E·XFL

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Active
Core Processor	ARM® Cortex®-A9
Number of Cores/Bus Width	2 Core, 32-Bit
Speed	1.0GHz
Co-Processors/DSP	Multimedia; NEON™ SIMD
RAM Controllers	LPDDR2, LVDDR3, DDR3
Graphics Acceleration	Yes
Display & Interface Controllers	Keypad, LCD
Ethernet	10/100/1000Mbps (1)
SATA	SATA 3Gbps (1)
USB	USB 2.0 + PHY (4)
Voltage - I/O	1.8V, 2.5V, 2.8V, 3.3V
Operating Temperature	-40°C ~ 125°C (TJ)
Security Features	ARM TZ, Boot Security, Cryptography, RTIC, Secure Fusebox, Secure JTAG, Secure Memory, Secure RTC, Tamper Detection
Package / Case	624-FBGA, FCBGA
Supplier Device Package	624-FCBGA (21x21)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mcimx6d4avt10ad

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Introduction

Figure 1 describes the part number nomenclature to identify the characteristics of the specific part number you have (for example, cores, frequency, temperature grade, fuse options, silicon revision). Figure 1 applies to the i.MX 6Dual/6Quad.

The two characteristics that identify which data sheet a specific part applies to are the part number series field and the temperature grade (junction) field:

- The i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors data sheet (IMX6DQAEC) covers parts listed with "A (Automotive temp)"
- The i.MX 6Dual/6Quad Applications Processors for Consumer Products data sheet (IMX6DQCEC) covers parts listed with "D (Commercial temp)" or "E (Extended Commercial temp)"
- The i.MX 6Dual/6Quad Applications Processors for Industrial Products data sheet (IMX6DQIEC) covers parts listed with "C (Industrial temp)"

Ensure that you have the right data sheet for your specific part by checking the temperature grade (junction) field and matching it to the right data sheet. If you have questions, see freescale.com/imx6series or contact your Freescale representative.

1. See the freescale.com\imx6series Web page for latest information on the available silicon revision.

2. If a 24 MHz input clock is used (required for USB), the maximum SoC speed is limited to 792 MHz.

3. If a 24 MHz input clock is used (required for USB), the maximum SoC speed is limited to 996 MHz.

Figure 1. Part Number Nomenclature—i.MX 6Quad and i.MX 6Dual

Introduction

- Displays—Total five interfaces available. Total raw pixel rate of all interfaces is up to 450 Mpixels/sec, 24 bpp. Up to four interfaces may be active in parallel.
 - One Parallel 24-bit display port, up to 225 Mpixels/sec (for example, WUXGA at 60 Hz or dual HD1080 and WXGA at 60 Hz)
 - LVDS serial ports—One port up to 165 Mpixels/sec or two ports up to 85 MP/sec (for example, WUXGA at 60 Hz) each
 - HDMI 1.4 port
 - MIPI/DSI, two lanes at 1 Gbps
- Camera sensors:
 - Parallel Camera port (up to 20 bit and up to 240 MHz peak)
 - MIPI CSI-2 serial camera port, supporting up to 1000 Mbps/lane in 1/2/3-lane mode and up to 800 Mbps/lane in 4-lane mode. The CSI-2 Receiver core can manage one clock lane and up to four data lanes. Each i.MX 6Dual/6Quad processor has four lanes.
- Expansion cards:
 - Four MMC/SD/SDIO card ports all supporting:
 - 1-bit or 4-bit transfer mode specifications for SD and SDIO cards up to UHS-I SDR-104 mode (104 MB/s max)
 - 1-bit, 4-bit, or 8-bit transfer mode specifications for MMC cards up to 52 MHz in both SDR and DDR modes (104 MB/s max)
- USB:
 - One High Speed (HS) USB 2.0 OTG (Up to 480 Mbps), with integrated HS USB PHY
 - Three USB 2.0 (480 Mbps) hosts:
 - One HS host with integrated High Speed PHY
 - Two HS hosts with integrated HS-IC USB (High Speed Inter-Chip USB) PHY
- Expansion PCI Express port (PCIe) v2.0 one lane
 - PCI Express (Gen 2.0) dual mode complex, supporting Root complex operations and Endpoint operations. Uses x1 PHY configuration.
- Miscellaneous IPs and interfaces:
 - SSI block capable of supporting audio sample frequencies up to 192 kHz stereo inputs and outputs with I²S mode
 - ESAI is capable of supporting audio sample frequencies up to 260kHz in I2S mode with 7.1 multi channel outputs
 - Five UARTs, up to 5.0 Mbps each:
 - Providing RS232 interface
 - Supporting 9-bit RS485 multidrop mode
 - One of the five UARTs (UART1) supports 8-wire while others four supports 4-wire. This is due to the SoC IOMUX limitation, since all UART IPs are identical.
 - Five eCSPI (Enhanced CSPI)
 - Three I2C, supporting 400 kbps

