E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	e200z0h
Core Size	32-Bit Single-Core
Speed	64MHz
Connectivity	CANbus, FlexRay, LINbus, SPI, UART/USART
Peripherals	DMA, POR, PWM, WDT
Number of I/O	68
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	64K x 8
RAM Size	40K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 30x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5604pef1mll6r

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

For high priority interrupt requests, the time from the assertion of the interrupt request from the peripheral to when the processor is executing the interrupt service routine (ISR) has been minimized. The INTC provides a unique vector for each interrupt request source for quick determination of which ISR has to be executed. It also provides a wide number of priorities so that lower priority ISRs do not delay the execution of higher priority ISRs. To allow the appropriate priorities for each source of interrupt request, the priority of each interrupt request is software configurable.

When multiple tasks share a resource, coherent accesses to that resource need to be supported. The INTC supports the priority ceiling protocol (PCP) for coherent accesses. By providing a modifiable priority mask, the priority can be raised temporarily so that all tasks which share the same resource can not preempt each other.

The INTC provides the following features:

- Unique 9-bit vector for each separate interrupt source
- 8 software triggerable interrupt sources
- 16 priority levels with fixed hardware arbitration within priority levels for each interrupt source
- Ability to modify the ISR or task priority: modifying the priority can be used to implement the Priority Ceiling Protocol for accessing shared resources.
- 2 external high priority interrupts directly accessing the main core and I/O processor (IOP) critical interrupt mechanism

1.5.7 System status and configuration module (SSCM)

The system status and configuration module (SSCM) provides central device functionality.

The SSCM includes these features:

- System configuration and status
 - Memory sizes/status
 - Device mode and security status
 - Determine boot vector
 - Search code flash for bootable sector
 - DMA status
 - Debug status port enable and selection
- Bus and peripheral abort enable/disable

1.5.8 System clocks and clock generation

The following list summarizes the system clock and clock generation on the MPC5604P:

- Lock detect circuitry continuously monitors lock status
- Loss of clock (LOC) detection for PLL outputs
- Programmable output clock divider (÷1, ÷2, ÷4, ÷8)
- FlexPWM module and eTimer module can run on an independent clock source
- On-chip oscillator with automatic level control
- Internal 16 MHz RC oscillator for rapid start-up and safe mode: supports frequency trimming by user application

1.5.9 Frequency-modulated phase-locked loop (FMPLL)

The FMPLL allows the user to generate high speed system clocks from a 4–40 MHz input clock. Further, the FMPLL supports programmable frequency modulation of the system clock. The PLL multiplication factor, output clock divider ratio are all software configurable.

The PLL has the following major features:

• Input clock frequency: 4–40 MHz

- 32 message buffers of up to 8-bytes data length
- · Each message buffer configurable as Rx or Tx, all supporting standard and extended messages
- Programmable loop-back mode supporting self-test operation
- 3 programmable mask registers
- · Programmable transmit-first scheme: lowest ID or lowest buffer number
- Time stamp based on 16-bit free-running timer
- Global network time, synchronized by a specific message
- Maskable interrupts
- Independent of the transmission medium (an external transceiver is assumed)
- High immunity to EMI
- Short latency time due to an arbitration scheme for high-priority messages
- Transmit features
 - Supports configuration of multiple mailboxes to form message queues of scalable depth
 - Arbitration scheme according to message ID or message buffer number
 - Internal arbitration to guarantee no inner or outer priority inversion
 - Transmit abort procedure and notification
- Receive features
 - Individual programmable filters for each mailbox
 - 8 mailboxes configurable as a six-entry receive FIFO
 - 8 programmable acceptance filters for receive FIFO
- Programmable clock source
 - System clock
 - Direct oscillator clock to avoid PLL jitter

1.5.21 Safety port (FlexCAN)

The MPC5604P MCU has a second CAN controller synthesized to run at high bit rates to be used as a safety port. The CAN module of the safety port provides the following features:

- Identical to the FlexCAN module
- Bit rate as fast as 7.5 Mbit/s at 60 MHz CPU clock using direct connection between CAN modules (no physical transceiver required)
- 32 message buffers of up to 8 bytes data length
- Can be used as a second independent CAN module

1.5.22 FlexRay

The FlexRay module provides the following features:

- Full implementation of FlexRay Protocol Specification 2.1
- 32 configurable message buffers can be handled
- Dual channel or single channel mode of operation, each as fast as 10 Mbit/s data rate
- Message buffers configurable as Tx, Rx or RxFIFO
- Message buffer size configurable
- Message filtering for all message buffers based on FrameID, cycle count and message ID
- Programmable acceptance filters for RxFIFO message buffers

