

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	e200z0h
Core Size	32-Bit Single-Core
Speed	64MHz
Connectivity	CANbus, FlexRay, LINbus, SPI, UART/USART
Peripherals	DMA, POR, PWM, WDT
Number of I/O	108
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	64K x 8
RAM Size	40K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 30x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5604pef1mlq6r

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Block	Function
Pulse width modulator (FlexPWM)	Contains four PWM submodules, each of which is capable of controlling a single half-bridge power stage and two fault input channels
Reset generation module (MC_RGM)	Centralizes reset sources and manages the device reset sequence of the device
Static random-access memory (SRAM)	Provides storage for program code, constants, and variables
System integration unit lite (SIUL)	Provides control over all the electrical pad controls and up 32 ports with 16 bits of bidirectional, general-purpose input and output signals and supports up to 32 external interrupts with trigger event configuration
System status and configuration module (SSCM)	Provides system configuration and status data (such as memory size and status, device mode and security status), device identification data, debug status port enable and selection, and bus and peripheral abort enable/disable
System timer module (STM)	Provides a set of output compare events to support AUTOSAR ¹ and operating system tasks
System watchdog timer (SWT)	Provides protection from runaway code
Wakeup unit (WKPU)	Supports up to 18 external sources that can generate interrupts or wakeup events, 1 of which can cause non-maskable interrupt requests or wakeup events

Table 2. MPC5604P series block summary (continued)

AUTOSAR: AUTomotive Open System ARchitecture (see http://www.autosar.org)

1.5 Feature details

1

1.5.1 High performance e200z0 core processor

The e200z0 Power Architecture core provides the following features:

- High performance e200z0 core processor for managing peripherals and interrupts
- Single issue 4-stage pipeline in-order execution 32-bit Power Architecture CPU
- Harvard architecture
- Variable length encoding (VLE), allowing mixed 16-bit and 32-bit instructions
 - Results in smaller code size footprint
 - Minimizes impact on performance
- Branch processing acceleration using lookahead instruction buffer
- Load/store unit
 - 1 cycle load latency
 - Misaligned access support
 - No load-to-use pipeline bubbles
- Thirty-two 32-bit general purpose registers (GPRs)
- Separate instruction bus and load/store bus Harvard architecture
- Hardware vectored interrupt support
- · Reservation instructions for implementing read-modify-write constructs
- Long cycle time instructions, except for guarded loads, do not increase interrupt latency
- Extensive system development support through Nexus debug port
- Non-maskable interrupt support

MPC5604P Microcontroller Data Sheet, Rev. 8

- 32 message buffers of up to 8-bytes data length
- · Each message buffer configurable as Rx or Tx, all supporting standard and extended messages
- Programmable loop-back mode supporting self-test operation
- 3 programmable mask registers
- · Programmable transmit-first scheme: lowest ID or lowest buffer number
- Time stamp based on 16-bit free-running timer
- Global network time, synchronized by a specific message
- Maskable interrupts
- Independent of the transmission medium (an external transceiver is assumed)
- High immunity to EMI
- Short latency time due to an arbitration scheme for high-priority messages
- Transmit features
 - Supports configuration of multiple mailboxes to form message queues of scalable depth
 - Arbitration scheme according to message ID or message buffer number
 - Internal arbitration to guarantee no inner or outer priority inversion
 - Transmit abort procedure and notification
- Receive features
 - Individual programmable filters for each mailbox
 - 8 mailboxes configurable as a six-entry receive FIFO
 - 8 programmable acceptance filters for receive FIFO
- Programmable clock source
 - System clock
 - Direct oscillator clock to avoid PLL jitter

1.5.21 Safety port (FlexCAN)

The MPC5604P MCU has a second CAN controller synthesized to run at high bit rates to be used as a safety port. The CAN module of the safety port provides the following features:

- Identical to the FlexCAN module
- Bit rate as fast as 7.5 Mbit/s at 60 MHz CPU clock using direct connection between CAN modules (no physical transceiver required)
- 32 message buffers of up to 8 bytes data length
- Can be used as a second independent CAN module

1.5.22 FlexRay

The FlexRay module provides the following features:

- Full implementation of FlexRay Protocol Specification 2.1
- 32 configurable message buffers can be handled
- Dual channel or single channel mode of operation, each as fast as 10 Mbit/s data rate
- Message buffers configurable as Tx, Rx or RxFIFO
- Message buffer size configurable
- Message filtering for all message buffers based on FrameID, cycle count and message ID
- Programmable acceptance filters for RxFIFO message buffers

1.5.23 Serial communication interface module (LINFlex)

The LINFlex (local interconnect network flexible) on the MPC5604P features the following:

- Supports LIN Master mode, LIN Slave mode and UART mode
- LIN state machine compliant to LIN1.3, 2.0, and 2.1 specifications
- Handles LIN frame transmission and reception without CPU intervention
- LIN features
 - Autonomous LIN frame handling
 - Message buffer to store Identifier and as much as 8 data bytes
 - Supports message length as long as 64 bytes
 - Detection and flagging of LIN errors (sync field, delimiter, ID parity, bit framing, checksum, and time-out)
 - Classic or extended checksum calculation
 - Configurable Break duration as long as 36-bit times
 - Programmable baud rate prescalers (13-bit mantissa, 4-bit fractional)
 - Diagnostic features: Loop back; Self Test; LIN bus stuck dominant detection
 - Interrupt-driven operation with 16 interrupt sources
- LIN slave mode features
 - Autonomous LIN header handling
 - Autonomous LIN response handling
- UART mode
 - Full-duplex operation
 - Standard non return-to-zero (NRZ) mark/space format
 - Data buffers with 4-byte receive, 4-byte transmit
 - Configurable word length (8-bit or 9-bit words)
 - Error detection and flagging
 - Parity, Noise and Framing errors
 - Interrupt-driven operation with four interrupt sources
 - Separate transmitter and receiver CPU interrupt sources
 - 16-bit programmable baud-rate modulus counter and 16-bit fractional
 - 2 receiver wake-up methods

1.5.24 Deserial serial peripheral interface (DSPI)

The deserial serial peripheral interface (DSPI) module provides a synchronous serial interface for communication between the MPC5604P MCU and external devices.

