



#### Welcome to E-XFL.COM

#### **Understanding Embedded - Microprocessors**

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

#### Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

#### Details

| Product Status                     | Active                                                                                                              |
|------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Core Processor                     | ARM® Cortex®-A9                                                                                                     |
| Number of Cores/Bus<br>Width       | 2 Core, 32-Bit                                                                                                      |
| Speed                              | 1.0GHz                                                                                                              |
| Co-Processors/DSP                  | Multimedia; NEON™ SIMD                                                                                              |
| RAM Controllers                    | LPDDR2, LVDDR3, DDR3                                                                                                |
| Graphics Acceleration              | Yes                                                                                                                 |
| Display & Interface<br>Controllers | Keypad, LCD                                                                                                         |
| Ethernet                           | 10/100/1000Mbps (1)                                                                                                 |
| SATA                               | SATA 3Gbps (1)                                                                                                      |
| USB                                | USB 2.0 + PHY (4)                                                                                                   |
| Voltage - I/O                      | 1.8V, 2.5V, 2.8V, 3.3V                                                                                              |
| Operating Temperature              | -40°C ~ 125°C (TJ)                                                                                                  |
| Security Features                  | ARM TZ, Boot Security, Cryptography, RTIC, Secure Fusebox, Secure JTAG, Secure Memory, Secure RTC, Tamper Detection |
| Package / Case                     | 624-FBGA, FCBGA                                                                                                     |
| Supplier Device Package            | 624-FCPBGA (21x21)                                                                                                  |
| Purchase URL                       | https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mcimx6d4avt10acr                                                       |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



# 1.2 Features

The i.MX 6Dual/6Quad processors are based on ARM Cortex-A9 MPCore platform, which has the following features:

- ARM Cortex-A9 MPCore 4xCPU processor (with TrustZone<sup>®</sup>)
- The core configuration is symmetric, where each core includes:
  - 32 KByte L1 Instruction Cache
  - 32 KByte L1 Data Cache
  - Private Timer and Watchdog
  - Cortex-A9 NEON MPE (Media Processing Engine) Co-processor

The ARM Cortex-A9 MPCore complex includes:

- General Interrupt Controller (GIC) with 128 interrupt support
- Global Timer
- Snoop Control Unit (SCU)
- 1 MB unified I/D L2 cache, shared by two/four cores
- Two Master AXI (64-bit) bus interfaces output of L2 cache
- Frequency of the core (including Neon and L1 cache) as per Table 6.
- NEON MPE coprocessor
  - SIMD Media Processing Architecture
  - NEON register file with 32x64-bit general-purpose registers
  - NEON Integer execute pipeline (ALU, Shift, MAC)
  - NEON dual, single-precision floating point execute pipeline (FADD, FMUL)
  - NEON load/store and permute pipeline

The SoC-level memory system consists of the following additional components:

- Boot ROM, including HAB (96 KB)
- Internal multimedia / shared, fast access RAM (OCRAM, 256 KB)
- Secure/non-secure RAM (16 KB)
- External memory interfaces:
  - 16-bit, 32-bit, and 64-bit DDR3-1066, LVDDR3-1066, and 1/2 LPDDR2-1066 channels, supporting DDR interleaving mode, for 2x32 LPDDR2-1066
  - 8-bit NAND-Flash, including support for Raw MLC/SLC, 2 KB, 4 KB, and 8 KB page size, BA-NAND, PBA-NAND, LBA-NAND, OneNAND<sup>TM</sup> and others. BCH ECC up to 40 bit.
  - 16/32-bit NOR Flash. All EIMv2 pins are muxed on other interfaces.
  - 16/32-bit PSRAM, Cellular RAM

Each i.MX 6Dual/6Quad processor enables the following interfaces to external devices (some of them are muxed and not available simultaneously):

• Hard Disk Drives—SATA II, 3.0 Gbps



#### Introduction

- Gigabit Ethernet Controller (IEEE1588 compliant), 10/100/1000<sup>1</sup> Mbps
- Four Pulse Width Modulators (PWM)
- System JTAG Controller (SJC)
- GPIO with interrupt capabilities
- 8x8 Key Pad Port (KPP)
- Sony Philips Digital Interconnect Format (SPDIF), Rx and Tx
- Two Controller Area Network (FlexCAN), 1 Mbps each
- Two Watchdog timers (WDOG)
- Audio MUX (AUDMUX)
- MLB (MediaLB) provides interface to MOST Networks (150 Mbps) with the option of DTCP cipher accelerator

The i.MX 6Dual/6Quad processors integrate advanced power management unit and controllers:

- Provide PMU, including LDO supplies, for on-chip resources
- Use Temperature Sensor for monitoring the die temperature
- Support DVFS techniques for low power modes
- Use Software State Retention and Power Gating for ARM and MPE
- Support various levels of system power modes
- Use flexible clock gating control scheme

The i.MX 6Dual/6Quad processors use dedicated hardware accelerators to meet the targeted multimedia performance. The use of hardware accelerators is a key factor in obtaining high performance at low power consumption numbers, while having the CPU core relatively free for performing other tasks.

The i.MX 6Dual/6Quad processors incorporate the following hardware accelerators:

- VPU—Video Processing Unit
- IPUv3H—Image Processing Unit version 3H (2 IPUs)
- GPU3Dv4—3D Graphics Processing Unit (OpenGL ES 2.0) version 4
- GPU2Dv2—2D Graphics Processing Unit (BitBlt)
- GPUVG—OpenVG 1.1 Graphics Processing Unit
- ASRC—Asynchronous Sample Rate Converter

Security functions are enabled and accelerated by the following hardware:

- ARM TrustZone including the TZ architecture (separation of interrupts, memory mapping, etc.)
- SJC—System JTAG Controller. Protecting JTAG from debug port attacks by regulating or blocking the access to the system debug features.
- CAAM—Cryptographic Acceleration and Assurance Module, containing 16 KB secure RAM and True and Pseudo Random Number Generator (NIST certified)
- SNVS—Secure Non-Volatile Storage, including Secure Real Time Clock

1. The theoretical maximum performance of 1 Gbps ENET is limited to 470 Mbps (total for Tx and Rx) due to internal bus throughput limitations. The actual measured performance in optimized environment is up to 400 Mbps. For details, see the ERR004512 erratum in the i.MX 6Dual/6Quad errata document (IMX6DQCE).