Table 5. Pin muxing

	Pad					Pad s	peed ⁵	Pin	No.
Port pin	configuration register (PCR)	Alternate function ^{1,2}	Functions	Peripheral ³	I/O direction ⁴	SRC = 0	SRC = 1	100-pin	144-pin
				Port A (16-bit)				•	
A[0]	PCR[0]	ALT0 ALT1 ALT2 ALT3 —	GPIO[0] ETC[0] SCK F[0] EIRQ[0]	SIUL eTimer_0 DSPI_2 FCU_0 SIUL	1/0 1/0 0 1	Slow	Medium	51	73
A[1]	PCR[1]	ALT0 ALT1 ALT2 ALT3 —	GPIO[1] ETC[1] SOUT F[1] EIRQ[1]	SIUL eTimer_0 DSPI_2 FCU_0 SIUL	/O /O 0 	Slow	Medium	52	74
A[2] ⁶	PCR[2]	ALT0 ALT1 ALT2 ALT3 — — —	GPIO[2] ETC[2] — A[3] SIN ABS[0] EIRQ[2]	SIUL eTimer_0 — FlexPWM_0 DSPI_2 MC_RGM SIUL	/O /O - 	Slow	Medium	57	84
A[3] ⁶	PCR[3]	ALT0 ALT1 ALT2 ALT3 —	GPIO[3] ETC[3] CS0 B[3] ABS[2] EIRQ[3]	SIUL eTimer_0 DSPI_2 FlexPWM_0 MC_RGM SIUL	/O /O /O 0 	Slow	Medium	64	92
A[4] ⁶	PCR[4]	ALT0 ALT1 ALT2 ALT3 —	GPIO[4] ETC[0] CS1 ETC[4] FAB EIRQ[4]	SIUL eTimer_1 DSPI_2 eTimer_0 MC_RGM SIUL	/O /O 0 /O 	Slow	Medium	75	108
A[5]	PCR[5]	ALT0 ALT1 ALT2 ALT3 —	GPIO[5] CS0 ETC[5] CS7 EIRQ[5]	SIUL DSPI_1 eTimer_1 DSPI_0 SIUL	/O /O /O 0 	Slow	Medium	8	14
A[6]	PCR[6]	ALT0 ALT1 ALT2 ALT3 —	GPIO[6] SCK — — EIRQ[6]	SIUL DSPI_1 — SIUL	/O /O 	Slow	Medium	2	2
A[7]	PCR[7]	ALT0 ALT1 ALT2 ALT3 —	GPIO[7] SOUT — EIRQ[7]	SIUL DSPI_1 — SIUL	/O O — I	Slow	Medium	4	10

	Pad					Pad s	peed ⁵	Pin	No.
Port pin	configuration register (PCR)	Alternate function ^{1,2}	Functions	Peripheral ³	I/O direction ⁴	SRC = 0	SRC = 1	100-pin	144-pin
B[10]	PCR[26]	ALT0 ALT1 ALT2 ALT3 —	GPIO[26] — — — AN[12]	SIUL — — ADC_0 / ADC_1	Input only	_	_	36	53
B[11]	PCR[27]	ALT0 ALT1 ALT2 ALT3 —	GPIO[27] — — — AN[13]	SIUL — — ADC_0 / ADC_1	Input only		_	37	54
B[12]	PCR[28]	ALT0 ALT1 ALT2 ALT3 —	GPIO[28] AN[14]	SIUL — — ADC_0 / ADC_1	Input only	_	_	38	55
B[13]	PCR[29]	ALT0 ALT1 ALT2 ALT3 —	GPIO[29] — — — AN[0] RXD	SIUL — — ADC_1 LIN_1	Input only	_	_	42	60
B[14]	PCR[30]	ALT0 ALT1 ALT2 ALT3 — — —	GPIO[30] — — AN[1] ETC[4] EIRQ[19]	SIUL — — ADC_1 eTimer_0 SIUL	Input only		_	44	64
B[15]	PCR[31]	ALT0 ALT1 ALT2 ALT3 — —	GPIO[31] — — — AN[2] EIRQ[20]	SIUL — — ADC_1 SIUL	Input only	_	_	43	62
				Port C (16-bit)				•	
C[0]	PCR[32]	ALT0 ALT1 ALT2 ALT3 —	GPIO[32] — — — AN[3]	SIUL — — — ADC_1	Input only	_		45	66
C[1]	PCR[33]	ALT0 ALT1 ALT2 ALT3 —	GPIO[33] — — — AN[2]	SIUL — — — ADC_0	Input only	_		28	41

 Table 5. Pin muxing (continued)