The DSPI modules provide these features:

- Full duplex, synchronous transfers
- Master or slave operation
- Programmable master bit rates
- Programmable clock polarity and phase
- End-of-transmission interrupt flag
- Programmable transfer baud rate
- Programmable data frames from 4 to 16 bits
- Up to 20 chip select lines available
 - 8 on DSPI_0
 - 4 each on DSPI_1, DSPI_2 and DSPI_3

	Supply	Pin		
Symbol	Description	100-pin	144-pin	
V _{SS_LV_COR0}	1.2 V Decoupling pins for core logic. Decoupling capacitor must be connected between these pins and the nearest $V_{DD_LV_COR}$ pin.	11	17	
V _{DD_LV_COR1}	1.2 V Decoupling pins for core logic. Decoupling capacitor must be connected between these pins and the nearest $V_{SS_{LV_{COR}}}$ pin.	65	93	
V _{SS_LV_COR1}	1.2 V Decoupling pins for core logic. Decoupling capacitor must be connected between these pins and the nearest $V_{DD_LV_COR}$ pin.	66	94	
V _{DD_LV_COR2}	1.2 V Decoupling pins for core logic. Decoupling capacitor must be connected between these pins and the nearest $V_{SS_LV_COR}$ pin.	92	131	
V _{SS_LV_COR2}	V _{SS_LV_COR2} 1.2 V Decoupling pins for core logic. Decoupling capacitor must be connected between these pins and the nearest V _{DD_LV_COR} pin.		132	
V _{DD_LV_COR3}	V _{DD_LV_COR3} 1.2 V Decoupling pins for on-chip PLL modules. Decoupling capacitor must be connected between this pin and V _{SS_LV_COR3} .		36	
V _{SS_LV_COR3}	1.2 V Decoupling pins for on-chip PLL modules. Decoupling capacitor must be connected between this pin and V _{DD_LV_COR3} .	24	35	

Table 3. Supply pins (continued)

¹ Analog supply/ground and high/low reference lines are internally physically separate, but are shorted via a double-bonding connection on V_{DD_HV_ADCx}/V_{SS_HV_ADCx} pins.

² Not available on 100-pin package.

2.2.2 System pins

Table 3 and Table 4 contain information on pin functions for the MPC5604P devices. The pins listed in Table 4 are single-function pins. The pins shown in Table 5 are multi-function pins, programmable via their respective Pad Configuration Register (PCR) values.

Table 4. System pins

Symbol	Description	Direction	Pad s	peed ¹	Pin			
Symbol	Description	Direction	SRC = 0	SRC = 1	100-pin	144-pin		
Dedicated pins. Available on 100-pin and 144-pin package.								
MDO[0]	Nexus Message Data Output—line 0	Output only	Fast		—	9		
NMI	Non-Maskable Interrupt	Input only	Slow	—	1	1		
XTAL	Analog output of the oscillator amplifier circuit; needs to be grounded if oscillator is used in bypass mode		—	_	18	29		

Table 5. Pin muxing

	Pad					Pad s	peed ⁵	Pin	No.
Port pin	configuration register (PCR)	figuration function ^{1,2} Functions Peripheral ^o	I/O direction ⁴	SRC = 0	SRC = 1	100-pin	144-pin		
				Port A (16-bit)					
A[0]	PCR[0]	ALT0 ALT1 ALT2 ALT3 —	GPIO[0] ETC[0] SCK F[0] EIRQ[0]	SIUL eTimer_0 DSPI_2 FCU_0 SIUL	1/0 1/0 0 1	Slow	Medium	51	73
A[1]	PCR[1]	ALT0 ALT1 ALT2 ALT3 —	GPIO[1] ETC[1] SOUT F[1] EIRQ[1]	SIUL eTimer_0 DSPI_2 FCU_0 SIUL	/O /O 0 	Slow	Medium	52	74
A[2] ⁶	PCR[2]	ALT0 ALT1 ALT2 ALT3 — — —	GPIO[2] ETC[2] — A[3] SIN ABS[0] EIRQ[2]	SIUL eTimer_0 — FlexPWM_0 DSPI_2 MC_RGM SIUL	/O /O - 	Slow	Medium	57	84
A[3] ⁶	PCR[3]	ALT0 ALT1 ALT2 ALT3 —	GPIO[3] ETC[3] CS0 B[3] ABS[2] EIRQ[3]	SIUL eTimer_0 DSPI_2 FlexPWM_0 MC_RGM SIUL	/O /O /O 0 	Slow	Medium	64	92
A[4] ⁶	PCR[4]	ALT0 ALT1 ALT2 ALT3 —	GPIO[4] ETC[0] CS1 ETC[4] FAB EIRQ[4]	SIUL eTimer_1 DSPI_2 eTimer_0 MC_RGM SIUL	/O /O 0 /O 	Slow	Medium	75	108
A[5]	PCR[5]	ALT0 ALT1 ALT2 ALT3 —	GPIO[5] CS0 ETC[5] CS7 EIRQ[5]	SIUL DSPI_1 eTimer_1 DSPI_0 SIUL	/O /O /O 0 	Slow	Medium	8	14
A[6]	PCR[6]	ALT0 ALT1 ALT2 ALT3 —	GPIO[6] SCK — — EIRQ[6]	SIUL DSPI_1 — SIUL	/O /O 	Slow	Medium	2	2
A[7]	PCR[7]	ALT0 ALT1 ALT2 ALT3 —	GPIO[7] SOUT — EIRQ[7]	SIUL DSPI_1 — SIUL	/O O — I	Slow	Medium	4	10