Introduction

- CSU—Central Security Unit. Enhancement for the IC Identification Module (IIM). Will be configured during boot and by eFUSEs and will determine the security level operation mode as well as the TZ policy.
- A-HAB—Advanced High Assurance Boot—HABv4 with the new embedded enhancements: SHA-256, 2048-bit RSA key, version control mechanism, warm boot, CSU, and TZ initialization.

1.3 Updated Signal Naming Convention

The signal names of the i.MX 6 series of products have been standardized to better align the signal names within the family and across the documentation. Some of the benefits of these changes are as follows:

- The names are unique within the scope of an SoC and within the series of products
- Searches will return all occurrences of the named signal
- The names are consistent between i.MX 6 series products implementing the same modules
- The module instance is incorporated into the signal name

This change applies only to signal names. The original ball names have been preserved to prevent the need to change schematics, BSDL models, IBIS models, etc.

Throughout this document, the updated signal names are used except where referenced as a ball name (such as the Functional Contact Assignments table, Ball Map table, and so on). A master list of the signal name changes is in the document, *IMX 6 Series Signal Name Mapping* (EB792). This list can be used to map the signal names used in older documentation to the new standardized naming conventions.

Modules List

Block Mnemonic	Block Name	Subsystem	Brief Description
EPIT-1 EPIT-2	Enhanced Periodic Interrupt Timer	Timer Peripherals	Each EPIT is a 32-bit "set and forget" timer that starts counting after the EPIT is enabled by software. It is capable of providing precise interrupts at regular intervals with minimal processor intervention. It has a 12-bit prescaler for division of input clock frequency to get the required time setting for the interrupts to occur, and counter value can be programmed on the fly.
ESAI	Enhanced Serial Audio Interface	Connectivity Peripherals	The Enhanced Serial Audio Interface (ESAI) provides a full-duplex serial port for serial communication with a variety of serial devices, including industry-standard codecs, SPDIF transceivers, and other processors. The ESAI consists of independent transmitter and receiver sections, each section with its own clock generator. All serial transfers are synchronized to a clock. Additional synchronization signals are used to delineate the word frames. The normal mode of operation is used to transfer data at a periodic rate, one word per period. The network mode is also intended for periodic transfers; however, it supports up to 32 words (time slots) per period. This mode can be used to build time division multiplexed (TDM) networks. In contrast, the on-demand mode is intended for non-periodic transfers of data and to transfer data serially at high speed when the data becomes available.
FlexCAN-1 FlexCAN-2	Flexible Controller Area Network	Connectivity Peripherals	The CAN protocol was primarily, but not only, designed to be used as a vehicle serial data bus, meeting the specific requirements of this field: real-time processing, reliable operation in the Electromagnetic interference (EMI) environment of a vehicle, cost-effectiveness and required bandwidth. The FlexCAN module is a full implementation of the CAN protocol specification, Version 2.0 B, which supports both standard and extended message frames.
GPIO-1 GPIO-2 GPIO-3 GPIO-4 GPIO-5 GPIO-6 GPIO-7	General Purpose I/O Modules	System Control Peripherals	Used for general purpose input/output to external devices. Each GPIO module supports 32 bits of I/O.
GPMI	General Purpose Media Interface	Connectivity Peripherals	The GPMI module supports up to 8x NAND devices. 40-bit ECC encryption/decryption for NAND Flash controller (GPMI2). The GPMI supports separate DMA channels per NAND device.
GPT	General Purpose Timer	Timer Peripherals	Each GPT is a 32-bit "free-running" or "set and forget" mode timer with programmable prescaler and compare and capture register. A timer counter value can be captured using an external event and can be configured to trigger a capture event on either the leading or trailing edges of an input pulse. When the timer is configured to operate in "set and forget" mode, it is capable of providing precise interrupts at regular intervals with minimal processor intervention. The counter has output compare logic to provide the status and interrupt at comparison. This timer can be configured to run either on an external clock or on an internal clock.

This section provides the device and module-level electrical characteristics for the i.MX 6Dual/6Quad processors.

4.1 Chip-Level Conditions

This section provides the device-level electrical characteristics for the SoC. See Table 3 for a quick reference to the individual tables and sections.