	Pad					Pad s	speed ⁵	Pin	No.
Port pin	configuration register (PCR)	Alternate function ^{1,2}	Functions	Peripheral ³	I/O direction ⁴	SRC = 0	SRC = 1	100-pin	144-pin
C[11]	PCR[43]	ALT0 ALT1 ALT2 ALT3	GPIO[43] ETC[4] CS2 CS0	SIUL eTimer_0 DSPI_2 DSPI_3	I/O I/O O I/O	Slow	Medium	55	80
C[12]	PCR[44]	ALT0 ALT1 ALT2 ALT3	GPIO[44] ETC[5] CS3 CS1	SIUL eTimer_0 DSPI_2 DSPI_3	I/O I/O O	Slow	Medium	56	82
C[13]	PCR[45]	ALT0 ALT1 ALT2 ALT3 —	GPIO[45] ETC[1] — EXT_IN EXT_IN	SIUL eTimer_1 — CTU_0 FlexPWM_0	/O /O 	Slow	Medium	71	101
C[14]	PCR[46]	ALT0 ALT1 ALT2 ALT3	GPIO[46] ETC[2] EXT_TGR —	SIUL eTimer_1 CTU_0 —	I/O I/O O —	Slow	Medium	72	103
C[15]	PCR[47]	ALT0 ALT1 ALT2 ALT3 —	GPIO[47] CA_TR_EN ETC[0] A[1] EXT_IN EXT_SYNC	SIUL FlexRay_0 eTimer_1 FlexPWM_0 CTU_0 FlexPWM_0	I/O O I/O O I I	Slow	Symmetric	85	124
				Port D (16-bit)	1		1		
D[0]	PCR[48]	ALT0 ALT1 ALT2 ALT3	GPIO[48] CA_TX ETC[1] B[1]	SIUL FlexRay_0 eTimer_1 FlexPWM_0	I/O O I/O O	Slow	Symmetric	86	125
D[1]	PCR[49]	ALT0 ALT1 ALT2 ALT3 —	GPIO[49] — ETC[2] EXT_TRG CA_RX	SIUL — eTimer_1 CTU_0 FlexRay_0	₩ 10 10 -	Slow	Medium	3	3
D[2]	PCR[50]	ALT0 ALT1 ALT2 ALT3 —	GPIO[50] — ETC[3] X[3] CB_RX	SIUL — eTimer_1 FlexPWM_0 FlexRay_0	/O /O /O 	Slow	Medium	97	140
D[3]	PCR[51]	ALT0 ALT1 ALT2 ALT3	GPIO[51] CB_TX ETC[4] A[3]	SIUL FlexRay_0 eTimer_1 FlexPWM_0	I/O O I/O O	Slow	Symmetric	89	128

 Table 5. Pin muxing (continued)

	Pad					Pad s	peed ⁵	Pin	No.
Port pin	configuration register (PCR)	Alternate function ^{1,2}	Functions	Peripheral ³	I/O direction ⁴	SRC = 0	SRC = 1	100-pin	144-pin
G[3]	PCR[99]	ALT0 ALT1 ALT2 ALT3	GPIO[99] A[2] — —	SIUL FlexPWM_0 —	I/O O —	Slow	Medium	_	104
G[4]	PCR[100]	ALT0 ALT1 ALT2 ALT3	GPIO[100] B[2] — —	SIUL FlexPWM_0 	I/O O —	Slow	Medium		100
G[5]	PCR[101]	ALT0 ALT1 ALT2 ALT3	GPIO[101] X[3] — —	SIUL FlexPWM_0 —	I/O I/O —	Slow	Medium	—	85
G[6]	PCR[102]	ALT0 ALT1 ALT2 ALT3	GPIO[102] A[3] — —	SIUL FlexPWM_0 	I/O O —	Slow	Medium		98
G[7]	PCR[103]	ALT0 ALT1 ALT2 ALT3	GPIO[103] B[3] — —	SIUL FlexPWM_0 —	I/O O —	Slow	Medium	—	83
G[8]	PCR[104]	ALT0 ALT1 ALT2 ALT3 —	GPIO[104] — — — FAULT[0]	SIUL — — FlexPWM_0	/O 	Slow	Medium		81
G[9]	PCR[105]	ALT0 ALT1 ALT2 ALT3 —	GPIO[105] — — FAULT[1]	SIUL — — FlexPWM_0	I/O — — — —	Slow	Medium		79
G[10]	PCR[106]	ALT0 ALT1 ALT2 ALT3 —	GPIO[106] — — FAULT[2]	SIUL — — FlexPWM_0	/O 	Slow	Medium	_	77
G[11]	PCR[107]	ALT0 ALT1 ALT2 ALT3 —	GPIO[107] — — FAULT[3]	SIUL — — — FlexPWM_0	I/O — — — —	Slow	Medium		75

 Table 5. Pin muxing (continued)

¹ ALT0 is the primary (default) function for each port after reset.

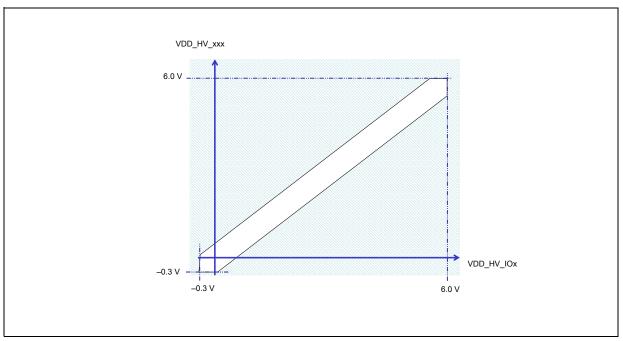


Figure 4. Power supplies constraints (–0.3 V \leq V_{DD_HV_IOx} \leq 6.0 V)

The MPC5604P supply architecture allows of having ADC supply managed independently from standard V_{DD_HV} supply. Figure 5 shows the constraints of the ADC power supply.