Modules List

| Table 2. i.MX 6Dual/6Quad M | Iodules List (continued) |
|-----------------------------|--------------------------|
|-----------------------------|--------------------------|

| Block<br>Mnemonic                | Block Name                    | Subsystem                                   | Brief Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------------------------------|-------------------------------|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LDB                              | LVDS Display Bridge           | Connectivity<br>Peripherals                 | <ul> <li>LVDS Display Bridge is used to connect the IPU (Image Processing Unit) to External LVDS Display Interface. LDB supports two channels; each channel has following signals:</li> <li>One clock pair</li> <li>Four data pairs</li> <li>Each signal pair contains LVDS special differential pad (PadP, PadM).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                  |
| MLB150                           | MediaLB                       | Connectivity /<br>Multimedia<br>Peripherals | The MLB interface module provides a link to a MOST <sup>®</sup> data network, using the standardized MediaLB protocol (up to 150 Mbps). The module is backward compatible to MLB-50.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| MMDC                             | Multi-Mode DDR<br>Controller  | Connectivity<br>Peripherals                 | <ul> <li>DDR Controller has the following features:</li> <li>Support 16/32/64-bit DDR3-1066 (LV) or LPDDR2-1066</li> <li>Supports both dual x32 for LPDDR2 and x64 DDR3 / LPDDR2 configurations (including 2x32 interleaved mode)</li> <li>Support up to 4 GByte DDR memory space</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| OCOTP_CTRL                       | OTP Controller                | Security                                    | The On-Chip OTP controller (OCOTP_CTRL) provides an interface for reading, programming, and/or overriding identification and control information stored in on-chip fuse elements. The module supports electrically-programmable poly fuses (eFUSEs). The OCOTP_CTRL also provides a set of volatile software-accessible signals that can be used for software control of hardware elements, not requiring non-volatility. The OCOTP_CTRL provides the primary user-visible mechanism for interfacing with on-chip fuse elements. Among the uses for the fuses are unique chip identifiers, mask revision numbers, cryptographic keys, JTAG secure mode, boot characteristics, and various control signals, requiring permanent non-volatility. |
| OCRAM                            | On-Chip Memory<br>Controller  | Data Path                                   | The On-Chip Memory controller (OCRAM) module is designed as an interface between system's AXI bus and internal (on-chip) SRAM memory module.<br>In i.MX 6Dual/6Quad processors, the OCRAM is used for controlling the 256 KB multimedia RAM through a 64-bit AXI bus.                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| OSC 32 kHz                       | OSC 32 kHz                    | Clocking                                    | Generates 32.768 kHz clock from an external crystal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| PCle                             | PCI Express 2.0               | Connectivity<br>Peripherals                 | The PCIe IP provides PCI Express Gen 2.0 functionality.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| PMU                              | Power-Management<br>Functions | Data Path                                   | Integrated power management unit. Used to provide power to various SoC domains.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PWM-1<br>PWM-2<br>PWM-3<br>PWM-4 | Pulse Width<br>Modulation     | Connectivity<br>Peripherals                 | The pulse-width modulator (PWM) has a 16-bit counter and is optimized to generate sound from stored sample audio images and it can also generate tones. It uses 16-bit resolution and a 4x16 data FIFO to generate sound.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| RAM<br>16 KB                     | Secure/non-secure<br>RAM      | Secured<br>Internal<br>Memory               | Secure/non-secure Internal RAM, interfaced through the CAAM.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| RAM<br>256 KB                    | Internal RAM                  | Internal<br>Memory                          | Internal RAM, which is accessed through OCRAM memory controllers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |



Optionally LDO\_SOC and VDD\_SOC\_CAP can be used to power the HDMI, PCIe, and SATA PHY's through external connections.

For additional information, see the i.MX 6Dual/6Quad reference manual (IMX6DQRM).

## 4.3.2 Regulators for Analog Modules

## 4.3.2.1 LDO\_1P1

The LDO\_1P1 regulator implements a programmable linear-regulator function from VDD\_HIGH\_IN (see Table 6 for minimum and maximum input requirements). Typical Programming Operating Range is 1.0 V to 1.2 V with the nominal default setting as 1.1 V. The LDO\_1P1 supplies the USB PHY, LVDS PHY, HDMI PHY, MIPI PHY, and PLLs. A programmable brown-out detector is included in the regulator that can be used by the system to determine when the load capability of the regulator is being exceeded to take the necessary steps. Current-limiting can be enabled to allow for in-rush current requirements during start-up, if needed. Active-pull-down can also be enabled for systems requiring this feature.

For information on external capacitor requirements for this regulator, see the Hardware Development Guide for i.MX 6Quad, 6Dual, 6DualLite, 6Solo Families of Applications Processors (IMX6DQ6SDLHDG).

For additional information, see the i.MX 6Dual/6Quad reference manual (IMX6DQRM).

## 4.3.2.2 LDO\_2P5

The LDO\_2P5 module implements a programmable linear-regulator function from VDD\_HIGH\_IN (see Table 6 for min and max input requirements). Typical Programming Operating Range is 2.25 V to 2.75 V with the nominal default setting as 2.5 V. The LDO\_2P5 supplies the SATA PHY, USB PHY, LVDS PHY, HDMI PHY, MIPI PHY, E-fuse module and PLLs. A programmable brown-out detector is included in the regulator that can be used by the system to determine when the load capability of the regulator is being exceeded, to take the necessary steps. Current-limiting can be enabled to allow for in-rush current requirements during start-up, if needed. Active-pull-down can also be enabled for systems requiring this feature. An alternate self-biased low-precision weak-regulator is included that can be enabled for applications needing to keep the output voltage alive during low-power modes where the main regulator driver and its associated global bandgap reference module are disabled. The output of the weak-regulator is not programmable and is a function of the input supply as well as the load current. Typically, with a 3 V input supply the weak-regulator output is 2.525 V and its output impedance is approximately  $40 \, \Omega$ .

For information on external capacitor requirements for this regulator, see the Hardware Development Guide for i.MX 6Quad, 6Dual, 6DualLite, 6Solo Families of Applications Processors (IMX6DQ6SDLHDG).

For additional information, see the i.MX 6Dual/6Quad reference manual (IMX6DQRM).

## 4.3.2.3 LDO\_USB

The LDO\_USB module implements a programmable linear-regulator function from the USB\_OTG\_VBUS and USB\_H1\_VBUS voltages (4.4 V–5.25 V) to produce a nominal 3.0 V output



voltage. A programmable brown-out detector is included in the regulator that can be used by the system to determine when the load capability of the regulator is being exceeded, to take the necessary steps. This regulator has a built in power-mux that allows the user to select to run the regulator from either VBUS supply, when both are present. If only one of the VBUS voltages is present, then the regulator automatically selects this supply. Current limit is also included to help the system meet in-rush current targets. If no VBUS voltage is present, then the VBUSVALID threshold setting will prevent the regulator from being enabled.

For information on external capacitor requirements for this regulator, see the Hardware Development Guide for i.MX 6Quad, 6Dual, 6DualLite, 6Solo Families of Applications Processors (IMX6DQ6SDLHDG).

For additional information, see the i.MX 6Dual/6Quad reference manual (IMX6DQRM).