	Pad					Pad s	peed ⁵	Pin	No.
Port pin	configuration register (PCR)	Alternate function ^{1,2}	Functions	Peripheral ³	I/O direction ⁴	SRC = 0	SRC = 1	100-pin	144-pin
C[2]	PCR[34]	ALT0 ALT1 ALT2 ALT3 —	GPIO[34] — — AN[3]	SIUL — — ADC_0	Input only	_		30	45
C[3]	PCR[35]	ALT0 ALT1 ALT2 ALT3 —	GPIO[35] CS1 ETC[4] TXD EIRQ[21]	SIUL DSPI_0 eTimer_1 LIN_1 SIUL	I/O O I/O O I	Slow	Medium	10	16
C[4]	PCR[36]	ALT0 ALT1 ALT2 ALT3 —	GPIO[36] CS0 X[1] DEBUG[4] EIRQ[22]	SIUL DSPI_0 FlexPWM_0 SSCM SIUL	/O /O /O - 	Slow	Medium	5	11
C[5]	PCR[37]	ALT0 ALT1 ALT2 ALT3 —	GPIO[37] SCK — DEBUG[5] FAULT[3] EIRQ[23]	SIUL DSPI_0 SSCM FlexPWM_0 SIUL	/O /O - 	Slow	Medium	7	13
C[6]	PCR[38]	ALT0 ALT1 ALT2 ALT3 —	GPIO[38] SOUT B[1] DEBUG[6] EIRQ[24]	SIUL DSPI_0 FlexPWM_0 SSCM SIUL	I/O I/O O I	Slow	Medium	98	142
C[7]	PCR[39]	ALT0 ALT1 ALT2 ALT3 —	GPIO[39] — A[1] DEBUG[7] SIN	SIUL FlexPWM_0 SSCM DSPI_0	/O - - 	Slow	Medium	9	15
C[8]	PCR[40]	ALT0 ALT1 ALT2 ALT3 —	GPIO[40] CS1 — CS6 FAULT[2]	SIUL DSPI_1 DSPI_0 FlexPWM_0	I/O O O I	Slow	Medium	91	130
C[9]	PCR[41]	ALT0 ALT1 ALT2 ALT3 —	GPIO[41] CS3 — X[3] FAULT[2]	SIUL DSPI_2 — FlexPWM_0 FlexPWM_0	I/O O I/O I	Slow	Medium	84	123
C[10]	PCR[42]	ALT0 ALT1 ALT2 ALT3 —	GPIO[42] CS2 — A[3] FAULT[1]	SIUL DSPI_2 FlexPWM_0 FlexPWM_0	I/O O O I	Slow	Medium	78	111

 Table 5. Pin muxing (continued)

	Pad					Pad s	peed ⁵	Pin	No.
Port pin	configuration register (PCR)	Alternate function ^{1,2}	Functions		I/O direction ⁴	SRC = 0	SRC = 1	100-pin	144-pin
D[4]	PCR[52]	ALT0 ALT1 ALT2 ALT3	GPIO[52] CB_TR_EN ETC[5] B[3]	SIUL FlexRay_0 eTimer_1 FlexPWM_0	I/O O I/O O	Slow	Symmetric	90	129
D[5]	PCR[53]	ALT0 ALT1 ALT2 ALT3	GPIO[53] CS3 F[0] SOUT	SIUL DSPI_0 FCU_0 DSPI_3	I/O O O	Slow	Medium	22	33
D[6]	PCR[54]	ALT0 ALT1 ALT2 ALT3	GPIO[54] CS2 SCK —	SIUL DSPI_0 DSPI_3 	I/O O I/O —	Slow	Medium	23	34
		_	FAULT[1]	FlexPWM_0	I				
D[7]	PCR[55]	ALT0 ALT1 ALT2 ALT3 —	GPIO[55] CS3 F[1] CS4 SIN	SIUL DSPI_1 FCU_0 DSPI_0 DSPI_3	I/O O O I	Slow	Medium	26	37
D[8]	PCR[56]	ALT0 ALT1 ALT2 ALT3 —	GPIO[56] CS2 — CS5 FAULT[3]	SIUL DSPI_1 DSPI_0 FlexPWM_0	I/O O O I	Slow	Medium	21	32
D[9]	PCR[57]	ALT0 ALT1 ALT2 ALT3	GPIO[57] X[0] TXD —	SIUL FlexPWM_0 LIN_1 —	I/O I/O O —	Slow	Medium	15	26
D[10]	PCR[58]	ALT0 ALT1 ALT2 ALT3	GPIO[58] A[0] CS0 —	SIUL FlexPWM_0 DSPI_3 —	I/O O I/O —	Slow	Medium	53	76
D[11]	PCR[59]	ALT0 ALT1 ALT2 ALT3	GPIO[59] B[0] CS1 SCK	SIUL FlexPWM_0 DSPI_3 DSPI_3	I/O O O I/O	Slow	Medium	54	78
D[12]	PCR[60]	ALT0 ALT1 ALT2 ALT3 —	GPIO[60] X[1] — RXD	SIUL FlexPWM_0 — LIN_1	/O /O 	Slow	Medium	70	99
D[13]	PCR[61]	ALT0 ALT1 ALT2 ALT3	GPIO[61] A[1] CS2 SOUT	SIUL FlexPWM_0 DSPI_3 DSPI_3	I/O O O O	Slow	Medium	67	95