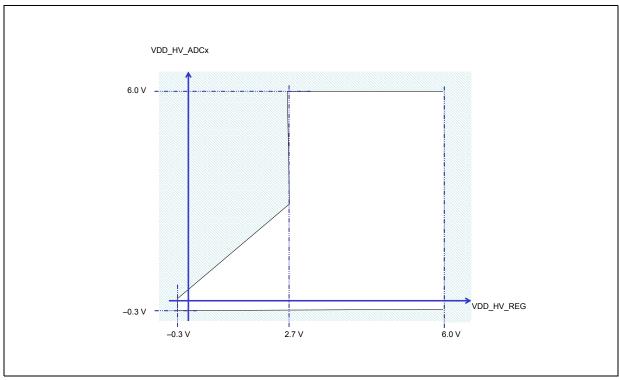


Figure 5. Independent ADC supply (–0.3 V \leq V_{DD_HV_REG} \leq 6.0 V)

- ⁴ To be connected to emitter of external NPN. Low voltage supplies are not under user control—they are produced by an on-chip voltage regulator—but for the device to function properly the low voltage grounds (V_{SS_LV_xxx}) must be shorted to high voltage grounds (V_{SS_HV_xxx}) and the low voltage supply pins (V_{DD_LV_xxx}) must be connected to the external ballast emitter.
- $^5~$ The low voltage supplies (V_{DD_LV_xxx}) are not all independent.
 - $V_{DD_LV_COR1}$ and $V_{DD_LV_COR2}$ are shorted internally via double bonding connections with lines that provide the low voltage supply to the data flash module. Similarly, $V_{SS_LV_COR1}$ and $V_{SS_LV_COR2}$ are internally shorted.
 - $V_{DD_LV_REGCOR}$ and $V_{DD_LV_REGCORx}$ are physically shorted internally, as are $V_{SS_LV_REGCOR}$ and $V_{SS_LV_CORx}$.

Cumhal		Devenueter	Conditions	Val	ue	11
Symbol		Parameter	Conditions	Min	Max ¹	Unit
V _{SS}	SR	Device ground		0	0	V
V _{DD_HV_IOx} ²	SR	3.3 V input/output supply voltage	_	3.0	3.6	V
V _{SS_HV_IOx}	SR	Input/output ground voltage	_	0	0	V
V _{DD_HV_FL}	SR	3.3 V code and data flash	_	3.0	3.6	V
		supply voltage	Relative to V _{DD_HV_IOx}	$V_{DD_HV_IOx} - 0.1$	V _{DD_HV_IOx} + 0.1	
V _{SS_HV_FL}	SR	Code and data flash ground	_	0	0	V
V _{DD_HV_OSC}	SR	3.3 V crystal oscillator amplifier	_	3.0	3.6	V
		supply voltage	Relative to V _{DD_HV_IOx}	$V_{DD_HV_IOx} - 0.1$	V _{DD_HV_IOx} + 0.1	
V _{SS_HV_OSC}	SR	3.3 V crystal oscillator amplifier reference voltage	_	0	0	V
V _{DD_HV_REG}	SR	3.3 V voltage regulator supply	—	3.0	3.6	V
		voltage	Relative to V _{DD_HV_IOx}	$V_{DD_HV_IOx} - 0.1$	V _{DD_HV_IOx} + 0.1	
V _{DD_HV_ADC0} ³	SR	3.3 V ADC_0 supply and high	_	3.0	5.5	V
		reference voltage	Relative to V _{DD_HV_REG}	V _{DD_HV_REG} – 0.1	5.5	
V _{SS_HV_ADC0}	SR	ADC_0 ground and low reference voltage	—	0	0	V
V _{DD_HV_ADC1} ³	SR	3.3 V ADC_1 supply and high	—	3.0	5.5	V
		reference voltage	Relative to V _{DD_HV_REG}	V _{DD_HV_REG} – 0.1	5.5	
V _{SS_HV_ADC1}		ADC_1 ground and low reference voltage	—	0	0	V
V _{DD_LV_REGCOR} 4,5	CC	Internal supply voltage	—	_	_	V

Table 9. Recommended operating conditions (3.3 V)

Figure 6 shows the constraints of the different power supplies.

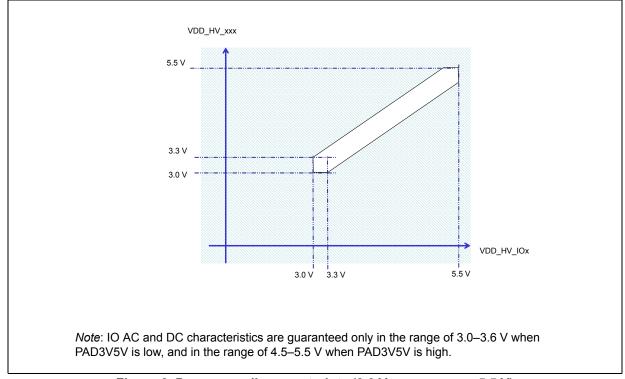


Figure 6. Power supplies constraints (3.0 V \leq V_{DD_HV_IOx} \leq 5.5 V)

The MPC5604P supply architecture allows the ADC supply to be managed independently from the standard V_{DD_HV} supply. Figure 7 shows the constraints of the ADC power supply.