## 4.4 PLL Electrical Characteristics

## 4.4.1 Audio/Video PLL Electrical Parameters

| Parameter          | Value                   |
|--------------------|-------------------------|
| Clock output range | 650 MHz ~1.3 GHz        |
| Reference clock    | 24 MHz                  |
| Lock time          | <11250 reference cycles |

### Table 14. Audio/Video PLL Electrical Parameters

## 4.4.2 528 MHz PLL

### Table 15. 528 MHz PLL Electrical Parameters

| Parameter          | Value                   |
|--------------------|-------------------------|
| Clock output range | 528 MHz PLL output      |
| Reference clock    | 24 MHz                  |
| Lock time          | <11250 reference cycles |

## 4.4.3 Ethernet PLL

### Table 16. Ethernet PLL Electrical Parameters

| Parameter          | Value                   |
|--------------------|-------------------------|
| Clock output range | 500 MHz                 |
| Reference clock    | 24 MHz                  |
| Lock time          | <11250 reference cycles |



| ID  | Parameter <sup>1,2</sup>             | Symbol | CK = 53 | Unit |      |
|-----|--------------------------------------|--------|---------|------|------|
|     |                                      |        | Min     | Мах  | Onit |
| LP1 | DRAM_SDCLKx_P clock high-level width | tсн    | 0.45    | 0.55 | tск  |
| LP2 | DRAM_SDCLKx_P clock low-level width  | tCL    | 0.45    | 0.55 | tск  |
| LP3 | DRAM_CSx_B, DRAM_ADDRxx setup time   | tis    | 270     | —    | ps   |
| LP4 | DRAM_CSx_B, DRAM_ADDRxx hold time    | tıн    | 270     | —    | ps   |
| LP3 | DRAM_ADDRxx setup time               | tis    | 230     | —    | ps   |
| LP4 | DRAM_ADDRxx hold time                | tін    | 230     | _    | ps   |

### Table 45. LPDDR2 Timing Parameter

<sup>1</sup> All measurements are in reference to Vref level.

 $^2\,$  Measurements were completed using balanced load and a 25  $\Omega$  resistor from outputs to DRAM\_VREF.

Figure 28 shows the LPDDR2 write timing diagram. The timing parameters for this diagram appear in Table 46.



Figure 28. LPDDR2 Write Cycle

### Table 46. LPDDR2 Write Cycle

| П    | Parameter <sup>1,2,3</sup>                                                 |               | CK = 532 MHz |      | Unit |
|------|----------------------------------------------------------------------------|---------------|--------------|------|------|
|      |                                                                            |               | Min          | Max  | Onic |
| LP17 | DRAM_DATAxx and DRAM_DQMx setup time to DRAM_SDQSx_P (differential strobe) | tDS           | 235          | —    | ps   |
| LP18 | DRAM_DATAxx and DRAM_DQMx hold time to DRAM_SDQSx_P (differential strobe)  | tdн           | 235          | —    | ps   |
| LP21 | DRAM_SDQSx_P latching rising transitions to associated clock edges         | tDQSS         | 0.75         | 1.25 | tCK  |
| LP22 | DRAM_SDQSx_P high level width                                              | <b>t</b> DQSH | 0.4          | —    | tCK  |
| LP23 | DRAM_SDQSx_P low level width                                               | tDQSL         | 0.4          | —    | tCK  |

- <sup>1</sup> To receive the reported setup and hold values, the write calibration must be performed to locate the DRAM\_SDQSx\_P in the middle of DRAM\_DATAxx window.
- <sup>2</sup> All measurements are in reference to Vref level.
- $^3$  Measurements were completed using balanced load and a 25  $\Omega$  resistor from outputs to DRAM\_VREF.

Figure 29 shows the LPDDR2 read timing diagram. The timing parameters for this diagram appear in Table 47.



Figure 29. LPDDR2 Read Cycle

Table 47. LPDDR2 Read Cycle

| ID Parameter <sup>1,2,3</sup> | Symbol                                                     | CK = 532 MHz |     | Unit |     |
|-------------------------------|------------------------------------------------------------|--------------|-----|------|-----|
|                               | i arameter                                                 | Symbol       | Min | Max  | Gim |
| LP26                          | Minimum required DRAM_DATAxx valid window width for LPDDR2 |              | 250 |      | ps  |

<sup>1</sup> To receive the reported setup and hold values, read calibration must be performed to locate the DRAM\_SDQSx\_P in the middle of DRAM\_DATAxx window.

<sup>2</sup> All measurements are in reference to Vref level.

 $^3$  Measurements were completed using balanced load and a 25  $\Omega$  resistor from outputs to DRAM\_VREF.

# 4.10 General-Purpose Media Interface (GPMI) Timing

The i.MX 6Dual/6Quad GPMI controller is a flexible interface NAND Flash controller with 8-bit data width, up to 200 MB/s I/O speed and individual chip select. It supports Asynchronous timing mode, Source Synchronous timing mode, and Samsung Toggle timing mode separately described in the following subsections.



# 4.11.4.3 SDR50/SDR104 AC Timing

Figure 47 depicts the timing of SDR50/SDR104, and Table 56 lists the SDR50/SDR104 timing characteristics.



Figure 47. SDR50/SDR104 Timing

| Table 56. | SDR50/SDR104 | Interface | Timing | Specification |
|-----------|--------------|-----------|--------|---------------|
|-----------|--------------|-----------|--------|---------------|

| ID                                                                                       | Parameter                        | Symbols          | Min                 | Мах                 | Unit |  |
|------------------------------------------------------------------------------------------|----------------------------------|------------------|---------------------|---------------------|------|--|
| Card Input Clock                                                                         |                                  |                  |                     |                     |      |  |
| SD1                                                                                      | Clock Frequency Period           | t <sub>CLK</sub> | 4.8                 | _                   | ns   |  |
| SD2                                                                                      | Clock Low Time                   | t <sub>CL</sub>  | $0.3 	imes t_{CLK}$ | $0.7 	imes t_{CLK}$ | ns   |  |
| SD2                                                                                      | Clock High Time                  | t <sub>CH</sub>  | $0.3 	imes t_{CLK}$ | $0.7 	imes t_{CLK}$ | ns   |  |
| uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in SDR50 (Reference to SDx_CLK)               |                                  |                  |                     |                     |      |  |
| SD4                                                                                      | uSDHC Output Delay               | t <sub>OD</sub>  | -3                  | 1                   | ns   |  |
|                                                                                          | uSDHC Output/Card Inputs SD_CMD, | SDx_DATAx in S   | DR104 (Refer        | ence to SDx_C       | LK)  |  |
| SD5                                                                                      | uSDHC Output Delay               | t <sub>OD</sub>  | -1.6                | 1                   | ns   |  |
|                                                                                          | uSDHC Input/Card Outputs SD_CMD, | SDx_DATAx in S   | SDR50 (Refere       | ence to SDx_CI      | _K)  |  |
| SD6                                                                                      | uSDHC Input Setup Time           | t <sub>ISU</sub> | 2.5                 | —                   | ns   |  |
| SD7                                                                                      | uSDHC Input Hold Time            | t <sub>IH</sub>  | 1.5                 | —                   | ns   |  |
| uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in SDR104 (Reference to SDx_CLK) <sup>1</sup> |                                  |                  |                     |                     |      |  |
| SD8                                                                                      | Card Output Data Window          | t <sub>odw</sub> | $0.5 	imes t_{CLK}$ | —                   | ns   |  |

<sup>1</sup>Data window in SDR100 mode is variable.