 Table 5. Pin muxing (continued)

	Pad					Pad s	peed ⁵	Pin	No.
Port pin	configuration register (PCR)	Alternate function ^{1,2}	Functions	Peripheral ³	I/O direction ⁴	SRC = 0	SRC = 1	100-pin	144-pin
E[6]	PCR[70]	ALT0 ALT1 ALT2 ALT3 —	GPIO[70] AN[9]	SIUL — — ADC_0	Input only	_		_	46
E[7]	PCR[71]	ALT0 ALT1 ALT2 ALT3 —	GPIO[71] — — AN[10]	SIUL — — ADC_0	Input only	_	_	_	48
E[8]	PCR[72]	ALT0 ALT1 ALT2 ALT3 —	GPIO[72] — — AN[6]	SIUL — — — ADC_1	Input only		_		59
E[9]	PCR[73]	ALT0 ALT1 ALT2 ALT3 —	GPIO[73] — — AN[7]	SIUL — — ADC_1	Input only	_		_	61
E[10]	PCR[74]	ALT0 ALT1 ALT2 ALT3 —	GPIO[74] AN[8]	SIUL — — ADC_1	Input only	_		_	63
E[11]	PCR[75]	ALT0 ALT1 ALT2 ALT3 —	GPIO[75] — — — AN[9]	SIUL — — — ADC_1	Input only	_	_	_	65
E[12]	PCR[76]	ALT0 ALT1 ALT2 ALT3 —	GPIO[76] — — AN[10]	SIUL — — ADC_1	Input only	_	_	_	67
E[13]	PCR[77]	ALT0 ALT1 ALT2 ALT3 —	GPIO[77] SCK — EIRQ[25]	SIUL DSPI_3 — SIUL	/O /O 	Slow	Medium	-	117
E[14]	PCR[78]	ALT0 ALT1 ALT2 ALT3 —	GPIO[78] SOUT — EIRQ[26]	SIUL DSPI_3 — SIUL	/O O — I	Slow	Medium		119

 Table 5. Pin muxing (continued)

	Pad					Pad s	peed ⁵	Pin	No.
Port pin	configuration register (PCR)	Alternate function ^{1,2}	Functions	Peripheral ³	I/O direction ⁴	SRC = 0	SRC = 1	100-pin	144-pin
E[15]	PCR[79]	ALT0 ALT1 ALT2 ALT3 —	GPIO[79] — — — SIN EIRQ[27]	SIUL — — DSPI_3 SIUL	VO 	Slow	Medium		121
	L	1		Port F (16-bit)			1		•
F[0]	PCR[80]	ALT0 ALT1 ALT2 ALT3	GPIO[80] DBG0 CS3 —	SIUL FlexRay_0 DSPI_3 — SIUL	I/O O —	Slow	Medium	_	133
F[1]	PCR[81]	ALT0 ALT1 ALT2 ALT3 —	EIRQ[28] GPIO[81] DBG1 CS2 — EIRQ[29]	SIUL FlexRay_0 DSPI_3 SIUL	I/O O O I	Slow	Medium		135
F[2]	PCR[82]	ALT0 ALT1 ALT2 ALT3	GPIO[82] DBG2 CS1 —	SIUL FlexRay_0 DSPI_3 —	I/O O —	Slow	Medium	-	137
F[3]	PCR[83]	ALT0 ALT1 ALT2 ALT3	GPIO[83] DBG3 CS0 —	SIUL FlexRay_0 DSPI_3 —	I/O O I/O —	Slow	Medium	-	139
F[4]	PCR[84]	ALT0 ALT1 ALT2 ALT3	GPIO[84] MDO[3] —	SIUL NEXUS_0 —	1/O O —	Slow	Fast	_	4
F[5]	PCR[85]	ALT0 ALT1 ALT2 ALT3	GPIO[85] MDO[2] —	SIUL NEXUS_0 —	I/O O —	Slow	Fast	_	5
F[6]	PCR[86]	ALT0 ALT1 ALT2 ALT3	GPIO[86] MDO[1] —	SIUL NEXUS_0 —	I/O O —	Slow	Fast	_	8
F[7]	PCR[87]	ALT0 ALT1 ALT2 ALT3	GPIO[87] MCKO — —	SIUL NEXUS_0 —	I/O O —	Slow	Fast	—	19
F[8]	PCR[88]	ALT0 ALT1 ALT2 ALT3	GPIO[88] MSEO1 — —	SIUL NEXUS_0 —	I/O O —	Slow	Fast	_	20

 Table 5. Pin muxing (continued)