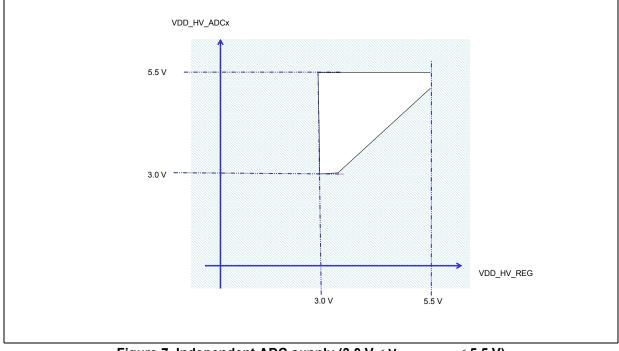


Figure 7. Independent ADC supply (3.0 V \leq V_{DD_HV_REG} \leq 5.5 V)

Symbol	с	Parameter	Conditions	Va	lue	Unit
Symbol	C	Falameter	Conditions	Min	Max	Unit
I _{PD}	Ρ	Equivalent pull-down current	$V_{IN} = V_{IL}$	10	_	μA
			V _{IN} = V _{IH}	_	130	
IIL	Ρ	Input leakage current (all bidirectional ports)	T _A = -40 to 125 °C	-1	1	μA
IIL	Ρ	Input leakage current (all ADC input-only ports)	T _A = -40 to 125 °C	-0.5	0.5	μA
C _{IN}	D	Input capacitance	—	_	10	pF
	D	RESET, equivalent pull-up current	V _{IN} = V _{IL}	–130	_	μA
I _{PU}			V _{IN} = V _{IH}	_	-10	μΛ

Table 19. DC electrical characteristics (5.0 V, NVUSRO[PAD3V5V] = 0) (continued)

¹ "SR" parameter values must not exceed the absolute maximum ratings shown in Table 7.

Table 20. Supply current (5.0 V, NVUSRO[PAD3V5V] = 0)

Symbol	с		Parameter	Conditions		Va	lue	Unit
Gymbol	Ŭ	i didileter		Conditions		Тур	Max	
I _{DD_LV_CORx}	Т		RUN—Maximum mode ¹	V _{DD_LV_CORx}	40 MHz	62	77	mA
				externally forced at 1.3 V	64 MHz	71	88	1
			RUN—Typical mode ²		40 MHz	45	56	1
					64 MHz	52	65	1
	Ρ		RUN—Maximum mode ³	V _{DD_LV_CORx} externally forced at 1.3 V	64 MHz	60	75	
		ent	HALT mode ⁴	V _{DD_LV_CORx} externally forced at 1.3 V	_	1.5	10	
		Supply current	STOP mode ⁵	V _{DD_LV_CORx} externally forced at 1.3 V	_	1	10	
I _{DD_FLASH}	Т	ddng	Flash during read	V _{DD_HV_FL} at 5.0 V	—	10	12	
		0,	Flash during erase operation on 1 flash module	V _{DD_HV_FL} at 5.0 V	_	15	19	
I _{DD_ADC}	Т		ADC—Maximum mode ¹	V _{DD_HV_ADC0} at 5.0 V	ADC_1	3.5	5	-
				V _{DD_HV_ADC1} at 5.0 V f _{ADC} = 16 MHz	ADC_0	3	4	1
			ADC—Typical mode ²		ADC_1	0.8	1	1
					ADC_0	0.005	0.006	1
I _{DD_OSC}	Т		Oscillator	V _{DD_OSC} at 5.0 V	8 MHz	2.6	3.2	1

¹ Maximum mode: FlexPWM, ADCs, CTU, DSPI, LINFlex, FlexCAN, 15 output pins, 1st and 2nd PLL enabled. I/O supply current excluded.

² Typical mode configurations: DSPI, LINFlex, FlexCAN, 15 output pins, 1st PLL only. I/O supply current excluded.

Ded	144	LQFP	100 LQFP			
Pad	Weight 5V	Weight 3.3V	Weight 5V	Weight 3.3V		
PAD[13]	10%	9%	12%	11%		
PAD[82]	10%	9%	—	_		
PAD[22]	10%	9%	13%	12%		
PAD[83]	10%	9%	—	_		
PAD[50]	10%	9%	14%	12%		
PAD[97]	10%	9%	—	_		
PAD[38]	10%	9%	14%	13%		
PAD[14]	9%	8%	14%	13%		
PAD[15]	9%	8%	15%	13%		

Table 24. I/O weight (continued)

Table 25. I/O consumption

Symbol		с	Parameter	Condi	tions ¹		Value		Unit
Gymbol		Ŭ	i arameter	Condi		Min	Тур	Max	onn
I _{SWTSLW} ,2	СС	D	for SLOW	C _L = 25 pF	V _{DD} = 5.0 V ± 10%, PAD3V5V = 0		_	20	mA
			configuration		V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	_	_	16	
I _{SWTMED} ⁽²⁾	СС	D	for MEDIUM	C _L = 25 pF	V _{DD} = 5.0 V ± 10%, PAD3V5V = 0		_	29	mA
			configuration	F	V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	_		17	
I _{SWTFST} ⁽²⁾	СС	D	Dynamic I/O current for FAST	C _L = 25 pF	V _{DD} = 5.0 V ± 10%, PAD3V5V = 0		_	110	mA
			configuration		V _{DD} = 3.3 V ± 10%, PAD3V5V = 1		_	50	
I _{RMSSLW}	СС	D		C _L = 25 pF, 2 MHz	$V_{DD} = 5.0 V \pm 10\%$	_	_	2.3	mA
			I/O current for SLOW configuration	C _L = 25 pF, 4 MHz	PAD3V5V = 0	_	_	3.2	
				C _L = 100 pF, 2 MHz	1		_	6.6	
				C _L = 25 pF, 2 MHz	$V_{DD} = 3.3 V \pm 10\%$,		_	1.6	
				C _L = 25 pF, 4 MHz	PAD3V5V = 1	—	—	2.3	
				C _L = 100 pF, 2 MHz]	_	_	4.7	

