E·XFL

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

Product Status	Obsolete
Туре	Fixed Point
Interface	Host Interface, I ² C, UART
Clock Rate	266MHz
Non-Volatile Memory	ROM (8kB)
On-Chip RAM	400kB
Voltage - I/O	3.30V
Voltage - Core	1.20V
Operating Temperature	-40°C ~ 105°C (TJ)
Mounting Type	Surface Mount
Package / Case	400-LFBGA
Supplier Device Package	400-LFBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/msc7116vf1000

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 1. MSC7116 Block Diagram

NP

ssignments

1 Pin Assignments

This section includes diagrams of the MSC7116 package ball grid array layouts and pinout allocation tables.

1.1 MAP-BGA Ball Layout Diagrams

Top and bottom views of the MAP-BGA package are shown in Figure 2 and Figure 3 with their ball location index numbers.

Pin Assignments

Figure 3. MSC7116 Molded Array Process-Ball Grid Array (MAP-BGA), Bottom View

ssignments

1.2 Signal List By Ball Location

 Table 1 lists the signals sorted by ball number and configuration.

|--|

	Signal Names						
Number		S	oftware Controlle	ed	Hardware	Controlled	
	End of Reset	GPI Enabled (Default)	Interrupt Enabled	GPO Enabled	Primary	Alternate	
A1			GI	ND			
A2			GI	ND			
A3			DC	QM1			
A4			DC	QS2			
A5			C	к			
A6			C	к			
A7		GPIC7		GPOC7	HC	015	
A8		GPOC4	HC	012			
A9	GPIC2 GPOC				HC	010	
A10		rese	erved		Н	D7	
A11	reserved				Н	D6	
A12	reserved				Н	D4	
A13	reserved				Н	D1	
A14	reserved H				D0		
A15	GND						
A16	BM3	GP	ID8	GPOD8	rese	erved	
A17			Ν	IC			
A18			Ν	IC			
A19			Ν	IC			
A20	NC						
B1	V _{DDM}						
B2	NC						
B3		CSO					
B4	DQM2						
B5	DQS3						
B6	DQS0						
B7	СКЕ						
B8			W	/E			
B9		GPIC6		GPOC6	H	014	
B10		GPIC3		GPOC3	HC	011	
B11		GPIC0		GPOC0	H	D8	
B12		rese	erved		H	D5	
B13		rese	erved		H	D2	

Signal Names							
Number		S	Software Controlled			Controlled	
	End of Reset	GPI Enabled (Default)	Interrupt Enabled	GPO Enabled	Primary	Alternate	
F6			V _D	DC			
F7			GI	ND			
F8			GI	ND			
F9			GI	ND			
F10			V _D	DM			
F11			V _D	DM			
F12			GI	ND			
F13			GI	ND			
F14			GI	ND			
F15			V _D	DIO			
F16			V _D	DC			
F17			V _D	DC			
F18			N	С			
F19			N	с			
F20			N	с			
G1			GI	ND			
G2			D	13			
G3			GI	ND			
G4			VD	DM			
G5			VD	DM			
G6			GI	ND			
G7			GI	ND			
G8			GI	ND			
G9			GI	ND			
G10			GI	ND			
G11			GI	ND			
G12			GI	ND			
G13			GI	ND			
G14			GI	ND			
G15			V _D	DIO			
G16			V _D	DIO			
G17			V _D	DC			
G18			N	С			
G19			N	с			
G20			N	с			
H1			D	14			