	Pad					Pad s	peed ⁵	Pin No.	
Port pin	configuration register (PCR)	Alternate function ^{1,2}	Functions	Peripheral ³	I/O direction ⁴	SRC = 0	SRC = 1	100-pin	144-pin
G[3]	PCR[99]	ALT0 ALT1 ALT2 ALT3	GPIO[99] A[2] — —	SIUL FlexPWM_0 —	I/O O —	Slow	Medium		104
G[4]	PCR[100]	ALT0 ALT1 ALT2 ALT3	GPIO[100] B[2] — —	SIUL FlexPWM_0 	I/O O —	Slow	Medium		100
G[5]	PCR[101]	ALT0 ALT1 ALT2 ALT3	GPIO[101] X[3] — —	SIUL FlexPWM_0 —	I/O I/O —	Slow	Medium	—	85
G[6]	PCR[102]	ALT0 ALT1 ALT2 ALT3	GPIO[102] A[3] — —	SIUL FlexPWM_0 	I/O O —	Slow	Medium		98
G[7]	PCR[103]	ALT0 ALT1 ALT2 ALT3	GPIO[103] B[3] — —	SIUL FlexPWM_0 —	I/O O —	Slow	Medium	—	83
G[8]	PCR[104]	ALT0 ALT1 ALT2 ALT3 —	GPIO[104] — — — FAULT[0]	SIUL — — FlexPWM_0	/O 	Slow	Medium		81
G[9]	PCR[105]	ALT0 ALT1 ALT2 ALT3 —	GPIO[105] — — FAULT[1]	SIUL — — FlexPWM_0	I/O — — — —	Slow	Medium		79
G[10]	PCR[106]	ALT0 ALT1 ALT2 ALT3 —	GPIO[106] — — FAULT[2]	SIUL — — FlexPWM_0	/O 	Slow	Medium	_	77
G[11]	PCR[107]	ALT0 ALT1 ALT2 ALT3 —	GPIO[107] — — FAULT[3]	SIUL — — — FlexPWM_0	I/O — — — —	Slow	Medium		75

 Table 5. Pin muxing (continued)

¹ ALT0 is the primary (default) function for each port after reset.

- ² Alternate functions are chosen by setting the values of the PCR[PA] bitfields inside the SIU module. PCR[PA] = 00 → ALT0; PCR[PA] = 01 → ALT1; PCR[PA] = 10 → ALT2; PCR[PA] = 11 → ALT3. This is intended to select the output functions; to use one of the input-only functions, the PCR[IBE] bit must be written to '1', regardless of the values selected in the PCR[PA] bitfields. For this reason, the value corresponding to an input only function is reported as "—".
- ³ Module included on the MCU.
- ⁴ Multiple inputs are routed to all respective modules internally. The input of some modules must be configured by setting the values of the PSMI[PADSEL*x*] bitfields inside the SIUL module.
- ⁵ Programmable via the SRC (Slew Rate Control) bits in the respective Pad Configuration Register.
- ⁶ Weak pull down during reset.

Symbol		Parameter	Conditions	Va	lue	Unit
Symbol		Falance	Conditions	Min	Max ²	Onic
V _{INANO}	SR	ADC0 and shared ADC0/1 analog	V _{DD_HV_REG} > 2.7 V	V _{SS_HV_ADV0} - 0.3	V _{DD_HV_ADV0} + 0.3	V
* INANU		input voltage ⁶	V _{DD_HV_REG} < 2.7 V	V _{SS_HV_ADV0}	V _{DD_HV_ADV0}	V
V _{INAN1}	SR	ADC1 analog input voltage ⁷	V _{DD_HV_REG} > 2.7 V	V _{SS_HV_ADV1} - 0.3	V _{DD_HV_ADV1} + 0.3	V
* INAN1			V _{DD_HV_REG} < 2.7 V	V _{SS_HV_ADV1}	V _{DD_HV_ADV1}	V
I _{INJPAD}	SR	Injected input current on any pin during overload condition		-10	10	mA
I _{INJSUM}	SR	Absolute sum of all injected input currents during overload condition		-50	50	mA
I _{VDD_LV}	SR	Low voltage static current sink through V_{DD_LV}	—		155	mA
T _{STG}	SR	Storage temperature	—	-55	150	°C
TJ	SR	Junction temperature under bias	—	-40	150	°C

Table 7. Absolute maximum ratings¹ (continued)

¹ Functional operating conditions are given in the DC electrical characteristics. Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the listed maxima may affect device reliability or cause permanent damage to the device.

² Absolute maximum voltages are currently maximum burn-in voltages. Absolute maximum specifications for device stress have not yet been determined.

- ³ The difference between each couple of voltage supplies must be less than 300 mV,
- $|V_{DD_{HV}_{IOY}} V_{DD_{HV}_{IOY}}| < 300 \text{ mV.}$ ⁴ The difference between ADC voltage supplies must be less than 100 mV, $|V_{DD_{HV}_{ADC1}} V_{DD_{HV}_{ADC0}}| < 100 \text{ mV.}$
- ⁵ Guaranteed by device validation
- 6 Not allowed to refer this voltage to V_DD_HV_ADV1, V_SS_HV_ADV1
- $^7\,$ Not allowed to refer this voltage to V_DD_HV_ADV0, V_SS_HV_ADV0

Figure 4 shows the constraints of the different power supplies.

3.10 DC electrical characteristics

3.10.1 NVUSRO register

Portions of the device configuration, such as high voltage supply, and watchdog enable/disable after reset are controlled via bit values in the non-volatile user options (NVUSRO) register.

For a detailed description of the NVUSRO register, please refer to the device reference manual.

3.10.1.1 NVUSRO[PAD3V5V] field description

The DC electrical characteristics are dependent on the PAD3V5V bit value. Table 18 shows how NVUSRO[PAD3V5V] controls the device configuration.

Table 18. PAD3V5V field description

Value ¹	Description			
0	High voltage supply is 5.0 V			
1	High voltage supply is 3.3 V			

¹ Default manufacturing value before flash initialization is '1' (3.3 V).

3.10.2 DC electrical characteristics (5 V)

Table 19 gives the DC electrical characteristics at 5 V (4.5 V \leq V_{DD HV IOx} \leq 5.5 V, NVUSRO[PAD3V5V] = 0); see Figure 13.