Symb	a l	N C Parameter		Va	Unit	
Synib	01	U	raiameter		Мах	onn
f _{OSC}	S R	_	Oscillator frequency	4	40	MHz
9 _m	_	Ρ	Transconductance	4	20	mA/V
V _{OSC}	—	Т	Oscillation amplitude on XTAL pin	1	_	V
toscsu	-	Т	Start-up time ^{1,2}	8	_	ms

¹ The start-up time is dependent upon crystal characteristics, board leakage, etc., high ESR and excessive capacitive loads can cause long start-up time.

² Value captured when amplitude reaches 90% of XTAL

Symbol		Parameter		Value			
				Тур	Мах	- Unit	
f _{OSC}	SR	Oscillator frequency 4 – 40					
f _{CLK}	SR	Frequency in bypass	_	_	64	MHz	
t _{rCLK}	SR	Rise/fall time in bypass	_	—	1	ns	
t _{DC}	SR	Duty cycle	47.5	50	52.5	%	

Table 28. Input clock characteristics

3.12 FMPLL electrical characteristics

Table 29. FMPLL electrical characteristics

Symbol	с	Parameter	Conditions ¹	Va	Unit	
Symbol	Č	raiametei	Conditions	Min	Max	Onit
f _{ref_crystal} f _{ref_ext}	D	PLL reference frequency range ²	Crystal reference	4	40	MHz
f _{PLLIN}	D	Phase detector input frequency range (after pre-divider)		4	16	MHz
f _{FMPLLOUT}	D	Clock frequency range in normal mode	—	16	120	MHz
f _{FREE}	Ρ	Free-running frequency	Measured using clock division — typically /16	20	150	MHz
t _{CYC}	D	System clock period	—	—	1 / f _{SYS}	ns
f _{LORL}	D	Loss of reference frequency window ³	Lower limit	1.6	3.7	MHz
f _{LORH}			Upper limit	24	56	
f _{SCM}	D	D Self-clocked mode frequency ^{4,5}		20	150	MHz

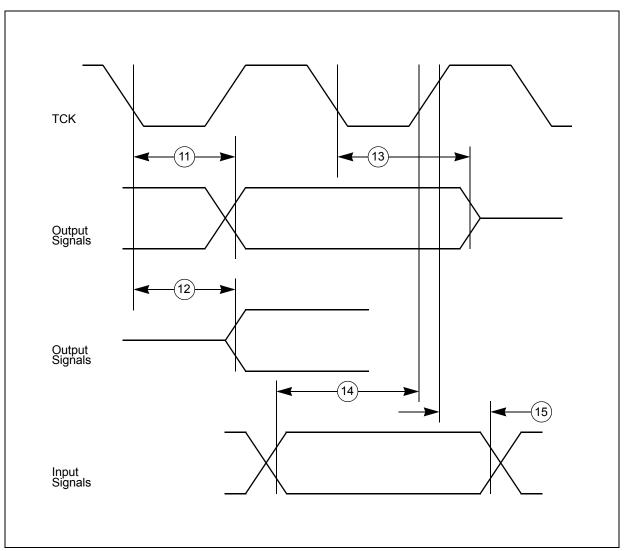


Figure 23. JTAG boundary scan timing

3.17.3 Nexus timing

Table 38. Nexu	s debug	port	timing ¹
----------------	---------	------	---------------------

No.	Symbol		nbol C Parameter		Unit			
		51	C	r ai ainetei	Min	Тур	Мах	onit
1	t _{MCYC}	CC	D	MCKO cycle time	32			ns
2	t _{MDOV}	CC	D	MCKO low to MDO data valid ²	_	_	6	ns
3	t _{MSEOV}	CC	D	MCKO low to MSEO data valid ²	_	_	6	ns
4	t _{EVTOV}	CC	D	MCKO low to EVTO data valid ²	—	_	6	ns
5	t _{TCYC}	CC	D	TCK cycle time	64 ³	_	—	ns

No.	Symbol		с	Parameter		Unit		
NO.				Falameter	Min	Тур	Мах	onit
6	t _{NTDIS}	СС	D	TDI data setup time	6	—	_	ns
	t _{NTMSS}	CC	D	TMS data setup time	6	_	_	ns
7	t _{NTDIH}	CC	D	TDI data hold time	10	—	_	ns
	t _{NTMSH}	CC	D	TMS data hold time	10	—	_	ns
8	t _{TDOV}	СС	D	TCK low to TDO data valid	—	_	35	ns
9	t _{TDOI}	CC	D	TCK low to TDO data invalid	6	_	_	ns

Table 38. Nexus debug port timing¹ (continued)

¹ All Nexus timing relative to MCKO is measured from 50% of MCKO and 50% of the respective signal.
 ² MDO, MSEO, and EVTO data is held valid until next MCKO low cycle.