For these characteristics,	Topic appears
Absolute Maximum Ratings	on page 19
FCPBGA Package Thermal Resistance	on page 20
Operating Ranges	on page 21
External Clock Sources	on page 23
Maximum Supply Currents	on page 25
Low Power Mode Supply Currents	on page 26
USB PHY Current Consumption	on page 28
SATA Typical Power Consumption	on page 28
PCIe 2.0 Maximum Power Consumption	on page 30
HDMI Maximum Power Consumption	on page 31

Table 3. i.MX 6Dual/6Quad Chip-Level Conditions

4.1.1 Absolute Maximum Ratings

CAUTION

Stresses beyond those listed under Table 4 may affect reliability or cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated in the Operating Ranges or Parameters tables is not implied.

Parameter Description	Symbol	Min	Мах	Unit
Core supply voltages	VDD_ARM_IN VDD_ARM23_IN VDD_SOC_IN	-0.3	1.5	V
Internal supply voltages	VDD_ARM_CAP VDD_ARM23_CAP VDD_SOC_CAP VDD_PU_CAP	-0.3	1.3	V
GPIO supply voltage	Supplies denoted as I/O supply	-0.5	3.6	V
DDR I/O supply voltage	Supplies denoted as I/O supply	-0.4	1.975	V

4.1.10 HDMI Maximum Power Consumption

Table 13 provides HDMI PHY currents for both Active 3D Tx with LFSR15 data pattern and Power-down modes.

Mode	Test Conditions	Supply	Max Current	Unit
Active	Bit rate 251.75 Mbps	HDMI_VPH	14	mA
		HDMI_VP	4.1	mA
	Bit rate 279.27 Mbps	HDMI_VPH	14	mA
		HDMI_VP	4.2	mA
	Bit rate 742.5 Mbps	HDMI_VPH	17	mA
		HDMI_VP	7.5	mA
	Bit rate 1.485 Gbps	HDMI_VPH	17	mA
		HDMI_VP	12	mA
	Bit rate 2.275 Gbps	HDMI_VPH	16	mA
		HDMI_VP	17	mA
	Bit rate 2.97 Gbps	HDMI_VPH	19	mA
		HDMI_VP	22	mA
Power-down	_	HDMI_VPH	49	μA
		HDMI_VP	1100	μA

Table 13.	. HDMI PHY	Current Drain
-----------	------------	---------------

Parameters	Symbol	Test Conditions	Min	Мах	Unit
DC input Logic Low	Vil(dc)	_	OVSS	Vref-0.1	V
Differential input Logic High	Vih(diff)	_	0.2	See Note ³	V
Differential input Logic Low	Vil(diff)	_	See Note ³	-0.2	V
Termination Voltage	Vtt	Vtt tracking OVDD/2	$0.49 \times \text{OVDD}$	$0.51 \times OVDD$	V
Input current (no pull-up/down)	lin	Vin = 0 or OVDD	-2.9	2.9	μA
Pull-up/pull-down impedance mismatch	MMpupd	_	-10	10	%
240 Ω unit calibration resolution	Rres	_	—	10	Ω
Keeper circuit resistance	Rkeep	—	105	175	kΩ

Table 24. DDR3/DDR3L I/O DC Electrical Parameters (continued)

¹ OVDD – I/O power supply (1.425 V–1.575 V for DDR3 and 1.283 V–1.45 V for DDR3L).

² Vref – DDR3/DDR3L external reference voltage.

³ The single-ended signals need to be within the respective limits (Vih(dc) max, Vil(dc) min) for single-ended signals as well as the limitations for overshoot and undershoot (see Table 30).

4.6.4 LVDS I/O DC Parameters

The LVDS interface complies with TIA/EIA 644-A standard. See TIA/EIA STANDARD 644-A, "Electrical Characteristics of Low Voltage Differential Signaling (LVDS) Interface Circuits" for details.

Table 25 shows the Low Voltage Differential Signalling (LVDS) I/O DC parameters.

Parameter	Symbol	Test Conditions	Min	Мах	Unit
Output Differential Voltage	V _{OD}	Rload=100 Ω between padP and padN	250	450	mV
Output High Voltage	V _{OH}	I _{OH} = 0 mA	1.25	1.6	
Output Low Voltage	V _{OL}	I _{OL} = 0 mA	0.9	1.25	V
Offset Voltage	V _{OS}	_	1.125	1.375	

Table 25. LVDS I/O DC Parameters

4.6.5 MLB 6-Pin I/O DC Parameters

The MLB interface complies with Analog Interface of 6-pin differential Media Local Bus specification version 4.1. See 6-pin differential MLB specification v4.1, "MediaLB 6-pin interface Electrical Characteristics" for details.

NOTE

The MLB 6-pin interface does not support speed mode 8192fs.

Table 26 shows the Media Local Bus (MLB) I/O DC parameters.

4.9.3.4 General EIM Timing-Asynchronous Mode

Figure 18 through Figure 22 and Table 41 provide timing parameters relative to the chip select (CS) state for asynchronous and DTACK EIM accesses with corresponding EIM bit fields and the timing parameters mentioned above.

Asynchronous read & write access length in cycles may vary from what is shown in Figure 18 through Figure 21 as RWSC, OEN & CSN is configured differently. See the i.MX 6Dual/6Quad reference manual (IMX6DQRM) for the EIM programming model.

Figure 18. Asynchronous Memory Read Access (RWSC = 5)

⁴ Refer to JEDEC DDR3 SDRAM Standards for Data Setup (tDS), Hold (tDH) and Slew Rate Derating tables.

Figure 26 shows the DDR3/DDR3L read timing diagram. The timing parameters for this diagram appear in Table 44.

Figure 26. DDR3/DDR3L Read Cycle

4.9.4.2 LPDDR2 Parameters

Table 44. DDR3/DDR3L Read Cycle

п	ID Parameter ^{1,2,3}		CK = 532 MHz		Unit
		Min Max	Мах	onne	
DDR26	Minimum required DRAM_DATAxx valid window width.	—	450	—	ps

To receive the reported setup and hold values, the read calibration must be performed to locate the DRAM_SDQSx_P in the middle of DRAM_DATAxx window.

² All measurements are in reference to Vref level.

³ Measurements were completed using balanced load and a 25 Ω resistor from outputs to DRAM_VREF.

Figure 27 shows the LPDDR2 basic timing diagram. The timing parameters for this diagram appear in Table 45.

Figure 27. LPDDR2 Command and Address Timing Diagram

i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 4, 07/2015

1

- ¹ To receive the reported setup and hold values, the write calibration must be performed to locate the DRAM_SDQSx_P in the middle of DRAM_DATAxx window.
- ² All measurements are in reference to Vref level.
- 3 Measurements were completed using balanced load and a 25 Ω resistor from outputs to DRAM_VREF.

Figure 29 shows the LPDDR2 read timing diagram. The timing parameters for this diagram appear in Table 47.

Figure 29. LPDDR2 Read Cycle

Table 47. LPDDR2 Read Cycle

п	Parameter ^{1,2,3}		CK = 532 MHz		Unit
ID	i arameter	Symbol	Min	Max	Onit
LP26	Minimum required DRAM_DATAxx valid window width for LPDDR2	_	250		ps

¹ To receive the reported setup and hold values, read calibration must be performed to locate the DRAM_SDQSx_P in the middle of DRAM_DATAxx window.

² All measurements are in reference to Vref level.

 3 Measurements were completed using balanced load and a 25 Ω resistor from outputs to DRAM_VREF.

4.10 General-Purpose Media Interface (GPMI) Timing

The i.MX 6Dual/6Quad GPMI controller is a flexible interface NAND Flash controller with 8-bit data width, up to 200 MB/s I/O speed and individual chip select. It supports Asynchronous timing mode, Source Synchronous timing mode, and Samsung Toggle timing mode separately described in the following subsections.

ID	Parameter	Symbols	Min	Max	Unit
eSDHC Input/Card Outputs SD_CMD, SD_DATAx (Reference to SDx_CLK)					
SD7	eSDHC Input Setup Time	t _{ISU}	2.5	_	ns
SD8	eSDHC Input Hold Time ⁴	t _{IH}	1.5	_	ns

Table 54. SD/eMMC4.3 Interface Timing Specification (continued)

¹ In low speed mode, card clock must be lower than 400 kHz, voltage ranges from 2.7 to 3.6 V.

² In normal (full) speed mode for SD/SDIO card, clock frequency can be any value between 0–25 MHz. In high-speed mode, clock frequency can be any value between 0–50 MHz.

³ In normal (full) speed mode for MMC card, clock frequency can be any value between 0-20 MHz. In high-speed mode, clock frequency can be any value between 0-52 MHz.

⁴To satisfy hold timing, the delay difference between clock input and cmd/data input must not exceed 2 ns.

4.11.4.2 eMMC4.4/4.41 (Dual Data Rate) eSDHCv3 AC Timing

Figure 46 depicts the timing of eMMC4.4/4.41. Table 55 lists the eMMC4.4/4.41 timing characteristics. Be aware that only SDx_DATAx is sampled on both edges of the clock (not applicable to SD_CMD).

Figure 46. eMMC4.4/4.41 Timing

Table 55. eMMC4.4/4.41 Interface Timing Specification

ID	Parameter	Symbols	Min	Max	Unit			
	Card Input Clock							
SD1	Clock Frequency (EMMC4.4 DDR)	f _{PP}	0	52	MHz			
SD1	Clock Frequency (SD3.0 DDR)	f _{PP}	0	50	MHz			
	uSDHC Output / Card Inputs SD_CMD, SD_DATAx (Reference to SD_CLK)							
SD2	uSDHC Output Delay	t _{OD}	2.5	7.1	ns			
uSDHC Input / Card Outputs SD_CMD, SD_DATAx (Reference to SD_CLK)								
SD3	uSDHC Input Setup Time	t _{ISU}	2.6	_	ns			
SD4	uSDHC Input Hold Time	t _{IH}	1.5	_	ns			

The maximum accuracy of UP/DOWN edge of IPP_DISP_DATA is:

Accuracy = $T_{diclk} \pm 0.62$ ns

The DISP_CLK_PERIOD, DI_CLK_PERIOD parameters are register-controlled.

Figure 71 depicts the synchronous display interface timing for access level. The DISP_CLK_DOWN and DISP_CLK_UP parameters are register-controlled. Table 70 lists the synchronous display interface timing characteristics.

Figure 71. Synchronous Display Interface Timing Diagram—Access Level

Table 70. Synchronous	Display Interface	e Timing Characteristics	(Access Level)
	Diopidy mitorial		(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

ID	Parameter	Symbol	Min	Typ ¹	Max	Unit
IP16	Display interface clock low time	Tckl	Tdicd-Tdicu-1.24	Tdicd ² -Tdicu ³	Tdicd-Tdicu+1.24	ns
IP17	Display interface clock high time	Tckh	Tdicp-Tdicd+Tdicu-1.24	Tdicp-Tdicd+Tdicu	Tdicp-Tdicd+Tdicu+1.2	ns
IP18	Data setup time	Tdsu	Tdicd-1.24	Tdicu	—	ns
IP19	Data holdup time	Tdhd	Tdicp-Tdicd-1.24	Tdicp-Tdicu	—	ns
IP20o	Control signals offset times (defined for each pin)	Tocsu	Tocsu-1.24	Tocsu	Tocsu+1.24	ns
IP20	Control signals setup time to display interface clock (defined for each pin)	Tcsu	Tdicd-1.24-Tocsu%Tdicp	Tdicu	_	ns

¹The exact conditions have not been finalized, but will likely match the current customer requirement for their specific display. These conditions may be chip specific.

² Display interface clock down time

$$Tdicd = \frac{1}{2} \left(T_{diclk} \times ceil \left[\frac{2 \times DISP_CLK_DOWN}{DI_CLK_PERIOD} \right] \right)$$

4.11.13.6 Frame Transmission Mode (Synchronized Data Flow)

Figure 84. Frame Transmission Mode Transfer of Two Frames (Synchronized Data Flow)

4.11.13.7 Frame Transmission Mode (Pipelined Data Flow)

Figure 85. Frame Transmission Mode Transfer of Two Frames (Pipelined Data Flow)

4.11.13.8 DATA and FLAG Signal Timing Requirement for a 15 pF Load

Table 74. DATA and FLAG Timing

Parameter	Description	1 Mbit/s	100 Mbit/s
t _{Bit, nom}	Nominal bit time	1000 ns	10 ns
$t_{\text{Rise, min}}$ and $t_{\text{Fall, min}}$	Minimum allowed rise and fall time	2 ns	2 ns
t _{TxToRxSkew} , maxfq	Maximum skew between transmitter and receiver package pins	50 ns	0.5 ns
t _{EageSepTx} , min	Minimum allowed separation of signal transitions at transmitter package pins, including all timing defects, for example, jitter and skew, inside the transmitter.	400 ns	4 ns
t _{EageSepRx,} min	Minimum separation of signal transitions, measured at the receiver package pins, including all timing defects, for example, jitter and skew, inside the receiver.	350 ns	3.5 ns

Figure 93. JTAG_TRST_B Timing Diagram

ID	Doromotov1.2	All Frequencies		Unit	
U	Parameter	Min	Max	Unit	
SJ0	JTAG_TCK frequency of operation 1/(3xT _{DC}) ¹	0.001	22	MHz	
SJ1	JTAG_TCK cycle time in crystal mode	45	_	ns	
SJ2	JTAG_TCK clock pulse width measured at V_M^2	22.5	_	ns	
SJ3	JTAG_TCK rise and fall times	_	3	ns	
SJ4	Boundary scan input data set-up time	5	_	ns	
SJ5	Boundary scan input data hold time	24	_	ns	
SJ6	JTAG_TCK low to output data valid	_	40	ns	
SJ7	JTAG_TCK low to output high impedance	_	40	ns	
SJ8	JTAG_TMS, JTAG_TDI data set-up time	5	_	ns	
SJ9	JTAG_TMS, JTAG_TDI data hold time	25	_	ns	
SJ10	JTAG_TCK low to JTAG_TDO data valid	_	44	ns	
SJ11	JTAG_TCK low to JTAG_TDO high impedance	_	44	ns	
SJ12	JTAG_TRST_B assert time	100	_	ns	
SJ13	JTAG_TRST_B set-up time to JTAG_TCK low	40	_	ns	

T_{DC} = target frequency of SJC

² V_{M} = mid-point voltage

4.11.19 SPDIF Timing Parameters

The Sony/Philips Digital Interconnect Format (SPDIF) data is sent using the bi-phase marking code. When encoding, the SPDIF data signal is modulated by a clock that is twice the bit rate of the data signal.

Table 84 and Figure 94 and Figure 95 show SPDIF timing parameters for the Sony/Philips Digital Interconnect Format (SPDIF), including the timing of the modulating Rx clock (SPDIF_SR_CLK) for SPDIF in Rx mode and the timing of the modulating Tx clock (SPDIF_ST_CLK) for SPDIF in Tx mode.

4.11.20.3 SSI Transmitter Timing with External Clock

Figure 98 depicts the SSI transmitter external clock timing and Table 88 lists the timing parameters for the transmitter timing with the external clock.

Figure 98. SSI Transmitter External Clock Timing Diagram

ID	Parameter	Min	Мах	Unit				
	External Clock Operation							
SS22	AUDx_TXC/AUDx_RXC clock period	81.4	—	ns				
SS23	AUDx_TXC/AUDx_RXC clock high period	36.0	_	ns				
SS24	AUDx_TXC/AUDx_RXC clock rise time	—	6.0	ns				
SS25	AUDx_TXC/AUDx_RXC clock low period	36.0	_	ns				
SS26	AUDx_TXC/AUDx_RXC clock fall time	—	6.0	ns				
SS27	AUDx_TXC high to AUDx_TXFS (bl) high	-10.0	15.0	ns				
SS29	AUDx_TXC high to AUDx_TXFS (bl) low	10.0	_	ns				
SS31	AUDx_TXC high to AUDx_TXFS (wl) high	-10.0	15.0	ns				
SS33	AUDx_TXC high to AUDx_TXFS (wl) low	10.0	_	ns				
SS37	AUDx_TXC high to AUDx_TXD valid from high impedance	—	15.0	ns				
SS38	AUDx_TXC high to AUDx_TXD high/low	—	15.0	ns				
SS39	AUDx_TXC high to AUDx_TXD high impedance	—	15.0	ns				

Table 88. SSI Transmitter Timing with External Clock

ID	Parameter	Min	Мах	Unit
	Synchronous External Clock Ope	eration		
SS44	AUDx_RXD setup before AUDx_TXC falling	10.0	_	ns
SS45	AUDx_RXD hold after AUDx_TXC falling	2.0	_	ns
SS46	AUDx_RXD rise/fall time	-	6.0	ns

Table 88. SSI Transmitter Timing with External Clock (continued)

NOTE

- All the timings for the SSI are given for a non-inverted serial clock polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync (TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting the clock signal AUDx_TXC/AUDx_RXC and/or the frame sync AUDx_TXFS/AUDx_RXFS shown in the tables and in the figures.
- All timings are on Audiomux Pads when SSI is being used for data transfer.
- AUDx_TXC and AUDx_RXC refer to the Transmit and Receive sections of the SSI.
- The terms WL and BL refer to Word Length (WL) and Bit Length (BL).
- For internal Frame Sync operation using external clock, the frame sync timing is same as that of transmit data (for example, during AC97 mode of operation).

4.11.20.4 SSI Receiver Timing with External Clock

Figure 99 depicts the SSI receiver external clock timing and Table 89 lists the timing parameters for the receiver timing with the external clock.

Figure 99. SSI Receiver External Clock Timing Diagram

ID	Parameter	Min	Мах	Unit
	External Clock Operation	on		
SS22	AUDx_TXC/AUDx_RXC clock period	81.4	_	ns
SS23	AUDx_TXC/AUDx_RXC clock high period	36	_	ns
SS24	AUDx_TXC/AUDx_RXC clock rise time	_	6.0	ns
SS25	AUDx_TXC/AUDx_RXC clock low period	36	_	ns
SS26	AUDx_TXC/AUDx_RXC clock fall time	_	6.0	ns
SS28	AUDx_RXC high to AUDx_TXFS (bl) high	-10	15.0	ns
SS30	AUDx_RXC high to AUDx_TXFS (bl) low	10	_	ns
SS32	AUDx_RXC high to AUDx_TXFS (wl) high	-10	15.0	ns
SS34	AUDx_RXC high to AUDx_TXFS (wI) low	10	_	ns
SS35	AUDx_TXC/AUDx_RXC External AUDx_TXFS rise time	_	6.0	ns
SS36	AUDx_TXC/AUDx_RXC External AUDx_TXFS fall time	_	6.0	ns
SS40	AUDx_RXD setup time before AUDx_RXC low	10	_	ns
SS41	AUDx_RXD hold time after AUDx_RXC low	2	_	ns

Table 89. SSI Receiver Timing with External Clock

NOTE

- All the timings for the SSI are given for a non-inverted serial clock polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync (TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting the clock signal AUDx_TXC/AUDx_RXC and/or the frame sync AUDx_TXFS/AUDx_RXFS shown in the tables and in the figures.
- All timings are on Audiomux Pads when SSI is being used for data transfer.
- AUDx_TXC and AUDx_RXC refer to the Transmit and Receive sections of the SSI.
- The terms, WL and BL, refer to Word Length (WL) and Bit Length (BL).
- For internal Frame Sync operation using external clock, the frame sync timing is same as that of transmit data (for example, during AC97 mode of operation).

4.11.23 USB PHY Parameters

This section describes the USB-OTG PHY and the USB Host port PHY parameters.

The USB PHY meets the electrical compliance requirements defined in the Universal Serial Bus Revision 2.0 OTG, USB Host with the amendments below (On-The-Go and Embedded Host Supplement to the USB Revision 2.0 Specification is not applicable to Host port).

- USB ENGINEERING CHANGE NOTICE
 - Title: 5V Short Circuit Withstand Requirement Change
 - Applies to: Universal Serial Bus Specification, Revision 2.0
- Errata for USB Revision 2.0 April 27, 2000 as of 12/7/2000
- USB ENGINEERING CHANGE NOTICE
 - Title: Pull-up/Pull-down resistors
 - Applies to: Universal Serial Bus Specification, Revision 2.0
- USB ENGINEERING CHANGE NOTICE
 - Title: Suspend Current Limit Changes
 - Applies to: Universal Serial Bus Specification, Revision 2.0
- USB ENGINEERING CHANGE NOTICE
 - Title: USB 2.0 Phase Locked SOFs
 - Applies to: Universal Serial Bus Specification, Revision 2.0
- On-The-Go and Embedded Host Supplement to the USB Revision 2.0 Specification
 - Revision 2.0 plus errata and ecn June 4, 2010
- Battery Charging Specification (available from USB-IF)
 - Revision 1.2, December 7, 2010
 - Portable device only

6.2.1.1 21 x 21 mm Lidded Package

Figure 107 shows the top, bottom, and side views of the 21×21 mm lidded package.

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OU	TLINE	PRINT VERSION NOT	TO SCALE	
TITLE: 624 I/O FC PB(βA.	DOCUMEN	NT NO: 98ASA00330D	REV: D	
21 X 21 X 2 PKG,			STANDARD: NON-JEDEC		
0.8 MM PITCH, STAMPED LID			0	8 OCT 2013	

Figure 106. 21 x 21 mm Lidded Package Top, Bottom, and Side Views (Sheet 1 of 2)

Package Information and Contact Assignments

				Out of Reset Condition ¹			
Ball Name	Ball	Power Group	Ball Type	Default Mode (Reset Mode)	Default Function (Signal Name)	Input/Output	Value ²
DRAM_D11	AE7	NVCC_DRAM	DDR	ALT0	DRAM_DATA11	Input	PU (100K)
DRAM_D12	AB5	NVCC_DRAM	DDR	ALT0	DRAM_DATA12	Input	PU (100K)
DRAM_D13	AC5	NVCC_DRAM	DDR	ALT0	DRAM_DATA13	Input	PU (100K)
DRAM_D14	AB6	NVCC_DRAM	DDR	ALT0	DRAM_DATA14	Input	PU (100K)
DRAM_D15	AC7	NVCC_DRAM	DDR	ALT0	DRAM_DATA15	Input	PU (100K)
DRAM_D16	AB7	NVCC_DRAM	DDR	ALT0	DRAM_DATA16	Input	PU (100K)
DRAM_D17	AA8	NVCC_DRAM	DDR	ALT0	DRAM_DATA17	Input	PU (100K)
DRAM_D18	AB9	NVCC_DRAM	DDR	ALT0	DRAM_DATA18	Input	PU (100K)
DRAM_D19	Y9	NVCC_DRAM	DDR	ALT0	DRAM_DATA19	Input	PU (100K)
DRAM_D2	AC4	NVCC_DRAM	DDR	ALT0	DRAM_DATA02	Input	PU (100K)
DRAM_D20	Y7	NVCC_DRAM	DDR	ALT0	DRAM_DATA20	Input	PU (100K)
DRAM_D21	Y8	NVCC_DRAM	DDR	ALT0	DRAM_DATA21	Input	PU (100K)
DRAM_D22	AC8	NVCC_DRAM	DDR	ALT0	DRAM_DATA22	Input	PU (100K)
DRAM_D23	AA9	NVCC_DRAM	DDR	ALT0	DRAM_DATA23	Input	PU (100K)
DRAM_D24	AE9	NVCC_DRAM	DDR	ALT0	DRAM_DATA24	Input	PU (100K)
DRAM_D25	Y10	NVCC_DRAM	DDR	ALT0	DRAM_DATA25	Input	PU (100K)
DRAM_D26	AE11	NVCC_DRAM	DDR	ALT0	DRAM_DATA26	Input	PU (100K)
DRAM_D27	AB11	NVCC_DRAM	DDR	ALT0	DRAM_DATA27	Input	PU (100K)
DRAM_D28	AC9	NVCC_DRAM	DDR	ALT0	DRAM_DATA28	Input	PU (100K)
DRAM_D29	AD9	NVCC_DRAM	DDR	ALT0	DRAM_DATA29	Input	PU (100K)
DRAM_D3	AA5	NVCC_DRAM	DDR	ALT0	DRAM_DATA03	Input	PU (100K)
DRAM_D30	AD11	NVCC_DRAM	DDR	ALT0	DRAM_DATA30	Input	PU (100K)
DRAM_D31	AC11	NVCC_DRAM	DDR	ALT0	DRAM_DATA31	Input	PU (100K)
DRAM_D32	AA17	NVCC_DRAM	DDR	ALT0	DRAM_DATA32	Input	PU (100K)
DRAM_D33	AA18	NVCC_DRAM	DDR	ALT0	DRAM_DATA33	Input	PU (100K)
DRAM_D34	AC18	NVCC_DRAM	DDR	ALT0	DRAM_DATA34	Input	PU (100K)
DRAM_D35	AE19	NVCC_DRAM	DDR	ALT0	DRAM_DATA35	Input	PU (100K)
DRAM_D36	Y17	NVCC_DRAM	DDR	ALT0	DRAM_DATA36	Input	PU (100K)
DRAM_D37	Y18	NVCC_DRAM	DDR	ALT0	DRAM_DATA37	Input	PU (100K)
DRAM_D38	AB19	NVCC_DRAM	DDR	ALT0	DRAM_DATA38	Input	PU (100K)
DRAM_D39	AC19	NVCC_DRAM	DDR	ALT0	DRAM_DATA39	Input	PU (100K)
DRAM_D4	AC1	NVCC_DRAM	DDR	ALT0	DRAM_DATA04	Input	PU (100K)
DRAM_D40	Y19	NVCC_DRAM	DDR	ALT0	DRAM_DATA40	Input	PU (100K)
DRAM_D41	AB20	NVCC_DRAM	DDR	ALT0	DRAM_DATA41	Input	PU (100K)
DRAM_D42	AB21	NVCC_DRAM	DDR	ALT0	DRAM_DATA42	Input	PU (100K)
DRAM_D43	AD21	NVCC_DRAM	DDR	ALT0	DRAM_DATA43	Input	PU (100K)

Table 100. 21 x 21 mm Functional Contact Assignments (continued)