Figure 59. TMDS Clock Signal Definitions



Figure 60. Eye Diagram Mask Definition for HDMI Driver Signal Specification at TP1



Figure 61. Intra-Pair Skew Definition



|      | Paramator                                           | Standa | ard Mode | Fast Mode        |     | Unit |
|------|-----------------------------------------------------|--------|----------|------------------|-----|------|
|      | Falameter                                           | Min    | Мах      | Min              | Max | Onit |
| IC9  | Bus free time between a STOP and START condition    | 4.7    | —        | 1.3              |     | μs   |
| IC10 | Rise time of both I2Cx_SDA and I2Cx_SCL signals     | _      | 1000     | $20 + 0.1 C_b^4$ | 300 | ns   |
| IC11 | Fall time of both I2Cx_SDA and I2Cx_SCL signals     | —      | 300      | $20 + 0.1 C_b^4$ | 300 | ns   |
| IC12 | Capacitive load for each bus line (C <sub>b</sub> ) | —      | 400      | —                | 400 | pF   |

### Table 65. I<sup>2</sup>C Module Timing Parameters (continued)

<sup>1</sup> A device must internally provide a hold time of at least 300 ns for I2Cx\_SDA signal to bridge the undefined region of the falling edge of I2Cx\_SCL.

<sup>2</sup> The maximum hold time has only to be met if the device does not stretch the LOW period (ID no IC5) of the I2Cx\_SCL signal.

<sup>3</sup> A Fast-mode I2C-bus device can be used in a Standard-mode I2C-bus system, but the requirement of Set-up time (ID No IC7) of 250 ns must be met. This automatically is the case if the device does not stretch the LOW period of the I2Cx\_SCL signal. If such a device does stretch the LOW period of the I2Cx\_SCL signal, it must output the next data bit to the I2Cx\_SDA line max\_rise\_time (IC9) + data\_setup\_time (IC7) = 1000 + 250 = 1250 ns (according to the Standard-mode I2C-bus specification) before the I2Cx\_SCL line is released.

<sup>4</sup>  $C_b$  = total capacitance of one bus line in pF.

## 4.11.10 Image Processing Unit (IPU) Module Parameters

The purpose of the IPU is to provide comprehensive support for the flow of data from an image sensor and/or to a display device. This support covers all aspects of these activities:

- Connectivity to relevant devices—cameras, displays, graphics accelerators, and TV encoders.
- Related image processing and manipulation: sensor image signal processing, display processing, image conversions, and other related functions.
- Synchronization and control capabilities, such as avoidance of tearing artifacts.



• The ipp\_pin\_1- ipp\_pin\_7 are general purpose synchronous pins, that can be used to provide HSYNC, VSYNC, DRDY or any else independent signal to a display.

The IPU has a system of internal binding counters for internal events (such as, HSYNC/VSYNC) calculation. The internal event (local start point) is synchronized with internal DI\_CLK. A suitable control starts from the local start point with predefined UP and DOWN values to calculate control's changing points with half DI\_CLK resolution. A full description of the counter system can be found in the IPU chapter of the i.MX 6Dual/6Quad reference manual (IMX6DQRM).

## 4.11.10.5.2 Asynchronous Controls

The asynchronous control is a data-oriented signal that changes its value with an output data according to additional internal flags coming with the data.

There are special physical outputs to provide asynchronous controls, as follows:

- The ipp\_d0\_cs and ipp\_d1\_cs pins are dedicated to provide chip select signals to two displays.
- The ipp\_pin\_11- ipp\_pin\_17 are general purpose asynchronous pins, that can be used to provide WR. RD, RS or any other data-oriented signal to display.

### NOTE

The IPU has independent signal generators for asynchronous signals toggling. When a DI decides to put a new asynchronous data on the bus, a new internal start (local start point) is generated. The signal generators calculate predefined UP and DOWN values to change pins states with half DI\_CLK resolution.

## 4.11.10.6 Synchronous Interfaces to Standard Active Matrix TFT LCD Panels

## 4.11.10.6.1 IPU Display Operating Signals

The IPU uses four control signals and data to operate a standard synchronous interface:

- IPP\_DISP\_CLK—Clock to display
- HSYNC—Horizontal synchronization
- VSYNC—Vertical synchronization
- DRDY—Active data

All synchronous display controls are generated on the base of an internally generated "local start point". The synchronous display controls can be placed on time axis with DI's offset, up and down parameters. The display access can be whole number of DI clock (Tdiclk) only. The IPP\_DATA can not be moved relative to the local start point. The data bus of the synchronous interface is output direction only.

## 4.11.10.6.2 LCD Interface Functional Description

Figure 68 depicts the LCD interface timing for a generic active matrix color TFT panel. In this figure, signals are shown with negative polarity. The sequence of events for active matrix interface timing is:

• DI\_CLK internal DI clock is used for calculation of other controls.



| Symbol              | Parameters                                 | Test Conditions               | Min | Тур | Max | Unit |  |  |  |  |
|---------------------|--------------------------------------------|-------------------------------|-----|-----|-----|------|--|--|--|--|
| V <sub>IDTL</sub>   | Differential input low voltage threshold   | _                             | -70 |     |     | mV   |  |  |  |  |
| V <sub>IHHS</sub>   | Single ended input high voltage            |                               |     | 460 | mV  |      |  |  |  |  |
| V <sub>ILHS</sub>   | Single ended input low voltage             | -40                           |     |     | mV  |      |  |  |  |  |
| V <sub>CMRXDC</sub> | Input common mode voltage                  | 70                            |     | 330 | mV  |      |  |  |  |  |
| Z <sub>ID</sub>     | Differential input impedance               | 80                            |     | 125 | Ω   |      |  |  |  |  |
|                     | LP Li                                      | ne Receiver DC Specifications |     |     |     |      |  |  |  |  |
| V <sub>IL</sub>     | Input low voltage                          | _                             | _   |     | 550 | mV   |  |  |  |  |
| V <sub>IH</sub>     | Input high voltage                         | _                             | 920 |     | _   | mV   |  |  |  |  |
| V <sub>HYST</sub>   | Input hysteresis                           | _                             | 25  |     | _   | mV   |  |  |  |  |
|                     | Contention Line Receiver DC Specifications |                               |     |     |     |      |  |  |  |  |
| V <sub>ILF</sub>    | Input low fault threshold                  | _                             | 200 | —   | 450 | mV   |  |  |  |  |

### Table 72. Electrical and Timing Information (continued)



## 4.11.12.2 D-PHY Signaling Levels

The signal levels are different for differential HS mode and single-ended LP mode. Figure 72 shows both the HS and LP signal levels on the left and right sides, respectively. The HS signalling levels are below the LP low-level input threshold such that LP receiver always detects low on HS signals.