Table 19. DC electrical characteristics	s (5.0 V, NVUSRO[PAD3V5V] = 0)
---	--------------------------------

Symbol	с	Parameter	Conditions	Va	lue	Unit	
Symbol	C	Falameter	Conditions	Min	Max		
V _{IL}	D	Low level input voltage	_	-0.1 ¹	_	V	
	Ρ		_	_	0.35 V _{DD_HV_IOx}	V	
V _{IH}	Ρ	High level input voltage	_	0.65 V _{DD_HV_IOx}	_	V	
	D		_	—	$V_{DD_HV_IOx} + 0.1^1$	V	
V _{HYS}	Т	Schmitt trigger hysteresis	_	0.1 V _{DD_HV_IOx}	_	V	
V _{OL_S}	Ρ	Slow, low level output voltage	I _{OL} = 3 mA	—	0.1 V _{DD_HV_IOx}	V	
V _{OH_S}	Ρ	Slow, high level output voltage	I _{OH} = –3 mA	0.8 V _{DD_HV_IOx}	_	V	
V _{OL_M}	Ρ	Medium, low level output voltage	I _{OL} = 3 mA	—	0.1 V _{DD_HV_IOx}	V	
V _{OH_M}	Ρ	Medium, high level output voltage	I _{OH} = –3 mA	0.8 V _{DD_HV_IOx}	_	V	
V _{OL_F}	Ρ	Fast, low level output voltage	I _{OL} = 3 mA	—	0.1 V _{DD_HV_IOx}	V	
V _{OH_F}	Ρ	Fast, high level output voltage	I _{OH} = –3 mA	0.8 V _{DD_HV_IOx}	_	V	
V _{OL_SYM}	Ρ	Symmetric, low level output voltage	I _{OL} = 3 mA	—	0.1 V _{DD_HV_IOx}	V	
V _{OH_SYM}	Ρ	Symmetric, high level output voltage	I _{OH} = –3 mA	0.8 V _{DD_HV_IOx}		V	
I _{PU}	Ρ	Equivalent pull-up current	$V_{IN} = V_{IL}$	–130	_	μA	
			$V_{IN} = V_{IH}$		-10		

² "SR" parameter values must not exceed the absolute maximum ratings shown in Table 7.

Symbol	с		Parameter	Conditions		Va	lue	Unit
Cymbol			i ulullotoi	Conditions		Тур	Мах	U
I _{DD_LV_CORx}	Т		RUN—Maximum mode ¹	V _{DD_LV_CORx}	40 MHz	62	77	mA
	externally forced at 1.3 V		64 MHz	71	89			
			RUN—Typical mode ²		40 MHz	45	56	
					64 MHz	53	66	
	Ρ		RUN—Maximum mode ³	V _{DD_LV_CORx} externally forced at 1.3 V	64 MHz	60	75	
		ent	HALT mode ⁴	V _{DD_LV_CORx} externally forced at 1.3 V	—	1.5	10	
		oly current	STOP mode ⁵	V _{DD_LV_CORx} externally forced at 1.3 V	—	1	10	
I _{DD_FLASH}	Т	Supply o	Flash during read on single mode	V _{DD_HV_FL} at 3.3 V		8	10	
			Flash during erase operation on single mode	V _{DD_HV_FL} at 3.3 V	—	10	12	
I _{DD_ADC}	Т		ADC—Maximum mode ¹	V _{DD_HV_ADC0} at 3.3 V	ADC_1	2.5	4	
				V _{DD_HV_ADC1} at 3.3 V f _{ADC} = 16 MHz	ADC_0	2	4	
			ADC—Typical mode ²		ADC_1	0.8	1	
					ADC_0	0.005	0.006	
I _{DD_OSC}	Т	•	Oscillator	V _{DD_OSC} at 3.3 V	8 MHz	2.4	3	

Table 22. Supply current (3.3 V, NVUSRO[PAD3V5V] = 1)

¹ Maximum mode: FlexPWM, ADCs, CTU, DSPI, LINFlex, FlexCAN, 15 output pins, 1st and 2nd PLL enabled. I/O supply current excluded.

² Typical mode: DSPI, LINFlex, FlexCAN, 15 output pins, 1st PLL only. I/O supply current excluded.

³ Code fetched from RAM, PLL_0: 64 MHz system clock (x4 multiplier with 16 MHz XTAL), PLL_1 is ON at PHI_div2 = 120 MHz and PHI_div3 = 80 MHz, auxiliary clock sources set that all peripherals receive maximum frequency, all peripherals enabled.

⁴ Halt mode configurations: code fetched from RAM, code and data flash memories in low power mode, OSC/PLL 0/PLL 1 are OFF, core clock frozen, all peripherals are disabled.

⁵ STOP "P" mode Device Under Test (DUT) configuration: code fetched from RAM, code and data flash memories OFF, OSC/PLL_0/PLL_1 are OFF, core clock frozen, all peripherals are disabled.

3.10.4 Input DC electrical characteristics definition

Figure 13 shows the DC electrical characteristics behavior as function of time.

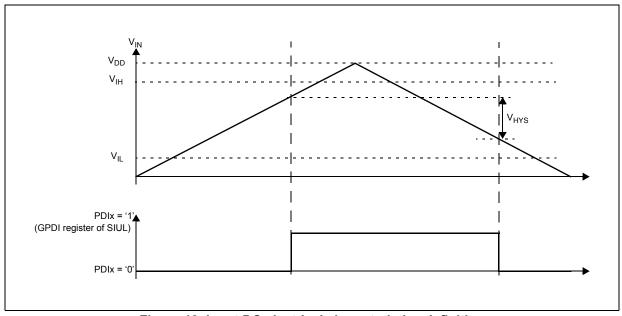


Figure 13. Input DC electrical characteristics definition

3.10.5 I/O pad current specification

The I/O pads are distributed across the I/O supply segment. Each I/O supply segment is associated to a V_{DD}/V_{SS} supply pair as described in Table 23.

Package	Supply segment									
i uonugo	1	2	3	4	5	6	7			
144 LQFP	pin8 – pin20	pin23 – pin38	pin39 – pin55	pin58 – pin68	pin73 – pin89	pin92 – pin125	pin128 – pin5			
100 LQFP	pin15 – pin26	pin27 – pin38	pin41 – pin46	pin51 – pin61	pin64 – pin86	pin89 – pin10	—			

Table 24 provides the weight of concurrent switching I/Os.

In order to ensure device functionality, the sum of the weight of concurrent switching I/Os on a single segment should remain below 100%.

Table 24. I/O weight

Pad	144	LQFP	100 LQFP		
Fau	Weight 5V	Weight 3.3V	Weight 5V	Weight 3.3V	
NMI	1%	1%	1%	1%	
PAD[6]	6%	5%	14%	13%	
PAD[49]	5%	4%	14%	12%	
PAD[84]	14%	10%	—	—	
PAD[85]	9%	7%	—	_	

In this case, the time constant depends on the external circuit: in particular imposing that the transient is completed well before the end of sampling time T_S , a constraints on R_L sizing is obtained:

Eqn. 9

$$8.5 \bullet \tau_2 = 8.5 \bullet R_L \bullet (C_S + C_{P1} + C_{P2}) < T_S$$

Of course, R_L shall be sized also according to the current limitation constraints, in combination with R_S (source impedance) and R_F (filter resistance). Being C_F definitively bigger than C_{P1} , C_{P2} and C_S , then the final voltage V_{A2} (at the end of the charge transfer transient) will be much higher than V_{A1} . Equation 10 must be respected (charge balance assuming now C_S already charged at V_{A1}):

Eqn. 10

$$V_{A2} \bullet (C_S + C_{P1} + C_{P2} + C_F) = V_A \bullet C_F + V_{A1} \bullet (C_{P1} + C_{P2} + C_S)$$

The two transients above are not influenced by the voltage source that, due to the presence of the R_FC_F filter, is not able to provide the extra charge to compensate the voltage drop on C_S with respect to the ideal source V_A ; the time constant R_FC_F of the filter is very high with respect to the sampling time (T_S). The filter is typically designed to act as anti-aliasing.

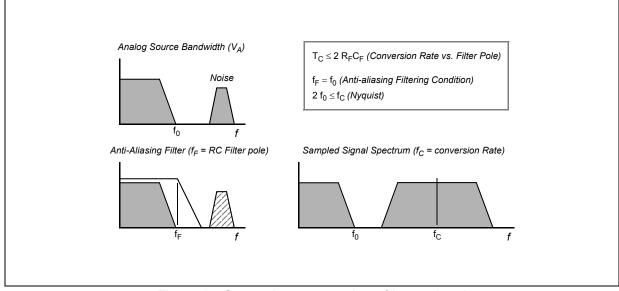


Figure 17. Spectral representation of input signal

Calling f_0 the bandwidth of the source signal (and as a consequence the cut-off frequency of the anti-aliasing filter, f_F), according to the Nyquist theorem the conversion rate f_C must be at least $2f_0$; it means that the constant time of the filter is greater than or at least equal to twice the conversion period (T_C). Again the conversion period T_C is longer than the sampling time T_S , which is just a portion of it, even when fixed channel continuous conversion mode is selected (fastest conversion rate at a specific channel): in conclusion it is evident that the time constant of the filter R_FC_F is definitively much higher than the sampling time T_S , so the charge level on C_S cannot be modified by the analog signal source during the time in which the sampling switch is closed.

The considerations above lead to impose new constraints on the external circuit, to reduce the accuracy error due to the voltage drop on C_S ; from the two charge balance equations above, it is simple to derive Equation 11 between the ideal and real sampled voltage on C_S :

Symbol	С	Parameter	Conditions ¹	Max value	Unit
f _{max}		Maximum working frequency at given number of	2 wait states	66	MHz
		wait states in worst conditions	0 wait states	18	

Table 34. Flash memory read access timing

 1 V_{DD} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = -40 to 125 °C, unless otherwise specified

AC specifications 3.16

3.16.1 **Pad AC specifications**

Table 35.	Output p	in transition	times
-----------	----------	---------------	-------

Symb		с	Parameter		onditions ¹		Value)	Unit
Synn			Falameter		onations	Min	Тур	Max	Unit
t _{tr}	CC	D	Output transition time output pin ²	C _L = 25 pF	$V_{DD} = 5.0 V \pm 10\%$,	—	—	50	ns
		Т	SLOW configuration $C_L = 50 \text{ pF}$ $C_L = 100 \text{ pF}$		—	—	100		
		D				—	—	125	
		D		C _L = 25 pF	$V_{DD} = 3.3 V \pm 10\%$,	—	—	40	
		Т		C _L = 50 pF	PAD3V5V = 1	—	—	50	
		D		C _L = 100 pF		_	—	75	
t _{tr}	СС	D	Output transition time output pin2 $C_L = 25 \text{ pF}$ $V_{DD} = 5.0 \text{ V} \pm 10\%$,MEDIUM configuration $C_L = 50 \text{ pF}$ PAD3V5V = 0SIUL.PCRx.SRC = 1		—	—	10	ns	
		Т				—	—	20	
		D		C _L = 100 pF	$V_{DD} = 3.3 V \pm 10\%,$	_	—	40	
		D		C _L = 25 pF		—	—	12	
		Т		$C_{L} = 50 \text{ pF}$ $SIUL.PCRx.SRC = 1$	—	—	25		
		D		C _L = 100 pF		—	—	40	
t _{tr}	СС	D	Output transition time output pin ²	C _L = 25 pF	$V_{DD} = 5.0 V \pm 10\%$,	—	—	4	ns
			FAST configuration	C _L = 50 pF	PAD3V5V = 0 SIUL.PCRx.SRC = 1	—	—	6	
				C _L = 100 pF		_		12	
				C _L = 25 pF	$V_{DD} = 3.3 V \pm 10\%$,	—	—	4	
				C _L = 50 pF	PAD3V5V = 1 SIUL.PCRx.SRC = 1	—	—	7	
				C _L = 100 pF		—	—	12	
t _{SYM} ³	СС	Т	Symmetric transition time, same drive	V _{DD} = 5.0 V :	± 10%, PAD3V5V = 0	—	—	4	ns
			strength between N and P transistor	V _{DD} = 3.3 V :	± 10%, PAD3V5V = 1	—	—	5	

¹ V_{DD} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = -40 °C to T_{A MAX}, unless otherwise specified ² C_L includes device and package capacitances (C_{PKG} < 5 pF).

³ Transition timing of both positive and negative slopes will differ maximum 50%

No.	Symbo		с	Parameter	Conditions	Va	lue	Unit
110.	Cyniso	•	Ŭ	i uruneter	Conditions	Min	Мах	Onic
5	$t_{TMSH,} t_{TDIH}$	CC	D	TMS, TDI data hold time	_	25		ns
6	t _{TDOV}	CC	D	TCK low to TDO data valid	—	_	40	ns
7	t _{TDOI}	СС	D	TCK low to TDO data invalid	—	0	—	ns
8	t _{TDOHZ}	СС	D	TCK low to TDO high impedance	—	40	—	ns
11	t _{BSDV}	CC	D	TCK falling edge to output valid	—		50	ns
12	t _{BSDVZ}	СС	D	TCK falling edge to output valid out of high impedance	—	_	50	ns
13	t _{BSDHZ}	СС	D	TCK falling edge to output high impedance	—	_	50	ns
14	t _{BSDST}	CC	D	Boundary scan input valid to TCK rising edge	—	50	—	ns
15	t _{BSDHT}	CC	D	TCK rising edge to boundary scan input invalid	—	50		ns

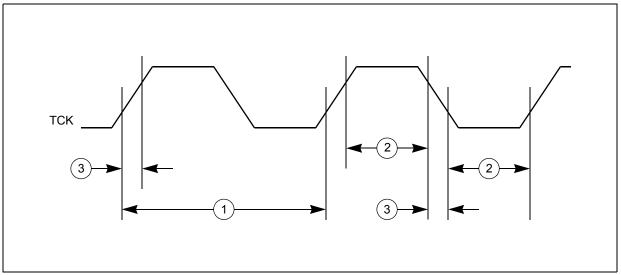


Figure 21. JTAG test clock input timing

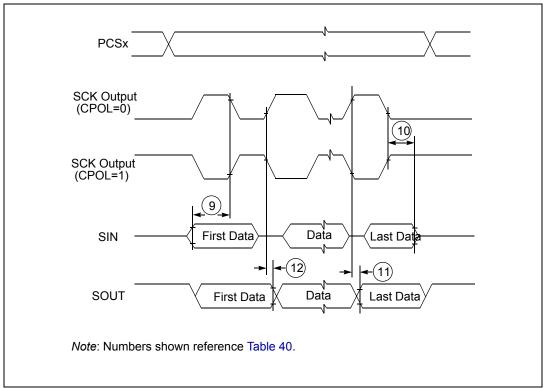
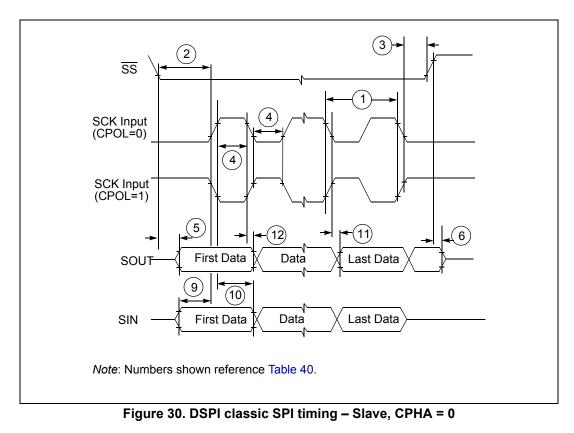



Figure 29. DSPI classic SPI timing – Master, CPHA = 1

MPC5604P Microcontroller Data Sheet, Rev. 8

4 Package characteristics

4.1 Package mechanical data

4.1.1 144 LQFP mechanical outline drawing

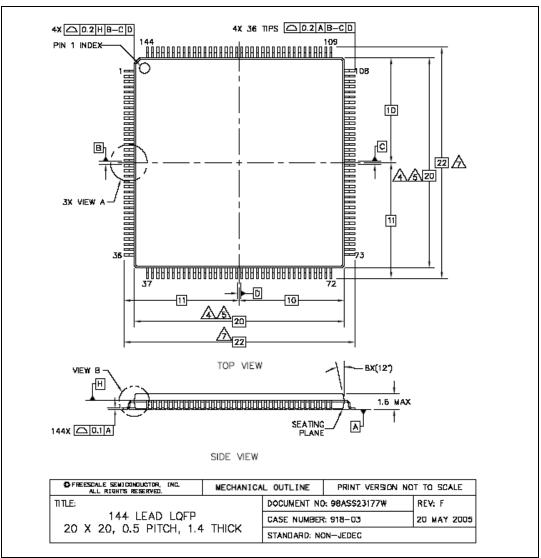


Figure 37. 144 LQFP package mechanical drawing (part 1)