Table 1. MSC7116 Signals by Ball Designator (continued)

ssignments

	Signal Names							
Number		S	Software Controlle	d	Hardware	Controlled		
	End of Reset	GPI Enabled (Default)	Interrupt Enabled	GPO Enabled	Primary	Alternate		
H2			D	12				
НЗ			D	11				
H4			V _D	DM				
H5			V _D	DM				
H6			GI	ND				
H7			GI	ND				
H8			GI	ND				
H9			GI	ND				
H10			GI	ND				
H11			GI	ND				
H12			GI	ND				
H13			GI	ND				
H14			GI	ND				
H15			V _D	DIO				
H16			V _D	DIO				
H17	Vppc							
H18	NC							
H19		rese	erved		H	A2		
H20		rese	erved		н	A1		
J1			D	10				
J2			V _D	DM				
J3			D	9				
J4	V _{DDM}							
J5		V _{DDM}						
J6		VDDM						
J7	GND							
J8		GND						
J9		GND						
J10		GND						
J11			GI	ND				
J12			GI	ND				
J13			GI	ND				
J14			GI	ND				
J15			GI	ND				
J16			V _D	DIO				
J17			V _D	DC				

Table 1. MSC7116 Signals by Ball Designator (continued)

ssignments

	Signal Names						
Number		S	oftware Controlle	d	Hardware	Controlled	
Nulliber	End of Reset	GPI Enabled (Default)	Interrupt Enabled	GPO Enabled	Primary	Alternate	
L14			V _D	DIO			
L15			V _D	DIO			
L16			V _D	DIO			
L17			V _C	DC			
L18		GPIB11		GPOB11	HCS2	/HCS2	
L19		rese	erved		HCS1	/HCS1	
L20		rese	erved		HRW or	HRD/HRD	
M1			C	02			
M2			V _D	DM			
M3			C	95			
M4			V _D	DM			
M5			V _D	DM			
M6			GI	ND			
M7			GI	ND			
M8			GI	ND			
M9	GND						
M10			GI	ND			
M11			GI	ND			
M12			GI	ND			
M13			GI	ND			
M14			GI	ND			
M15	GND						
M16		V _{DDC}					
M17			V _D	DC			
M18	GPI	A14	IRQ15	GPOA14	S	DA	
M19	GPI	A12	IRQ3	GPOA12	TU	TXD	
M20	GPI	A13	IRQ2	GPOA13	UF	RXD	
N1			C	94			
N2			C	96			
N3			V _F	REF			
N4			VD	DM			
N5			VD	DM			
N6			VD	DM			
N7			GI	ND			
N8			GI	ND			
N9			GI	ND			

Table 1. MSC7116 Signals by Ball Designator (continued)

	Signal Names							
Number		s	Software Controlle	ed	Hardware	Controlled		
	End of Reset	GPI Enabled (Default)	Interrupt Enabled	GPO Enabled	Primary	Alternate		
N10			G	ND				
N11			G	ND				
N12			G	ND				
N13			G	ND				
N14			G	ND				
N15			V	DDIO				
N16			V	DDC				
N17			V	DDC				
N18			CL	.KIN				
N19	GP	IA15	IRQ14	GPOA15	S	SCL		
N20			V _S	SPLL				
P1			[07				
P2			D	017				
P3			C	016				
P4			V	DDM				
P5	V _{DDM}							
P6			V	DDM				
P7		GND						
P8		GND						
P9			G	ND				
P10			G	ND				
P11			G	ND				
P12			G	ND				
P13			G	ND				
P14			G	ND				
P15			V	DDIO				
P16			V	DDIO				
P17			V	DDC				
P18			POR	ESET				
P19			TP	SEL				
P20			V _D	DPLL				
R1			G	ND				
R2			D	19				
R3			D	18				
R4			V	DDM				
R5			V	DDM				

Table 1. MSC7116 Signals by Ball Designator (continued)

No.	Parameter	Symbol	Min	Мах	Unit
209	Dn/DQMn output setup with respect to DQSn ³	^t ddkhds, ^t ddklds	$0.25 imes t_{CK} - 750$	_	ps
210	Dn/DQMn output hold with respect to DQSn ³	t _{DDKHDX,} t _{DDKLDX}	$0.25 imes t_{CK} - 750$	_	ps
211	DQSn preamble start ⁴	t _{DDKHMP}	$-0.25 \times t_{CK}$	_	ps
212	DQSn epilogue end ⁵	t _{DDKHME}	-600	600	ps

Table 18. DDR DRAM Output AC Timing (continued)

Notes: 1. All CK/\overline{CK} referenced measurements are made from the crossing of the two signals ± 0.1 V.

2. t_{DDKHMH} can be modified through the TCFG2[WRDD] DQSS override bits. The DRAM requires that the first write data strobe arrives 75–125% of a DRAM cycle after the write command is issued. Any skew between DQSn and CK must be considered when trying to achieve this 75%–125% goal. The TCFG2[WRDD] bits can be used to shift DQSn by 1/4 DRAM cycle increments. The skew in this case refers to an internal skew existing at the signal connections. By default, the CK/CK crossing occurs in the middle of the control signal (An/RAS/CAS/WE/CKE) tenure. Setting TCFG2[ACSM] bit shifts the control signal assertion 1/2 DRAM cycle earlier than the default timing. This means that the signal is asserted no earlier than 600 ps before the CK/CK crossing and no later than 600 ps after the crossing time; the device uses 1200 ps of the skew budget (the interval from –600 to +600 ps). Timing is verified by referencing the falling edge of CK. See Chapter 10 of the MSC711x Reference Manual for details.

3. Determined by maximum possible skew between a data strobe (DQS) and any corresponding bit of data. The data strobe should be centered inside of the data eye.

4. Please note that this spec is in reference to the DQSn first rising edge. It could also be referenced from CK(r), but due to programmable delay of the write strobes (TCFG2[WRDD]), there pre-amble may be extended for a full DRAM cycle. For this reason, we reference from DQSn.

5. All outputs are referenced to the rising edge of CK. Note that this is essentially the CK/DQSn skew in spec 208. In addition there is no real "maximum" time for the epilogue end. JEDEC does not require this is as a device limitation, but simply for the chip to guarantee fast enough write-to-read turn-around times. This is already guaranteed by the memory controller operation.

Figure 6 shows the DDR DRAM output timing diagram.

Figure 6. DDR DRAM Output Timing Diagram

rical Characteristics

2.5.6.2 Transmit Signal Timing

No.	Characteristics	Min	Max	Unit
800	Transmit clock period: • MII: TXCLK • RMII: REFCLK	40 20		ns ns
801	Transmit clock pulse width high—as a percent of clock period • MII: RXCLK • RMII: REFCLK	35 14 7	65 — —	% ns ns
802	Transmit clock pulse width low—as a percent of clock period: • MII: RXCLK • RMII: REFCLK	35 14 7	65 — —	% ns ns
805	Transmit clock to TXDn, TX_EN, TX_ER invalid	4	—	ns
806	Transmit clock to TXDn, TX_EN, TX_ER valid	—	14	ns

Figure 11. Ethernet Receive Signal Timing

2.5.6.3 Asynchronous Input Signal Timing

Table 23. Asynchronous Input Signal Timing

No.	Characteristics	Min	Max	Unit
807	 MII: CRS and COL minimum pulse width (1.5 × TXCLK period) RMII: CRS_DV minimum pulse width (1.5 x REFCLK period) 	60 30		ns ns

Figure 12. Asynchronous Input Signal Timing

2.5.6.4 Management Interface Timing

No.	Characteristics	Min	Max	Unit
808	MDC period	400	—	ns
809	MDC pulse width high	160	-	ns
810	MDC pulse width low	160	-	ns
811	MDS falling edge to MDIO output invalid (minimum propagation delay)	0	—	ns
812	MDS falling edge to MDIO output valid (maximum propagation delay)	_	15	ns
813	MDIO input to MDC rising edge setup time	10	_	ns
814	MDC rising edge to MDIO input hold time	10	_	ns

Figure 13. Serial Management Channel Timing

2.5.7 HDI16 Signals

Table 25. Host Interface	(HDI16)	Timing ^{1, 2}
--------------------------	---------	------------------------

No.	Characteristics ³	Expression	Value	Unit		
40	Host Interface Clock period	T _{CORE}	Note 1	ns		
44a	Read data strobe minimum assertion width ⁴ HACK read minimum assertion width	2.0 × T _{CORE} + 9.0	Note 11	ns		
44b	Read data strobe minimum deassertion width ⁴ HACK read minimum deassertion width	$1.5 \times T_{CORE}$	Note 11	ns		
44c	Read data strobe minimum deassertion width ⁴ after "Last Data Register" reads ^{5,6} , or between two consecutive CVR, ICR, or ISR reads ⁷ HACK minimum deassertion width after "Last Data Register" reads ^{5,6}	$2.5 \times T_{CORE}$	Note 11	ns		
45	Write data strobe minimum assertion width ⁸ HACK write minimum assertion width	$1.5 \times T_{CORE}$	Note 11	ns		
46	Write data strobe minimum deassertion width ⁸ HACK write minimum deassertion width after ICR, CVR and Data Register writes ⁵	2.5 × T _{CORE}	Note 11	ns		
47	Host data input minimum setup time before write data strobe deassertion ⁸ Host data input minimum setup time before HACK write deassertion	_	2.5	ns		
48	Host data input minimum hold time after write data strobe deassertion ⁸ Host data input minimum hold time after HACK write deassertion	_	2.5	ns		
49	Read data strobe minimum assertion to output data active from high <u>imped</u> ance ⁴ HACK read minimum assertion to output data active from high impedance	_	1.0	ns		
50	Read data strobe maximum assertion to output data valid ⁴	(2.0 × TCORF) + 8.0	Note 11	ns		
51	Read data strobe maximum deassertion to output data high impedance ⁴ HACK read maximum deassertion to output data high impedance		9.0	ns		
52	Output data minimum hold time after read data strobe deassertion ⁴ Output data minimum hold time after HACK read deassertion	_	1.0	ns		
53	HCS[1–2] minimum assertion to read data strobe assertion ⁴	0.5	ns			
54	HCS[1-2] minimum assertion to write data strobe assertion ⁸ — 0.0 ns					
55	HCS[1–2] maximum assertion to output data valid $(2.0 \times T_{CORE}) + 6.0$ Note 11 ns					
56	HCS[1–2] minimum hold time after data strobe deassertion ⁹ – 0.5 ns					
57	HA[0–2], HRW minimum setup time before data strobe assertion ⁹	—	5.0	ns		
58	HA[0–2], HRW minimum hold time after data strobe deassertion ⁹	—	5.0	ns		
61	Maximum delay from read data strobe deassertion to host request deassertion for "Last Data Register" read ^{4, 5, 10}	$(3.0 \times T_{CORE}) + 6.0$	Note 11	ns		
62	Maximum delay from write data strobe deassertion to host request deassertion for "Last Data Register" write ^{5,8,10}	(3.0 × T _{CORE}) + 6.0	Note 11	ns		
63	Minimum delay from DMA \overline{HACK} (OAD=0) or Read/Write data strobe(OAD=1) deassertion to \overline{HREQ} assertion.	(2.0 × T _{CORE}) + 1.0	Note 11	ns		
64	Maximum delay from DMA HACK (OAD=0) or Read/Write data strobe(OAD=1) assertion to HREQ deassertion	(5.0 × T _{CORE}) + 6.0	Note 11	ns		
Notes:	 T_{CORE} = core clock period. At 300 MHz, T_{CORE} = 3.333 ns. In the timing diagrams below, the controls pins are drawn as active low V_{DD} = 3.3 V ± 0.15 V; T_J = -40°C to +105 °C, C_L = 30 pF for maximum The read data strobe is HRD/HRD in the dual data strobe mode and H For 64-bit transfers, the "last data register" is the register at address 0x transfers. This is RX0/TX0 in the little endian mode (HBE = 0), or RX3/ This timing is applicable only if a read from the "last data register" is fol policing RXDE or HEEO bits or unviting for the consertion of the <u>UPEO</u> " 	w. The pin polarity is progr delay timings and $C_L = 0$ DS/HDS in the single data 7, which is the last locatio TX3 in the big endian mo- lowed by a read from the UPEO signal	ammable. pF for minimum dela a strobe mode. n to be read or writte de (HBE = 1). RX[0–3] registers wi	en in data thout first		

7. This timing is applicable only if two consecutive reads from one of these registers are executed.

8. The write data strobe is HWR in the dual data strobe mode and HDS in the single data strobe mode.

9. The data strobe is host read (HRD/HRD) or host write (HWR/HWR) in the dual data strobe mode and host data strobe (HDS/HDS) in the single data strobe mode.

10. The host request is HREQ/HREQ in the single host request mode and HRRQ/HRRQ and HTRQ/HTRQ in the double host request mode. HRRQ/HRRQ is deasserted only when HOTX fifo is empty, HTRQ/HTRQ is deasserted only if HORX fifo is full

11. Compute the value using the expression.

12. The read and write data strobe minimum deassertion width for non-"last data register" accesses in single and dual data strobe modes is based on timings 57 and 58.

2.5.8 I²C Timing

No.		Fast		
		Min	Мах	Unit
450	SCL clock frequency	0	400	kHz
451	Hold time START condition	(SCL clock period/2) – 0.3		μs
452	SCL low period	(SCL clock period/2) – 0.3		μs
453	SCL high period	(SCL clock period/2) – 0.1		μs
454	Repeated START set-up time (not shown in figure)	$2 \times 1/F_{BCK}$		μs
455	Data hold time	0	_	μs
456	Data set-up time	250		ns
457	SDA and SCL rise time	—	700	ns
458	SDA and SCL fall time	—	300	ns
459	Set-up time for STOP	(SCL clock period/2) - 0.7		μs
460	Bus free time between STOP and START	(SCL clock period/2) - 0.3		μs
Note:	SDA set-up time is referenced to the rising edge of SCL. SD on SDA and SCL is 400 pF.	A hold time is referenced to the	falling edge of SCL. Load cap	acitance

Table 26. I²C Timing

Figure 20. I²C Timing Diagram

NP

ware Design Considerations

3.2 **Power Supply Design Considerations**

This section outlines the MSC7116 power considerations: power supply, power sequencing, power planes, decoupling, power supply filtering, and power consumption. It also presents a recommended power supply design and options for low-power consumption. For information on AC/DC electrical specifications and thermal characteristics, refer to **Section 2**.

3.2.1 Power Supply

The MSC7116 requires four input voltages, as shown in Table 32.

Voltage	Symbol	Value
Core	V _{DDC}	1.2 V
Memory	V _{DDM}	2.5 V
Reference	V _{REF}	1.25 V
I/O	V _{DDIO}	3.3 V

Table 32. MSC7116 Voltages

You should supply the MSC7116 core voltage via a variable switching supply or regulator to allow for compatibility with possible core voltage changes on future silicon revisions. The core voltage is supplied with 1.2 V (+5% and -10%) across V_{DDC} and GND and the I/O section is supplied with 3.3 V (\pm 10%) across V_{DDIO} and GND. The memory and reference voltages supply the DDR memory controller block. The memory voltage is supplied with 2.5 V across V_{DDM} and GND. The reference voltage is supplied across V_{REF} and GND and must be between 0.49 × V_{DDM} and 0.51 × V_{DDM}. Refer to the JEDEC standard JESD8 (*Stub Series Terminated Logic for 2.5 Volts* (STTL_2)) for memory voltage supply requirements.

3.2.2 Power Sequencing

One consequence of multiple power supplies is that the voltage rails ramp up at different rates when power is initially applied. The rates depend on the power supply, the type of load on each power supply, and the way different voltages are derived. It is extremely important to observe the power up and power down sequences at the board level to avoid latch-up, forward biasing of ESD devices, and excessive currents, which all lead to severe device damage.

Note: There are five possible power-up/power-down sequence cases. The first four cases listed in the following sections are recommended for new designs. The fifth case is not recommended for new designs and must be carefully evaluated for current spike risks based on actual information for the specific application.

3.2.2.1 Case 1

The power-up sequence is as follows:

- 1. Turn on the V_{DDIO} (3.3 V) supply first.
- 2. Turn on the V_{DDC} (1.2 V) supply second.
- 3. Turn on the V_{DDM} (2.5 V) supply third.
- 4. Turn on the V_{REF} (1.25 V) supply fourth (last).

The power-down sequence is as follows:

- 1. Turn off the V_{REF} (1.25 V) supply first.
- 2. Turn off the V_{DDM} (2.5 V) supply second.
- 3. Turn off the V_{DDC} (1.2 V) supply third.
- 4. Turn of the V_{DDIO} (3.3 V) supply fourth (last).

Use the following guidelines:

- Make sure that the time interval between the ramp-down of V_{DDIO} and V_{DDC} is less than 10 ms.
- Make sure that the time interval between the ramp-up or ramp-down for V_{DDC} and V_{DDM} is less than 10 ms for power-up and power-down.
- Refer to **Figure 30** for relative timing for power sequencing case 1.

Time Figure 30. Voltage Sequencing Case 1

BM[3–0]	Boot Port	Input Clock Frequency	Clock Divide	PLL	CKSEL	RNG Bit	Core Clock Frequency	Comments
HDI Boot Me	odes							
0000	HDI16	< F _{max}	N/A	N/A	00	0	< F _{max}	Not clocked by the PLL. Can boot as 8- or 16-bit HDI.
0101	HDI16	22.2-25 MHz	1	12	11	1	266–300 MHz	Can boot as 8- or 16-bit HDI.
0010	HDI16	25-33.3 MHz	2	32	01	1	200–266 MHz	
0111	HDI16	33-66 MHz	3	12	11	1	132–264 MHz	
0100	HDI16	44.3-50 MHz	2	12	11	1	266–300 MHz	
SPI Boot Mo	odes - Using H	A3, HCS2, BM3, I	BM2 Pins					
1000	SPI (SW)	< F _{max}	N/A	N/A	00	0	< F _{max}	The boot program automatically
1001	SPI (SW)	15.6-25 MHz	1	17	11	0	133–212.5 MHz	determines whether EEPROM
1010	SPI (SW)	33-50 MHz	2	16	11	0	132–200 MHz	or Flash memory.
1011	SPI (SW)	44.3-75 MHz	3	18	11	0	133–225 MHz	
SPI Boot Mo	odes - Using U	RXD, UTXD, SCL	., SDA Pins	;				
1100	SPI (SW)	< F _{max}	N/A	N/A	00	0	< F _{max}	Boots through different set of pins.
I ² C Boot Mo	des	•			•			•
0001	I ² C	< 100 MHz	N/A	N/A	00	0	< 100 MHz	Not clocked by the PLL. I^2C is limited to a maximum bit rate of 400 Kbps. With a clock divider of 128, this limits the maximum input clock frequency to 100 MHz.
Reserved								
0011	Reserved	—	—		_	_	_	—
0110	Reserved	—	—	_	—	_	—	—
1101	Reserved	—	—	_	—	_	—	—
1110	Reserved	_	—	_	-	—	_	—
1111	Reserved	_	—	_	-	—	_	—
Notes: 1. 2.	The clock of The clock r	divider determines multiplier determin	the value ues the value	used in the	e clock modu the clock mo	ule CLKC	TRL[PLLDVF] field. (CTRL[PLLMLTF] fie	ld.

3. F_{max} is determined by the maximum frequency of the peripheral and of the SC1400 core as specified in the data sheet.

3.4.3 Boot

After a power-on reset, the PLL is bypassed and the device is directly clocked from the CLKIN pin. Thus, the device operates slowly during the boot process. After the boot program is loaded, it can enable the PLL and start the device operating at a higher speed. The MSC7116 can boot from an external host through the HDI16 or download a user program through the I²C port. The boot operating mode is set by configuring the BM[0–3] signals sampled at the rising edge of PORESET, as shown in **Table 35**. See the *MSC711x Reference Manual* for details of boot program operation.

3.4.3.1 HDI16 Boot

If the MSC7116 device boots from an external host through the HDI16, the port is configured as follows:

- Operate in Non-DMA mode.
- Operate in polled mode on the device side.
- Operate in polled mode on the external host side.
- External host must write four 16-bit values at a time with the first word as the most significant and the fourth word as the least significant.

When booting from a power-on reset, the HDI16 is additionally configurable as follows:

- 8- or 16-bit mode as specified by the H8BIT pin.
- Data strobe as specified by the HDSP and HDDS pins.

These pins are sampled only on the deassertion of power-on reset. During a boot from a hard reset, the configuration of these pins is unaffected.

Note: When the HDI16 is used for booting or other purposes, bit 0 is the least significant bit and not the most significant bit as for other DSP products.

3.4.3.2 I²C Boot

When the MSC7116 device is configured to boot from the I^2C port, the boot program configures the GPIO pins for I^2C operation. Then the MSC7116 device initiates accesses to the I^2C module, downloading data to the MSC7116 device. The I^2C interface is configured as follows:

- PLL is disabled and bypassed so that the I^2C module is clocked with the IPBus clock.
- I²C interface operates in master mode and polling is used.
- EPROM operates in slave mode.
- Clock divider is set to 128.
- Address of slave during boot is 0xA0.

The IPBus clock is internally divided to generate the bit clock, as follows:

- CLKIN must be a maximum of 100 MHz
- PLL is bypassed.
- IPBus clock = CLKIN/2 is a maximum of 50 MHz.
- I²C bit clock must be less than or equal to:
 - IPBus clock/I²C clock divider
 - 50 MHz (max)/128
 - 390.6 KHz

This satisfies the maximum clock rate requirement of 400 kbps for the I^2C interface. For details on the boot procedure, see the "Boot Program" chapter of the *MSC711x Reference Manual*.

3.4.3.3 SPI Boot

When the MSC7116 device is configured to boot from the SPI port, the boot program configures the GPIO pins for SPI operation. Then the MSC7116 device initiates accesses to the SPI module, downloading data to the MSC7116 device. When the SPI routines run in the boot ROM, the MSC7116 is always configured as the SPI master. Booting through the SPI is supported for serial EEPROM devices and serial Flash devices. When a READ_ID instruction is issued to the serial memory device and the device returns a value of 0x00 or 0xFF, the routines for accessing a serial EEPROM are used, at a maximum frequency of 4 Mbps. Otherwise, the routines for accessing a serial Flash are used, and they can run at faster speeds. Booting is performed through one of two sets of pins:

- Main set: BM[2-3], HA3, and HCS2, which allow use of the PLL.
- Alternate set: UTXD, URXD, SDA, and SCL, which cannot be used with the PLL.

In either configuration, an error during SPI boot is flagged on the EVNT3 pin. For details on the boot procedure, see the "Boot Program" chapter of the *MSC711x Reference Manual*.

ware Design Considerations

3.5 DDR Memory System Guidelines

MSC7116 devices contain a memory controller that provides a glueless interface to external double data rate (DDR) SDRAM memory modules with Class 2 Series Stub Termination Logic 2.5 V (SSTL_2). There are two termination techniques, as shown in Figure 36. Technique B is the most popular termination technique.

Figure 36. SSTL Termination Techniques

Figure 37 illustrates the power wattage for the resistors. Typical values for the resistors are as follows:

- $RS = 22 \Omega$
- $RT = 24 \Omega$

3.6 Connectivity Guidelines

This section summarizes the connections and special conditions, such as pull-up or pull-down resistors, for the MSC7116 device. Following are guidelines for signal groups and configuration settings:

- Clock and reset signals.
 - SWTE is used to configure the MSC7116 device and is sampled on the deassertion of PORESET, so it should be tied to V_{DDC} or GND either directly or through pull-up or pull-down resistors until PORESET is deasserted. After PORESET, this signal can be left floating.
 - BM[0–1] configure the MSC7116 device and are sampled until PORESET is deasserted, so they should be tied to V_{DDIO} or GND either directly or through pull-up or pull-down resistors.
 - **HRESET** should be pulled up.
- *Interrupt signals*. When used, **IRQ** pins must be pulled up.
- HDI16 signals.
 - When they are configured for open-drain, the HREQ/HREQ or HTRQ/HTRQ signals require a pull-up resistor. However, these pins are also sampled at power-on reset to determine the HDI16 boot mode and may need to be pulled down. When these pins must be pulled down on reset and pulled up otherwise, a buffer can be used with the HRESET signal as the enable.
 - When the device boots through the HDI16, the HDDS, HDSP and H8BIT pins should be pulled up or down, depending on the required boot mode settings.
- Ethernet MAC/TDM2 signals. The MDIO signal requires an external pull-up resistor.
- I^2C signals. The SCL and SDA signals, when programmed for I^2C , requires an external pull-up resistor.
- *General-purpose I/O (GPIO) signals*. An unused GPIO pin can be disconnected. After boot, program it as an output pin.
- Other signals.
 - The $\overline{\text{TEST0}}$ pin must be connected to ground.
 - The TPSEL pin should be pulled up to enable debug access via the EOnCE port and pulled down for boundary scan.
 - Pins labelled NO CONNECT (NC) must not be connected.
 - When a 16-pin double data rate (DDR) interface is used, the 16 unused data pins should be no connects (floating) if the used lines are terminated.
 - Do not connect DBREQ to DONE (as you would for the MSC8101 device). Connect DONE to one of the EVNT pins, and DBREQ to HRRQ.

4 Ordering Information

Consult a Freescale Semiconductor sales office or authorized distributor to determine product availability and place an order.

Part	Supply Voltage	Package Type	Pin Count	Core Frequency (MHz)	Solder Spheres	Order Number
MSC7116	1.2 V core	Molded Array Process-Ball Grid	400	266	Lead-free	MSC7116VM1000
	3.3 V I/O				Lead-bearing	MSC7116VF1000

7 Revision History

Table 36 provides a revision history for this data sheet.

Table 36. Document Revision History

Revision	Date	Description
0	Apr 2004	Initial public release.
1	May 2004	Added ordering information and new package options.
2	Aug. 2004	 Updated clock parameter values. Updated DDR timing specifications. Updated I²C timing specifications.
3	Sep. 2004	 Updated Figures 1-2 and 1-2 to correct HDSP and DBREQ. Corrected EE0 port reference. Updated ball location for HDSP.
4	Jan. 2005	 Added signal HA3. Updated absolute maximum ratings, DDR DRAM capacitance specifications, clock parameters, reset timing, and TDM timing. Added note for timing reference for I²C interface. Expanded GPIO timing information. Corrected pin T20 and K20 signal designation. Corrected signal names to GPAO15 and IRQ2. Expanded design guidelines in Chapter 4.
5	Mar. 2005	 Updated features list. Updated power specifications. Changed CLKIN frequency range. Added clock configuration information. Updated JTAG timings.
6	Apr. 2005	• Added recommended power supply ratings and updated equations to estimate power consumption.
7	Oct. 2005	Updated core and total power consumption examples.
8	Dec. 2005	Added information about the new mask set 1M88B. Affected all sections.
9	Nov. 2006	 Updated arrows in Host DMA Writing Timing figure. Updated boot overview in Section 4.4.3.
10	Apr. 2007	 Removed erroneous references to V_{CCSYN} and V_{CCSYN1}.
11	Jul. 2007	 Updated to new data sheet format. Reorganized and renumbered sections, figures, and tables. Removed all references to obsolete mask set 1L44X and corresponding specification values. Added a note to clarify the definition of TCK timing 700 in new Table 31. Reworked reset and boot sections. Expanded I²C boot information and added SPI boot information. Removed obsolete part numbers.
12	Aug 2007	• The power-up and power-down sequences described in Section 3.2 starting on page 42 have been expanded to five possible design scenarios/cases. These cases replace the previously recommended power-up/power-down sequence recommendations. Section 3.2 has been clarified by adding subsection headings.
13	Apr 2008	• Change the PLL filter resistor from 20 Ω to 2 Ω in Section 3.2.5.