Figure 72. D-PHY Signaling Levels

## 4.11.12.3 HS Line Driver Characteristics



Figure 73. Ideal Single-ended and Resulting Differential HS Signals



## 4.11.13.6 Frame Transmission Mode (Synchronized Data Flow)



Figure 84. Frame Transmission Mode Transfer of Two Frames (Synchronized Data Flow)

## 4.11.13.7 Frame Transmission Mode (Pipelined Data Flow)



### Figure 85. Frame Transmission Mode Transfer of Two Frames (Pipelined Data Flow)

## 4.11.13.8 DATA and FLAG Signal Timing Requirement for a 15 pF Load

### Table 74. DATA and FLAG Timing

| Parameter                                         | Description                                                                                                                                                       | 1 Mbit/s | 100 Mbit/s |
|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|
| t <sub>Bit, nom</sub>                             | Nominal bit time                                                                                                                                                  | 1000 ns  | 10 ns      |
| $t_{\text{Rise, min}}$ and $t_{\text{Fall, min}}$ | Minimum allowed rise and fall time                                                                                                                                | 2 ns     | 2 ns       |
| t <sub>TxToRxSkew</sub> , maxfq                   | Maximum skew between transmitter and receiver package pins                                                                                                        | 50 ns    | 0.5 ns     |
| t <sub>EageSepTx</sub> , min                      | Minimum allowed separation of signal transitions at transmitter package pins, including all timing defects, for example, jitter and skew, inside the transmitter. | 400 ns   | 4 ns       |
| t <sub>EageSepRx,</sub> min                       | Minimum separation of signal transitions, measured at the receiver package pins, including all timing defects, for example, jitter and skew, inside the receiver. | 350 ns   | 3.5 ns     |



## 4.11.13.9 DATA and FLAG Signal Timing



Figure 86. DATA and FLAG Signal Timing

## 4.11.14 MediaLB (MLB) Characteristics

## 4.11.14.1 MediaLB (MLB) DC Characteristics

Table 75 lists the MediaLB 3-pin interface electrical characteristics.

| Table 75 | . MediaLB 3-Pin | Interface | Electrical | <b>DC Specifications</b> |
|----------|-----------------|-----------|------------|--------------------------|
|----------|-----------------|-----------|------------|--------------------------|

| Parameter                   | Symbol          | Test Conditions           | Min | Мах | Unit |
|-----------------------------|-----------------|---------------------------|-----|-----|------|
| Maximum input voltage       | —               | _                         | —   | 3.6 | V    |
| Low level input threshold   | V <sub>IL</sub> | _                         |     | 0.7 | V    |
| High level input threshold  | V <sub>IH</sub> | See Note <sup>1</sup>     | 1.8 |     | V    |
| Low level output threshold  | V <sub>OL</sub> | I <sub>OL</sub> = 6 mA    | —   | 0.4 | V    |
| High level output threshold | V <sub>OH</sub> | I <sub>OH</sub> = -6 mA   | 2.0 |     | V    |
| Input leakage current       | ΙL              | 0 < V <sub>in</sub> < VDD | —   | ±10 | μA   |

<sup>1</sup> Higher V<sub>IH</sub> thresholds can be used; however, the risks associated with less noise margin in the system must be evaluated and assumed by the customer.

Table 76 lists the MediaLB 6-pin interface electrical characteristics.

Table 76. MediaLB 6-Pin Interface Electrical DC Specifications

| Parameter                                                                                                                          | Symbol           | Test Conditions       | Min | Мах | Unit |
|------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------|-----|-----|------|
|                                                                                                                                    | Drive            | r Characteristics     |     |     |      |
| Differential output voltage (steady-state): I $V_{O_{+}}$ - $V_{O_{-}}$ I                                                          | V <sub>OD</sub>  | See Note <sup>1</sup> | 300 | 500 | mV   |
| Difference in differential output voltage<br>between (high/low) steady-states:<br>I V <sub>OD, high</sub> - V <sub>OD, low</sub> I | ΔV <sub>OD</sub> | _                     | -50 | 50  | mV   |







Figure 93. JTAG\_TRST\_B Timing Diagram

| ID   | Doromotov1.2                                                        | All Freq | Unit |      |
|------|---------------------------------------------------------------------|----------|------|------|
| U    | Parameter                                                           | Min      | Max  | Unit |
| SJ0  | JTAG_TCK frequency of operation 1/(3xT <sub>DC</sub> ) <sup>1</sup> | 0.001    | 22   | MHz  |
| SJ1  | JTAG_TCK cycle time in crystal mode                                 | 45       | _    | ns   |
| SJ2  | JTAG_TCK clock pulse width measured at $V_M^2$                      | 22.5     | _    | ns   |
| SJ3  | JTAG_TCK rise and fall times                                        | _        | 3    | ns   |
| SJ4  | Boundary scan input data set-up time                                | 5        | _    | ns   |
| SJ5  | Boundary scan input data hold time                                  | 24       | _    | ns   |
| SJ6  | JTAG_TCK low to output data valid                                   | _        | 40   | ns   |
| SJ7  | JTAG_TCK low to output high impedance                               | _        | 40   | ns   |
| SJ8  | JTAG_TMS, JTAG_TDI data set-up time                                 | 5        | _    | ns   |
| SJ9  | JTAG_TMS, JTAG_TDI data hold time                                   | 25       | _    | ns   |
| SJ10 | JTAG_TCK low to JTAG_TDO data valid                                 | _        | 44   | ns   |
| SJ11 | JTAG_TCK low to JTAG_TDO high impedance                             | _        | 44   | ns   |
| SJ12 | JTAG_TRST_B assert time                                             | 100      | _    | ns   |
| SJ13 | JTAG_TRST_B set-up time to JTAG_TCK low                             | 40       | _    | ns   |

T<sub>DC</sub> = target frequency of SJC

<sup>2</sup>  $V_{M}$  = mid-point voltage

# 4.11.19 SPDIF Timing Parameters

The Sony/Philips Digital Interconnect Format (SPDIF) data is sent using the bi-phase marking code. When encoding, the SPDIF data signal is modulated by a clock that is twice the bit rate of the data signal.

Table 84 and Figure 94 and Figure 95 show SPDIF timing parameters for the Sony/Philips Digital Interconnect Format (SPDIF), including the timing of the modulating Rx clock (SPDIF\_SR\_CLK) for SPDIF in Rx mode and the timing of the modulating Tx clock (SPDIF\_ST\_CLK) for SPDIF in Tx mode.