³ Lower frequency is required to be fully compliant to standard.

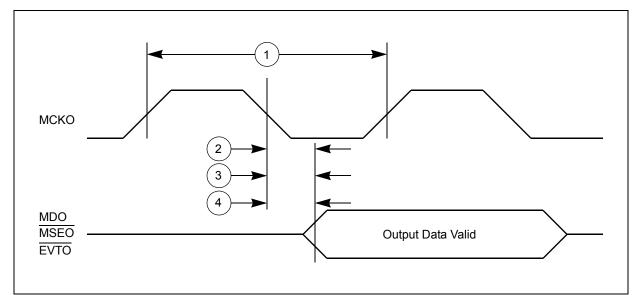


Figure 24. Nexus output timing

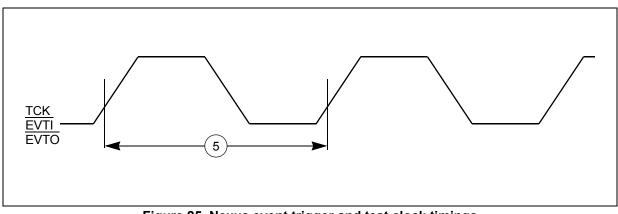


Figure 25. Nexus event trigger and test clock timings

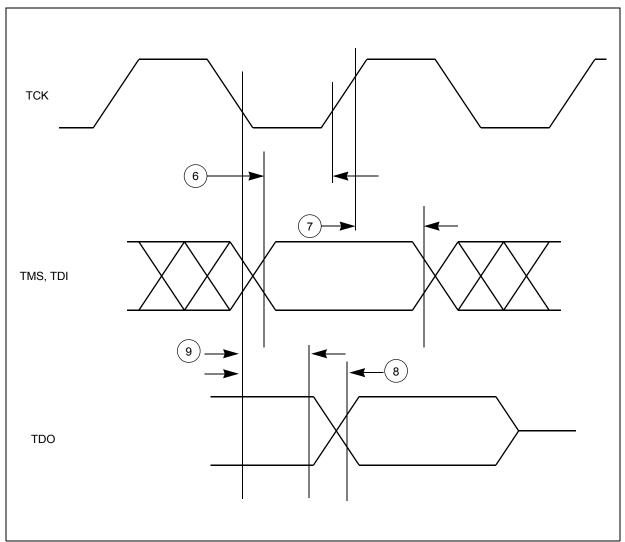


Figure 26. Nexus TDI, TMS, TDO timing

3.17.4 External interrupt timing (IRQ pin)

Table 39. External interrupt timing¹

No	No. Symbol		с	Parameter	Conditions	Value		Unit
			Ŭ		Conditions	Min	Мах	Onic
1	t _{IPWL}	CC	D	IRQ pulse width low	—	4	_	t _{CYC}
2	t _{IPWH}	СС	D	IRQ pulse width high	—	4	_	t _{CYC}
3	t _{ICYC}	CC	D	IRQ edge to edge time ²	—	4 + N ³	_	t _{CYC}

¹ IRQ timing specified at f_{SYS} = 64 MHz and V_{DD_HV_IOx} = 3.0 V to 5.5 V, T_A = T_L to T_H, and C_L = 200 pF with SRC = 0b00.

 2 Applies when IRQ pins are configured for rising edge or falling edge events, but not both.

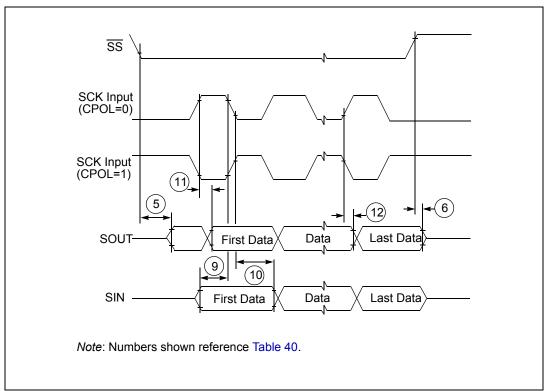
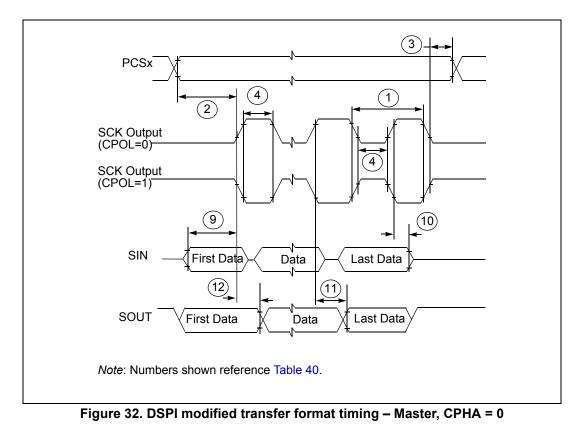
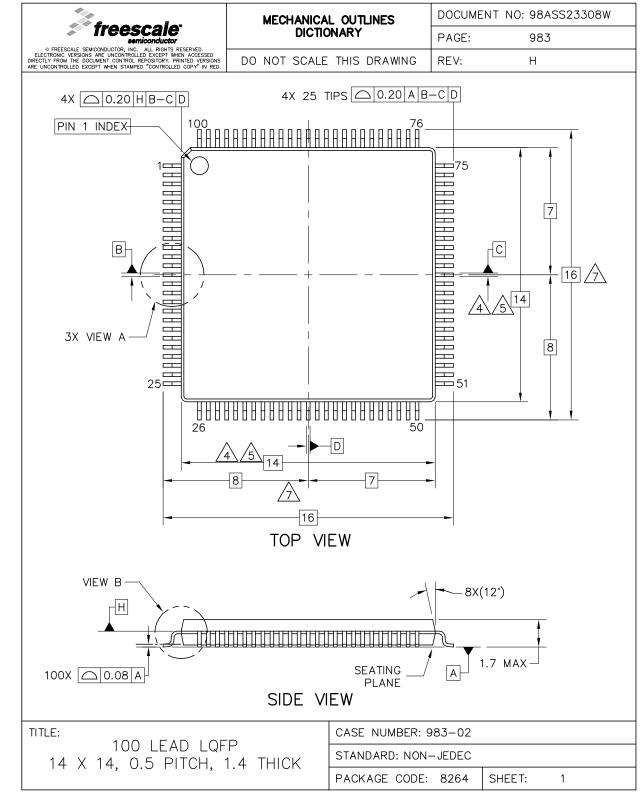




Figure 31. DSPI classic SPI timing – Slave, CPHA = 1

4.1.2 100 LQFP mechanical outline drawing

Figure 39. 100 LQFP package mechanical drawing (part 1)

Appendix A Abbreviations

Table A-1 lists abbreviations used in this document.

Table A-1. Abbreviations

Abbreviation	Meaning
CMOS	Complementary metal-oxide-semiconductor
СРНА	Clock phase
CPOL	Clock polarity
CS	Peripheral chip select
DUT	Device under test
ECC	Error code correction
EVTO	Event out
GPIO	General purpose input/output
MC	Modulus counter
МСКО	Message clock out
MCU	Microcontroller unit
MDO	Message data out
MSEO	Message start/end out
MTFE	Modified timing format enable
NPN	Negative-positive-negative
NVUSRO	Non-volatile user options register
PTF	Post trimming frequency
PWM	Pulse width modulation
RBW	Resolution bandwidth
SCK	Serial communications clock
SOUT	Serial data out
TCK	Test clock input
TDI	Test data input
TDO	Test data output
TMS	Test mode select

Revision	Date	Substantive changes
Revision Rev. 8		 Section 1.5.4, "Flash memory: Changed "Data flash memory: 32-bit ECC" to "Data flash memory: 64-bit ECC" Figure 42 (Commercial product code structure), replaced "C = 60 MHz, 5 V" and "D = 60 MHz, 3.3 V" with respectively "C = 40 MHz, 5 V" and "D = 40 MHz, 3.3 V" Table 7 (Absolute maximum ratings), updated TV_{DD} parameter, the minimum value to 3.0 V/s and the maximum value to 0.5 V/µs Table 5 (Pin muxing), changed the description in the column "I/O direction" from "I/O" to "O" for the following port pins: A[10] with function B[0] A[11] with function A[2] A[12] with function A[2] A[13] with function B[2] C[7] with function A[1] C[10] with function A[1] D[0] with function B[1] D[10] with function A[1] D[11] with function B[0] D[13] with function B[1] D[14] with function B[1] Updated Section 3.8.1, "Voltage regulator electrical characteristics
		Added Table 25 (I/O consumption) Section 3.10, DC electrical characteristics: deleted references to "oscillator margin" deleted subsection "NVUSRO[OSCILLATOR_MARGIN] field description" Table <u>19 (DC</u> electrical characteristics (5.0 V, NVUSRO[PAD3V5V] = 0)), added IPU row for RESET pin Table <u>21 (DC</u> electrical characteristics (3.3 V, NVUSRO[PAD3V5V] = 1)), added IPU row for RESET pin Table <u>31 (ADC conversion characteristics</u>), added V _{INAN} entry Removed "Order codes" table

Table 42. Revision history (continued)

How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: http://www.reg.net/v2/webservices/Freescale/Docs/TermsandConditions.htm

Freescale, the Freescale logo, AltiVec, C-5, CodeTest, CodeWarrior, ColdFire, C-Ware, Energy Efficient Solutions logo, Kinetis, mobileGT, PowerQUICC, Processor Expert, QorlQ, Qorivva, StarCore, Symphony, and VortiQa are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Airfast, BeeKit, BeeStack, ColdFire+, CoreNet, Flexis, MagniV, MXC, Platform in a Package, QorlQ Qonverge, QUICC Engine, Ready Play, SafeAssure, SMARTMOS, TurboLink, Vybrid, and Xtrinsic are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org. © 2008–2012 Freescale, Inc.

Document Number: MPC5604P Rev. 8 07/2012

