(1)		HALT mode FmCF=12MHz ceramic oscillation mode FmX'tal=32.768kHz crystal oscillation mode	4.5 to 5.5		3.8	9.2	
(Note 9-1)	IDDHALT(2)		System clock set to 12MHz side Internal RC oscillation stopped. Frequency variable RC oscillation stopped. 1/1 frequency division ratio	3.0 to 3.6		2.0	5.0	
	IDDHALT(3)		HALT mode FmCF=8MHz ceramic oscillation mode	4.5 to 5.5		2.8	7.7	mA
	IDDHALT(4)		FmX'tal=32.768kHz crystal oscillation mode System clock set to 8MHz side Internal RC oscillation stopped.	3.0 to 3.6		1.4	3.9	
	IDDHALT(5)		Frequency variable RC oscillation stopped. 1/1 frequency division ratio	2.5 to 3.0		1.1	3.1	

Note 9-1: The consumption current value includes none of the currents that flow into the output Tr and internal pull-up resistors.

UART (Full Duplex) Operating Conditions at Ta = -40 to +85°C, $V_{SS}1 = V_{SS}2 = V_{SS}3 = 0$ V


	0	Pin/Remarks	O a malikia ma		Specification				
Parameter	Symbol		Conditions	V _{DD} [V]	min	typ	max	unit	
Transfer ate	UBR	UTX(S0), URX(S1)		2.2 to 5.5	16/3		8192/3	tCYC	

Data length: 7/8/9 bits (LSB first)


Stop bits: 1 bit (2-bit in continuous data transmission)

Parity bits: None

Example of 8-bit Data Transmission Mode Processing (Transmit Data=55H)

Example of 8-bit Data Reception Mode Processing (Receive Data=55H)

Characteristics of a Sample Main System Clock Oscillation Circuit

Given below are the characteristics of a sample main system clock oscillation circuit that are measured using a Our designated oscillation characteristics evaluation board and external components with circuit constant values with which the oscillator vendor confirmed normal and stable oscillation.

Table 1 Characteristics of a Sample Main System Clock Oscillator Circuit with a Ceramic Oscillator

Nominal	Vendor	Oscillator Name	Circuit Constant				Operating Voltage	Oscill Stabilizat		
Frequency	Name		C1 [pF]	C2 [pF]	Rf1 [Ω]	Rd1 [Ω]	Range [V]	typ [ms]	max [ms]	Remarks
12MHz	MURATA	CSTCE12M0G52-R0	(10)	(10)	Open	470	3.0 to 5.5	0.05	0.15	Internal C1, C2
OMI I=	MUDATA	CSTCE8M00G52-R0	(10)	(10)	Open	2.2k	2.7 to 5.5	0.05	0.15	Internal
8MHz	MURATA	CSTLS8M00G53-B0	(15)	(15)	Open	680	2.5 to 5.5	0.05	0.15	C1, C2
4841.1-	MUDATA	CSTCR4M00G53-R0	(15)	(15)	Open	3.3k	2.2 to 5.5	0.05	0.15	Internal
4MHz	MURATA	CSTLS4M00G53-B0	(15)	(15)	Open	3.3k	2.2 to 5.5	0.05	0.15	C1, C2

The oscillation stabilization time refers to the time interval that is required for the oscillation to get stabilized after V_{DD} goes above the operating voltage lower limit (see Figure 4).

Characteristics of a Sample Subsystem Clock Oscillator Circuit

Given below are the characteristics of a sample subsystem clock oscillation circuit that are measured using a Our designated oscillation characteristics evaluation board and external components with circuit constant values with which the oscillator vendor confirmed normal and stable oscillation.

Table 2 Characteristics of a Sample Subsystem Clock Oscillator Circuit with a Crystal Oscillator

Nominal Frequency		Oscillator	Circuit Constant				Operating	Oscillation Stabilization Time		
	Vendor Name	Name	C3 [pF]	C4 [pF]	Rf2 [Ω]	Rd2 [Ω]	Voltage Range [V]	typ [s]	max [s]	Remarks
32.768kHz	EPSON TOYOKOMU	MC-306	18	18	Open	560	2.2 to 5.5	1.4	3.0	Applicable CL value= 12.5pF

The oscillation stabilization time refers to the time interval that is required for the oscillation to get stabilized after the instruction for starting the subclock oscillation circuit is executed and to the time interval that is required for the oscillation to get stabilized after the HOLD mode is reset (see Figure 4).

Note: The components that are involved in oscillation should be placed as close to the IC and to one another as possible because they are vulnerable to the influences of the circuit pattern.

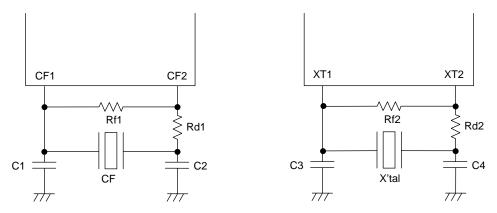


Figure 1 CF Oscillator Circuit

Figure 2 XT Oscillator Circuit

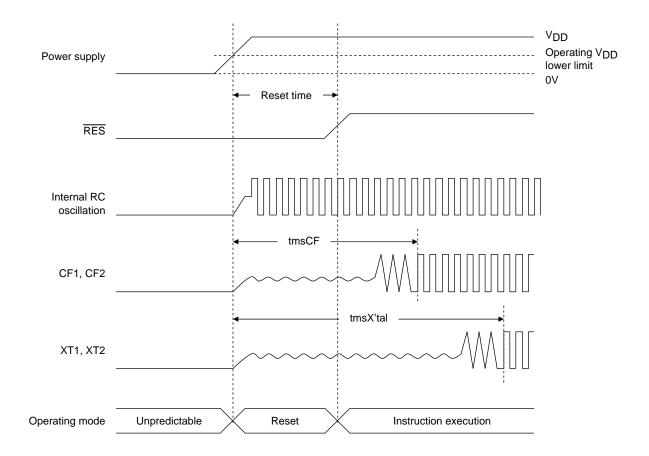
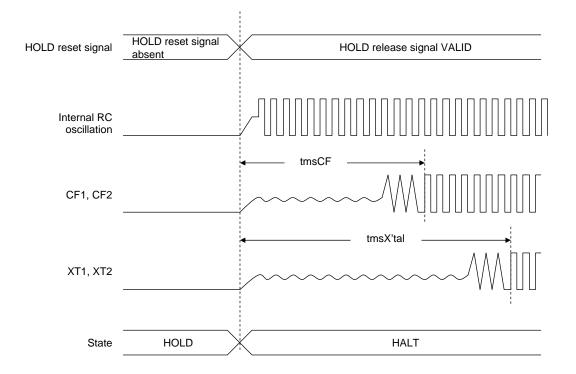
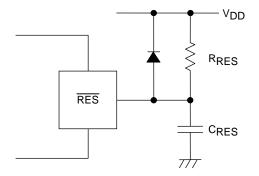




Figure 3 AC Timing Measurement Point



Reset Time and Oscillation Stabilization Time

HOLD Reset Signal and Oscillation Stabilization Time

Figure 4 Oscillation Stabilization Times

Note:

External circuits for reset may vary depending on the usage of POR and LVD. Please refer to the user's manual for more information.

Figure 5 Reset Circuit

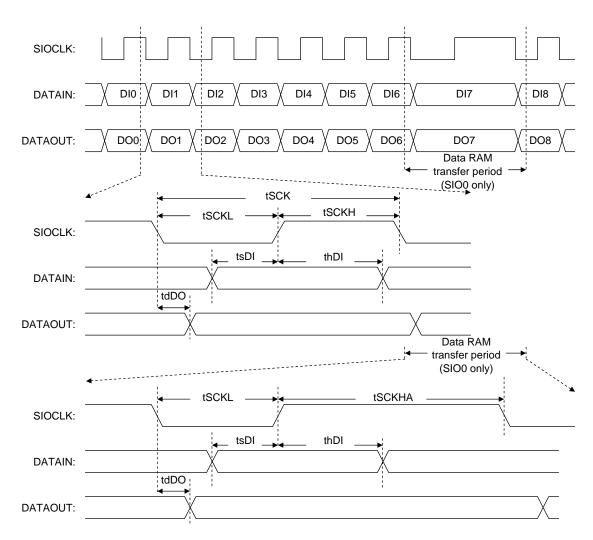


Figure 6 Serial I/O Waveforms

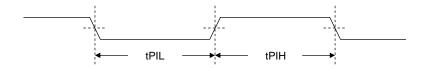


Figure 7 Pulse Input Timing Signal Waveform

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equa