### Package Information and Contact Assignments

|           |      |             |           | Out of Reset Condition <sup>1</sup> |                                   |              |                    |  |  |
|-----------|------|-------------|-----------|-------------------------------------|-----------------------------------|--------------|--------------------|--|--|
| Ball Name | Ball | Power Group | Ball Type | Default<br>Mode<br>(Reset<br>Mode)  | Default Function<br>(Signal Name) | Input/Output | Value <sup>2</sup> |  |  |
| DRAM_D11  | AE7  | NVCC_DRAM   | DDR       | ALT0                                | DRAM_DATA11                       | Input        | PU (100K)          |  |  |
| DRAM_D12  | AB5  | NVCC_DRAM   | DDR       | ALT0                                | DRAM_DATA12                       | Input        | PU (100K)          |  |  |
| DRAM_D13  | AC5  | NVCC_DRAM   | DDR       | ALT0                                | DRAM_DATA13                       | Input        | PU (100K)          |  |  |
| DRAM_D14  | AB6  | NVCC_DRAM   | DDR       | ALT0                                | DRAM_DATA14                       | Input        | PU (100K)          |  |  |
| DRAM_D15  | AC7  | NVCC_DRAM   | DDR       | ALT0                                | DRAM_DATA15                       | Input        | PU (100K)          |  |  |
| DRAM_D16  | AB7  | NVCC_DRAM   | DDR       | ALT0                                | DRAM_DATA16                       | Input        | PU (100K)          |  |  |
| DRAM_D17  | AA8  | NVCC_DRAM   | DDR       | ALT0                                | DRAM_DATA17                       | Input        | PU (100K)          |  |  |
| DRAM_D18  | AB9  | NVCC_DRAM   | DDR       | ALT0                                | DRAM_DATA18                       | Input        | PU (100K)          |  |  |
| DRAM_D19  | Y9   | NVCC_DRAM   | DDR       | ALT0                                | DRAM_DATA19                       | Input        | PU (100K)          |  |  |
| DRAM_D2   | AC4  | NVCC_DRAM   | DDR       | ALT0                                | DRAM_DATA02                       | Input        | PU (100K)          |  |  |
| DRAM_D20  | Y7   | NVCC_DRAM   | DDR       | ALT0                                | DRAM_DATA20                       | Input        | PU (100K)          |  |  |
| DRAM_D21  | Y8   | NVCC_DRAM   | DDR       | ALT0                                | DRAM_DATA21                       | Input        | PU (100K)          |  |  |
| DRAM_D22  | AC8  | NVCC_DRAM   | DDR       | ALT0                                | DRAM_DATA22                       | Input        | PU (100K)          |  |  |
| DRAM_D23  | AA9  | NVCC_DRAM   | DDR       | ALT0                                | DRAM_DATA23                       | Input        | PU (100K)          |  |  |
| DRAM_D24  | AE9  | NVCC_DRAM   | DDR       | ALT0                                | DRAM_DATA24                       | Input        | PU (100K)          |  |  |
| DRAM_D25  | Y10  | NVCC_DRAM   | DDR       | ALT0                                | DRAM_DATA25                       | Input        | PU (100K)          |  |  |
| DRAM_D26  | AE11 | NVCC_DRAM   | DDR       | ALT0                                | DRAM_DATA26                       | Input        | PU (100K)          |  |  |
| DRAM_D27  | AB11 | NVCC_DRAM   | DDR       | ALT0                                | DRAM_DATA27                       | Input        | PU (100K)          |  |  |
| DRAM_D28  | AC9  | NVCC_DRAM   | DDR       | ALT0                                | DRAM_DATA28                       | Input        | PU (100K)          |  |  |
| DRAM_D29  | AD9  | NVCC_DRAM   | DDR       | ALT0                                | DRAM_DATA29                       | Input        | PU (100K)          |  |  |
| DRAM_D3   | AA5  | NVCC_DRAM   | DDR       | ALT0                                | DRAM_DATA03                       | Input        | PU (100K)          |  |  |
| DRAM_D30  | AD11 | NVCC_DRAM   | DDR       | ALT0                                | DRAM_DATA30                       | Input        | PU (100K)          |  |  |
| DRAM_D31  | AC11 | NVCC_DRAM   | DDR       | ALT0                                | DRAM_DATA31                       | Input        | PU (100K)          |  |  |
| DRAM_D32  | AA17 | NVCC_DRAM   | DDR       | ALT0                                | DRAM_DATA32                       | Input        | PU (100K)          |  |  |
| DRAM_D33  | AA18 | NVCC_DRAM   | DDR       | ALT0                                | DRAM_DATA33                       | Input        | PU (100K)          |  |  |
| DRAM_D34  | AC18 | NVCC_DRAM   | DDR       | ALT0                                | DRAM_DATA34                       | Input        | PU (100K)          |  |  |
| DRAM_D35  | AE19 | NVCC_DRAM   | DDR       | ALT0                                | DRAM_DATA35                       | Input        | PU (100K)          |  |  |
| DRAM_D36  | Y17  | NVCC_DRAM   | DDR       | ALT0                                | DRAM_DATA36                       | Input        | PU (100K)          |  |  |
| DRAM_D37  | Y18  | NVCC_DRAM   | DDR       | ALT0                                | DRAM_DATA37                       | Input        | PU (100K)          |  |  |
| DRAM_D38  | AB19 | NVCC_DRAM   | DDR       | ALT0                                | DRAM_DATA38                       | Input        | PU (100K)          |  |  |
| DRAM_D39  | AC19 | NVCC_DRAM   | DDR       | ALT0                                | DRAM_DATA39                       | Input        | PU (100K)          |  |  |
| DRAM_D4   | AC1  | NVCC_DRAM   | DDR       | ALT0                                | DRAM_DATA04                       | Input        | PU (100K)          |  |  |
| DRAM_D40  | Y19  | NVCC_DRAM   | DDR       | ALT0                                | DRAM_DATA40                       | Input        | PU (100K)          |  |  |
| DRAM_D41  | AB20 | NVCC_DRAM   | DDR       | ALT0                                | DRAM_DATA41                       | Input        | PU (100K)          |  |  |
| DRAM_D42  | AB21 | NVCC_DRAM   | DDR       | ALT0                                | DRAM_DATA42                       | Input        | PU (100K)          |  |  |
| DRAM_D43  | AD21 | NVCC_DRAM   | DDR       | ALT0                                | DRAM_DATA43                       | Input        | PU (100K)          |  |  |

Table 100. 21 x 21 mm Functional Contact Assignments (continued)



|             |      |               |           | Out of Reset Condition <sup>1</sup> |                                   |              |                    |  |  |
|-------------|------|---------------|-----------|-------------------------------------|-----------------------------------|--------------|--------------------|--|--|
| Ball Name   | Ball | Power Group   | Ball Type | Default<br>Mode<br>(Reset<br>Mode)  | Default Function<br>(Signal Name) | Input/Output | Value <sup>2</sup> |  |  |
| GPIO_8      | R5   | NVCC_GPIO     | GPIO      | ALT5                                | GPIO1_IO08                        | Input        | PU (100K)          |  |  |
| GPIO_9      | T2   | NVCC_GPIO     | GPIO      | ALT5                                | GPIO1_IO09                        | Input        | PU (100K)          |  |  |
| HDMI_CLKM   | J5   | HDMI_VPH      | —         | —                                   | HDMI_TX_CLK_N                     | —            | _                  |  |  |
| HDMI_CLKP   | J6   | HDMI_VPH      | —         | —                                   | HDMI_TX_CLK_P                     | —            | _                  |  |  |
| HDMI_D0M    | K5   | HDMI_VPH      | —         | —                                   | HDMI_TX_DATA0_N                   | —            | _                  |  |  |
| HDMI_D0P    | K6   | HDMI_VPH      | —         | —                                   | HDMI_TX_DATA0_P                   | —            | _                  |  |  |
| HDMI_D1M    | J3   | HDMI_VPH      | —         | —                                   | HDMI_TX_DATA1_N                   | —            | _                  |  |  |
| HDMI_D1P    | J4   | HDMI_VPH      | —         | —                                   | HDMI_TX_DATA1_P                   | —            | _                  |  |  |
| HDMI_D2M    | K3   | HDMI_VPH      | —         | —                                   | HDMI_TX_DATA2_N                   | —            |                    |  |  |
| HDMI_D2P    | K4   | HDMI_VPH      | —         | —                                   | HDMI_TX_DATA2_P                   | —            |                    |  |  |
| HDMI_HPD    | K1   | HDMI_VPH      | —         | —                                   | HDMI_TX_HPD                       | —            |                    |  |  |
| JTAG_MOD    | H6   | NVCC_JTAG     | GPIO      | ALT0                                | JTAG_MODE                         | Input        | PU (100K)          |  |  |
| JTAG_TCK    | H5   | NVCC_JTAG     | GPIO      | ALT0                                | JTAG_TCK                          | Input        | PU (47K)           |  |  |
| JTAG_TDI    | G5   | NVCC_JTAG     | GPIO      | ALT0                                | JTAG_TDI                          | Input        | PU (47K)           |  |  |
| JTAG_TDO    | G6   | NVCC_JTAG     | GPIO      | ALT0                                | JTAG_TDO                          | Output       | Keeper             |  |  |
| JTAG_TMS    | C3   | NVCC_JTAG     | GPIO      | ALT0                                | JTAG_TMS                          | Input        | PU (47K)           |  |  |
| JTAG_TRSTB  | C2   | NVCC_JTAG     | GPIO      | ALT0                                | JTAG_TRST_B                       | Input        | PU (47K)           |  |  |
| KEY_COL0    | W5   | NVCC_GPIO     | GPIO      | ALT5                                | GPIO4_IO06                        | Input        | PU (100K)          |  |  |
| KEY_COL1    | U7   | NVCC_GPIO     | GPIO      | ALT5                                | GPIO4_IO08                        | Input        | PU (100K)          |  |  |
| KEY_COL2    | W6   | NVCC_GPIO     | GPIO      | ALT5                                | GPIO4_IO10                        | Input        | PU (100K)          |  |  |
| KEY_COL3    | U5   | NVCC_GPIO     | GPIO      | ALT5                                | GPIO4_I012                        | Input        | PU (100K)          |  |  |
| KEY_COL4    | T6   | NVCC_GPIO     | GPIO      | ALT5                                | GPIO4_IO14                        | Input        | PU (100K)          |  |  |
| KEY_ROW0    | V6   | NVCC_GPIO     | GPIO      | ALT5                                | GPIO4_I007                        | Input        | PU (100K)          |  |  |
| KEY_ROW1    | U6   | NVCC_GPIO     | GPIO      | ALT5                                | GPIO4_I009                        | Input        | PU (100K)          |  |  |
| KEY_ROW2    | W4   | NVCC_GPIO     | GPIO      | ALT5                                | GPIO4_IO11                        | Input        | PU (100K)          |  |  |
| KEY_ROW3    | T7   | NVCC_GPIO     | GPIO      | ALT5                                | GPIO4_IO13                        | Input        | PU (100K)          |  |  |
| KEY_ROW4    | V5   | NVCC_GPIO     | GPIO      | ALT5                                | GPIO4_IO15                        | Input        | PD (100K)          |  |  |
| LVDS0_CLK_N | V4   | NVCC_LVDS_2P5 | LVDS      | —                                   | LVDS0_CLK_N                       | —            | _                  |  |  |
| LVDS0_CLK_P | V3   | NVCC_LVDS_2P5 | LVDS      | ALT0                                | LVDS0_CLK_P                       | Input        | Input Keeper       |  |  |
| LVDS0_TX0_N | U2   | NVCC_LVDS_2P5 | LVDS      | —                                   | LVDS0_TX0_N                       | —            |                    |  |  |
| LVDS0_TX0_P | U1   | NVCC_LVDS_2P5 | LVDS      | ALT0                                | LVDS0_TX0_P                       | Input        | Keeper             |  |  |
| LVDS0_TX1_N | U4   | NVCC_LVDS_2P5 | LVDS      | —                                   | LVDS0_TX1_N                       | —            |                    |  |  |
| LVDS0_TX1_P | U3   | NVCC_LVDS_2P5 | LVDS      | ALT0                                | LVDS0_TX1_P                       | Input        | Keeper             |  |  |
| LVDS0_TX2_N | V2   | NVCC_LVDS_2P5 | LVDS      | —                                   | LVDS0_TX2_N                       |              |                    |  |  |
| LVDS0_TX2_P | V1   | NVCC_LVDS_2P5 | LVDS      | ALT0                                | LVDS0_TX2_P                       | Input Keeper |                    |  |  |
| LVDS0_TX3_N | W2   | NVCC_LVDS_2P5 | LVDS      | _                                   | LVDS0_TX3_N                       |              |                    |  |  |

### Table 100. 21 x 21 mm Functional Contact Assignments (continued)



### Package Information and Contact Assignments

|    | 1           | 2           | З            | 4           | 5        | 6            | 7        | 8            | 6        | 10           | 11          | 12         | 13      | 14             | 15             | 16          | 17          | 18           | 19       | 20           | 21        | 22       | 23           | 24           | 25         |
|----|-------------|-------------|--------------|-------------|----------|--------------|----------|--------------|----------|--------------|-------------|------------|---------|----------------|----------------|-------------|-------------|--------------|----------|--------------|-----------|----------|--------------|--------------|------------|
| 7  | LVDS1_TX0_N | LVDS1_TX0_P | LVDS1_CLK_N  | LVDS1_CLK_P | GND      | DRAM_RESET   | DRAM_D20 | DRAM_D21     | DRAM_D19 | DRAM_D25     | DRAM_SDCKE0 | DRAM_A15   | DRAM_A7 | DRAM_A3        | DRAM_SDBA1     | DRAM_CS0    | DRAM_D36    | DRAM_D37     | DRAM_D40 | DRAM_D44     | DRAM_DQM7 | DRAM_D59 | DRAM_D62     | GND          | DRAM_D58   |
| АА | LVDS1_TX1_P | LVDS1_TX1_N | LVDS1_TX3_N  | LVDS1_TX3_P | DRAM_D3  | DRAM_D10     | GND      | DRAM_D17     | DRAM_D23 | GND          | DRAM_SDCKE1 | DRAM_A14   | GND     | DRAM_A2        | DRAM_A10       | GND         | DRAM_D32    | DRAM_D33     | GND      | DRAM_D45     | DRAM_D57  | GND      | DRAM_D61     | DRAM_SDQS7_B | DRAM_SDQS7 |
| AB | LVDS1_TX2_N | LVDS1_TX2_P | GND          | DRAM_D6     | DRAM_D12 | DRAM_D14     | DRAM_D16 | DRAM_DQM2    | DRAM_D18 | DRAM_SDQS3_B | DRAM_D27    | DRAM_SDBA2 | DRAM_A8 | DRAM_A1        | DRAM_RAS       | DRAM_SDWE   | DRAM_SDODT1 | DRAM_DQM4    | DRAM_D38 | DRAM_D41     | DRAM_D42  | DRAM_D52 | DRAM_D60     | GND          | DRAM_D56   |
| AC | DRAM_D4     | DRAM_VREF   | DRAM_DQM0    | DRAM_D2     | DRAM_D13 | DRAM_DQM1    | DRAM_D15 | DRAM_D22     | DRAM_D28 | DRAM_SDQS3   | DRAM_D31    | DRAM_A11   | DRAM_A6 | DRAM_A0        | DRAM_SDBA0     | DRAM_SDODT0 | DRAM_A13    | DRAM_D34     | DRAM_D39 | DRAM_DQM5    | DRAM_D47  | DRAM_D48 | DRAM_D53     | DRAM_D51     | DRAM_D55   |
| AD | DRAM_D5     | DRAM_D0     | DRAM_SDQS0_B | GND         | DRAM_D8  | DRAM_SDQS1   | GND      | DRAM_SDQS2   | DRAM_D29 | GND          | DRAM_D30    | DRAM_A12   | GND     | DRAM_SDCLK_1   | DRAM_SDCLK_0   | GND         | DRAM_CS1    | DRAM_SDQS4   | GND      | DRAM_SDQS5   | DRAM_D43  | GND      | DRAM_SDQS6   | DRAM_DQM6    | DRAM_D54   |
| AE | GND         | DRAM_D1     | DRAM_SDQS0   | DRAM_D7     | DRAM_D9  | DRAM_SDQS1_B | DRAM_D11 | DRAM_SDQS2_B | DRAM_D24 | DRAM_DQM3    | DRAM_D26    | DRAM_A9    | DRAM_A5 | DRAM_SDCLK_1_B | DRAM_SDCLK_0_B | DRAM_CAS    | ZQPAD       | DRAM_SDQS4_B | DRAM_D35 | DRAM_SDQS5_B | DRAM_D46  | DRAM_D49 | DRAM_SDQS6_B | DRAM_D50     | GND        |

| Table 102. 21 x 21 mm | , 0.8 mm Pitch | Ball Map | (continued) |
|-----------------------|----------------|----------|-------------|
|-----------------------|----------------|----------|-------------|



| Table 103. i.MX 6Dual/6Quad Data Sheet Document Revision History | (continued) |
|------------------------------------------------------------------|-------------|
|------------------------------------------------------------------|-------------|

| Rev.<br>Number | Date           | Substantive Change(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Rev. 3         | 02/2014        | <ul> <li>Updates throughout for Silicon revision D, include: <ul> <li>Figure 1 Part number nomenclature diagram.</li> <li>Example Orderable Part Number tables, Table 1</li> </ul> </li> <li>Feature description for Miscellaneous IPs and interfaces; SSI and ESAI.</li> <li>Table 2, UART 1–5 description change: programmable baud rate up to 5 MHz.</li> <li>Table 2, USDHC 1–4 description change: including SDXC cards up to 2 TB.</li> <li>Table 6, table footnotes, added LDO enabled mode footnote for internal LDO output set points.</li> <li>Table 61, added table footnote to the Comment heading in the Comment column.</li> <li>Removed table "On-Chip LDOs and their On-Chip Loads."</li> <li>Section 4.1.4, External Clock Sources; added Note, "The internal RTC oscillator does not".</li> <li>Section 4.1.5, reworded second paragraph about the power management IC to explain that a robust thermal design is required for the increased system power dissipation.</li> <li>Table 8, Maximum Supply Currents: NVCC_RGMII Condition value changed to N=6.</li> <li>Table 8, Maximum Supply currents: Added row; NVCC_LVDS2P5</li> <li>Section 4.2.1 Power-Up Sequence: removed Note.</li> <li>Section 4.2.1 Power-Up Sequence: removed Note.</li> <li>Section 4.5.2 OSC32K, second paragraph reworded to describe OSC32K automatic switching.</li> <li>Section 4.3.2 Reset Timing Parameters; changed RTC_XTALI Vih minimum value to 0.8.</li> <li>Table 21 XTALI and RTC_XTALI DC parameters; changed RTC_XTALI Vih minimum value to 1.1.</li> <li>Table 37 Reset Timing Parameters; removed footnote.</li> <li>Section 4.9.3 External Interface Module; enhanced wording to first paragraph to describe operating frequency for data transfers, and to explain register settings are valid for entire range of frequencies.</li> <li>Table 41. EIM Asynchronous Timing Parameters; reworded footnote 2 for clarity.</li> <li>Table 41. EIM Asynchronous Timing Parameters; added last row for MLBSIG (MLBDAT).</li> <li>Table 41. EIM Asynchronous Timing Parameters; added last row for MLBSIG (ML</li></ul> |
| Rev. 2.3       | 07/26<br>/2013 | <ul> <li>Table 100, 21 x 21Functional Contact Assignments:<br/>Restored NANDF_WP_B row and description.</li> <li>System Timing Parameters Table 37, Reset timing parameter, CC1 description clarified, change from:<br/>"Duration of SRC_POR_B to be qualified as valid (input slope &lt;= 5 ns)" to:<br/>"Duration of SRC_POR_B to be qualified as valid"<br/>and added a footnote to the parameter with the following text:<br/>"SRC_POR_B rise and fall times must be 5 ns or less."<br/>This change was made for clarity and does not represent a specification change.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Rev. 2.2       | 07/2013        | Editor corrections to revision history links. No technical content changes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Rev. 2.1       | 07/2013        | <ul> <li>Figure 1, Changed temperature references from Consumer to Commercial.</li> <li>Table 100, 21 x 21Functional Contact Assignments: <ul> <li>Removed rows: DRAM_VREF, HDMI_DDCCEC, and HDMI_REF.</li> <li>Due to a typographical error in revision 2.0, the ball names for rows EIM_DA2 through EIM_DA15 were ordered incorrectly. This has been corrected in revision 2.1. The ball map is correct in both revision 2.0 and 2.1.</li> </ul></li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |