

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Active
Core Processor	ARM® Cortex®-A9
Number of Cores/Bus Width	2 Core, 32-Bit
Speed	1.0GHz
Co-Processors/DSP	Multimedia; NEON™ SIMD
RAM Controllers	LPDDR2, LVDDR3, DDR3
Graphics Acceleration	Yes
Display & Interface Controllers	Keypad, LCD
Ethernet	10/100/1000Mbps (1)
SATA	SATA 3Gbps (1)
USB	USB 2.0 + PHY (4)
Voltage - I/O	1.8V, 2.5V, 2.8V, 3.3V
Operating Temperature	-40°C ~ 125°C (TJ)
Security Features	ARM TZ, Boot Security, Cryptography, RTIC, Secure Fusebox, Secure JTAG, Secure Memory, Secure RTC, Tamper Detection
Package / Case	624-FBGA, FCBGA
Supplier Device Package	624-FCBGA (21x21)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mcimx6d6avt10ac

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 2. i.MX 6Dual/6Quad Modules List (c	continued)
---	------------

Block Mnemonic	Block Name	Subsystem	Brief Description			
GPU2Dv2	Graphics Processing Unit-2D, ver. 2	Multimedia Peripherals	The GPU2Dv2 provides hardware acceleration for 2D graphics algorithms, such as Bit BLT, stretch BLT, and many other 2D functions.			
GPU2Dv4	Graphics Processing Unit, ver. 4	Multimedia Peripherals	The GPU2Dv4 provides hardware acceleration for 3D graphics algorithm with sufficient processor power to run desktop quality interactive graphic applications on displays up to HD1080 resolution. The GPU3D provides OpenGL ES 2.0, including extensions, OpenGL ES 1.1, and OpenVG 1.			
GPUVGv2	Vector Graphics Processing Unit, ver. 2	Multimedia Peripherals	OpenVG graphics accelerator provides OpenVG 1.1 support as well as other accelerations, including Real-time hardware curve tesselation of lines, quadratic and cubic Bezier curves, 16x Line Anti-aliasing, and various Vector Drawing functions.			
HDMI Tx	HDMI Tx interface	Multimedia Peripherals	The HDMI module provides HDMI standard interface port to an HDMI 1.4 compliant display.			
HSI	MIPI HSI interface	Connectivity Peripherals	The MIPI HSI provides a standard MIPI interface to the applications processor.			
l ² C-1 l ² C-2 l ² C-3	I ² C Interface	Connectivity Peripherals	I ² C provide serial interface for external devices. Data rates of up to 400 kbps are supported.			
IOMUXC	IOMUX Control	System Control Peripherals	This module enables flexible IO multiplexing. Each IO pad has default and several alternate functions. The alternate functions are software configurable.			
IPUv3H-1 IPUv3H-2	Image Processing Unit, ver. 3H	Multimedia Peripherals	 IPUv3H enables connectivity to displays and video sources, relevant processing and synchronization and control capabilities, allowing autonomous operation. The IPUv3H supports concurrent output to two display ports and concurrent input from two camera ports, through the following interfaces: Parallel Interfaces for both display and camera Single/dual channel LVDS display interface HDMI transmitter MIPI/DSI transmitter MIPI/CSI-2 receiver The processing includes: Image conversions: resizing, rotation, inversion, and color space conversion A high-quality de-interlacing filter Video/graphics combining Image enhancement: color adjustment and gamut mapping, gamma correction, and contrast enhancement Support for display backlight reduction 			
КРР	Key Pad Port	Connectivity Peripherals	 KPP Supports 8 x 8 external key pad matrix. KPP features are: Open drain design Glitch suppression circuit design Multiple keys detection Standby key press detection 			

Modules List

Table 2. i.MX 6Dual/6Quad M	Iodules List (continued)
-----------------------------	--------------------------

Block Mnemonic	Block Name	Subsystem	Brief Description
LDB	LVDS Display Bridge	Connectivity Peripherals	 LVDS Display Bridge is used to connect the IPU (Image Processing Unit) to External LVDS Display Interface. LDB supports two channels; each channel has following signals: One clock pair Four data pairs Each signal pair contains LVDS special differential pad (PadP, PadM).
MLB150	MediaLB	Connectivity / Multimedia Peripherals	The MLB interface module provides a link to a MOST [®] data network, using the standardized MediaLB protocol (up to 150 Mbps). The module is backward compatible to MLB-50.
MMDC	Multi-Mode DDR Controller	Connectivity Peripherals	 DDR Controller has the following features: Support 16/32/64-bit DDR3-1066 (LV) or LPDDR2-1066 Supports both dual x32 for LPDDR2 and x64 DDR3 / LPDDR2 configurations (including 2x32 interleaved mode) Support up to 4 GByte DDR memory space
OCOTP_CTRL	OTP Controller	Security	The On-Chip OTP controller (OCOTP_CTRL) provides an interface for reading, programming, and/or overriding identification and control information stored in on-chip fuse elements. The module supports electrically-programmable poly fuses (eFUSEs). The OCOTP_CTRL also provides a set of volatile software-accessible signals that can be used for software control of hardware elements, not requiring non-volatility. The OCOTP_CTRL provides the primary user-visible mechanism for interfacing with on-chip fuse elements. Among the uses for the fuses are unique chip identifiers, mask revision numbers, cryptographic keys, JTAG secure mode, boot characteristics, and various control signals, requiring permanent non-volatility.
OCRAM	On-Chip Memory Controller	Data Path	The On-Chip Memory controller (OCRAM) module is designed as an interface between system's AXI bus and internal (on-chip) SRAM memory module. In i.MX 6Dual/6Quad processors, the OCRAM is used for controlling the 256 KB multimedia RAM through a 64-bit AXI bus.
OSC 32 kHz	OSC 32 kHz	Clocking	Generates 32.768 kHz clock from an external crystal.
PCle	PCI Express 2.0	Connectivity Peripherals	The PCIe IP provides PCI Express Gen 2.0 functionality.
PMU	Power-Management Functions	Data Path	Integrated power management unit. Used to provide power to various SoC domains.
PWM-1 PWM-2 PWM-3 PWM-4	Pulse Width Modulation	Connectivity Peripherals	The pulse-width modulator (PWM) has a 16-bit counter and is optimized to generate sound from stored sample audio images and it can also generate tones. It uses 16-bit resolution and a 4x16 data FIFO to generate sound.
RAM 16 KB	Secure/non-secure RAM	Secured Internal Memory	Secure/non-secure Internal RAM, interfaced through the CAAM.
RAM 256 KB	Internal RAM	Internal Memory	Internal RAM, which is accessed through OCRAM memory controllers.

Modules List

Block Mnemonic	Block Name	Subsystem	Brief Description
WDOG-2 (TZ)	Watchdog (TrustZone)	Timer Peripherals	The TrustZone Watchdog (TZ WDOG) timer module protects against TrustZone starvation by providing a method of escaping normal mode and forcing a switch to the TZ mode. TZ starvation is a situation where the normal OS prevents switching to the TZ mode. Such a situation is undesirable as it can compromise the system's security. Once the TZ WDOG module is activated, it must be serviced by TZ software on a periodic basis. If servicing does not take place, the timer times out. Upon a time-out, the TZ WDOG asserts a TZ mapped interrupt that forces switching to the TZ mode. If it is still not served, the TZ WDOG asserts a security violation signal to the CSU. The TZ WDOG module cannot be programmed or deactivated by a normal mode Software.
EIM	NOR-Flash /PSRAM interface	Connectivity Peripherals	 The EIM NOR-FLASH / PSRAM provides: Support 16-bit (in muxed IO mode only) PSRAM memories (sync and async operating modes), at slow frequency Support 16-bit (in muxed IO mode only) NOR-Flash memories, at slow frequency Multiple chip selects
XTALOSC	Crystal Oscillator interface	—	The XTALOSC module enables connectivity to external crystal oscillator device. In a typical application use-case, it is used for 24 MHz oscillator.

Table 2. i.MX 6Dual/6Quad Modules List ((continued)

3.1 Special Signal Considerations

The package contact assignments can be found in Section 6, "Package Information and Contact Assignments." Signal descriptions are defined in the i.MX 6Dual/6Quad reference manual (IMX6DQRM). Special signal consideration information is contained in the Hardware Development Guide for i.MX 6Quad, 6Dual, 6DualLite, 6Solo Families of Applications Processors (IMX6DQ6SDLHDG).

3.2 Recommended Connections for Unused Analog Interfaces

The recommended connections for unused analog interfaces can be found in the section, "Unused analog interfaces," of the Hardware Development Guide for i.MX 6Quad, 6Dual, 6DualLite, 6Solo Families of Applications Processors (IMX6DQ6SDLHDG).

Parameter	Symbol	Test Conditions	Min	Max	Unit
Output Differential Voltage	V _{OD}	Rload = 50 Ω between padP and padN	300	500	mV
Output High Voltage	V _{OH}		1.15	1.75	V
Output Low Voltage	V _{OL}		0.75	1.35	V
Common-mode Output Voltage ((Vpad_P + Vpad_N) / 2))	V _{OCM}		1	1.5	V
Differential Output Impedance	Z _O	_	1.6		kΩ

Table 26. MLB I/O DC Parameters

4.7 I/O AC Parameters

This section includes the AC parameters of the following I/O types:

- General Purpose I/O (GPIO)
- Double Data Rate I/O (DDR) for LPDDR2 and DDR3/DDR3L modes
- LVDS I/O
- MLB I/O

The GPIO and DDR I/O load circuit and output transition time waveforms are shown in Figure 4 and Figure 5.

CL includes package, probe and fixture capacitance

Figure 4. Load Circuit for Output

Figure 5. Output Transition Time Waveform

4.8.2 DDR I/O Output Buffer Impedance

The LPDDR2 interface fully complies with JESD209-2B LPDDR2 JEDEC standard release June, 2009. The DDR3 interface fully complies with JESD79-3D DDR3 JEDEC standard release April, 2008.

Table 35 shows DDR I/O output buffer impedance of i.MX 6Dual/6Quad processors.

	Symbol		Тур		
Parameter		Test Conditions	NVCC_DRAM=1.5 V (DDR3) DDR_SEL=11	NVCC_DRAM=1.2 V (LPDDR2) DDR_SEL=10	Unit
Output Driver Impedance	Rdrv	Drive Strength (DSE) = 000 001 010 011 100 101 110 111	Hi-Z 240 120 80 60 48 40 34	Hi-Z 240 120 80 60 48 40 34	Ω

Table 35. DDR I/O Output Buffer Impedance

Note:

1. Output driver impedance is controlled across PVTs using ZQ calibration procedure.

2. Calibration is done against 240 W external reference resistor.

3. Output driver impedance deviation (calibration accuracy) is ±5% (max/min impedance) across PVTs.

4.8.3 LVDS I/O Output Buffer Impedance

The LVDS interface complies with TIA/EIA 644-A standard. See, TIA/EIA STANDARD 644-A, "Electrical Characteristics of Low Voltage Differential Signaling (LVDS) Interface Circuits" for details.

4.8.4 MLB 6-Pin I/O Differential Output Impedance

Table 36 shows MLB 6-pin I/O differential output impedance of i.MX 6Dual/6Quad processors.

Table 36. MLB 6-Pin I/O Differential Output Impedance

Parameter	Symbol	Test Conditions	Min	Тур	Мах	Unit
Differential Output Impedance	ZO		1.6			kΩ

ID	Parameter	Min ¹	Max ¹	Unit
WE4	Clock rise to address valid	-0.5 × t × (k+1) - 1.25	-0.5 × t × (k+1) + 2.25	ns
WE5	Clock rise to address invalid	0.5×t×(k+1) - 1.25	$0.5 \times t \times (k+1) + 2.25$	ns
WE6	Clock rise to EIM_CSx_B valid	-0.5 × t × (k+1) - 1.25	-0.5 \times t \times (k+1) + 2.25	ns
WE7	Clock rise to EIM_CSx_B invalid	0.5×t×(k+1) - 1.25	$0.5 \times t \times (k+1) + 2.25$	ns
WE8	Clock rise to EIM_WE_B valid	-0.5 × t × (k+1) - 1.25	-0.5 × t × (k+1) + 2.25	ns
WE9	Clock rise to EIM_WE_B invalid	0.5×t×(k+1) - 1.25	$0.5 \times t \times (k+1) + 2.25$	ns
WE10	Clock rise to EIM_OE_B valid	-0.5 × t × (k+1) - 1.25	-0.5 × t × (k+1) + 2.25	ns
WE11	Clock rise to EIM_OE_B invalid	0.5×t×(k+1) - 1.25	$0.5 \times t \times (k+1) + 2.25$	ns
WE12	Clock rise to EIM_EBx_B valid	-0.5 × t × (k+1) - 1.25	-0.5 × t × (k+1) + 2.25	ns
WE13	Clock rise to EIM_EBx_B invalid	0.5×t×(k+1) - 1.25	$0.5 \times t \times (k+1) + 2.25$	ns
WE14	Clock rise to EIM_LBA_B valid	-0.5 × t × (k+1) - 1.25	$-0.5 \times t \times (k+1) + 2.25$	ns
WE15	Clock rise to EIM_LBA_B invalid	0.5×t×(k+1) - 1.25	$0.5 \times t \times (k+1) + 2.25$	ns
WE16	Clock rise to output data valid	-0.5 × t × (k+1) - 1.25	$-0.5 \times t \times (k+1) + 2.25$	ns
WE17	Clock rise to output data invalid	0.5×t×(k+1) - 1.25	$0.5 \times t \times (k+1) + 2.25$	ns
WE18	Input data setup time to clock rise	2.3	_	ns
WE19	Input data hold time from clock rise	2	—	ns
WE20	EIM_WAIT_B setup time to clock rise	2	—	ns
WE21	EIM_WAIT_B hold time from clock rise	2		ns

Table 40. EIM Bus Timing Parameters (continued)

¹ k represents register setting BCD value.
 ² t is clock period (1/Freq). For 104 MHz, t = 9.165 ns.

Figure 14 to Figure 17 provide few examples of basic EIM accesses to external memory devices with the timing parameters mentioned previously for specific control parameters settings.

Figure 14. Synchronous Memory Read Access, WSC=1

Figure 15. Synchronous Memory, Write Access, WSC=1, WBEA=0 and WADVN=0

- ² In this table:
 - t means clock period from axi_clk frequency.
 - CSA means register setting for WCSA when in write operations or RCSA when in read operations.
 - CSN means register setting for WCSN when in write operations or RCSN when in read operations.
 - ADVN means register setting for WADVN when in write operations or RADVN when in read operations.
 - ADVA means register setting for WADVA when in write operations or RADVA when in read operations.

4.9.4 DDR SDRAM Specific Parameters (DDR3/DDR3L and LPDDR2)

4.9.4.1 DDR3/DDR3L Parameters

Figure 24 shows the DDR3/DDR3L basic timing diagram. The timing parameters for this diagram appear in Table 42.

Figure 24. DDR3/DDR3L Command and Address Timing Diagram

Table 42. DDR3/DDR3L Timing Parameter

ID	Paramator ^{1,2}	Symbol	CK = 53	Unit	
	Falallet	Symbol	Min	Max	Onit
DDR1	DRAM_SDCLKx_P clock high-level width	tсн	0.47	0.53	tск
DDR2	DRAM_SDCLKx_P clock low-level width	tCL	0.47	0.53	tск

ID	Parameter	Symbols	Min	Max	Unit			
eSDHC Input/Card Outputs SD_CMD, SD_DATAx (Reference to SDx_CLK)								
SD7	eSDHC Input Setup Time	t _{ISU}	2.5	_	ns			
SD8	eSDHC Input Hold Time ⁴	t _{IH}	1.5	_	ns			

Table 54. SD/eMMC4.3 Interface Timing Specification (continued)

¹ In low speed mode, card clock must be lower than 400 kHz, voltage ranges from 2.7 to 3.6 V.

² In normal (full) speed mode for SD/SDIO card, clock frequency can be any value between 0–25 MHz. In high-speed mode, clock frequency can be any value between 0–50 MHz.

³ In normal (full) speed mode for MMC card, clock frequency can be any value between 0-20 MHz. In high-speed mode, clock frequency can be any value between 0-52 MHz.

⁴To satisfy hold timing, the delay difference between clock input and cmd/data input must not exceed 2 ns.

4.11.4.2 eMMC4.4/4.41 (Dual Data Rate) eSDHCv3 AC Timing

Figure 46 depicts the timing of eMMC4.4/4.41. Table 55 lists the eMMC4.4/4.41 timing characteristics. Be aware that only SDx_DATAx is sampled on both edges of the clock (not applicable to SD_CMD).

Figure 46. eMMC4.4/4.41 Timing

Table 55. eMMC4.4/4.41 Interface Timing Specification

ID	Parameter	Symbols	Min	Max	Unit					
Card Input Clock										
SD1	Clock Frequency (EMMC4.4 DDR)	f _{PP}	0	52	MHz					
SD1	Clock Frequency (SD3.0 DDR)	f _{PP}	0	50	MHz					
	uSDHC Output / Card Inputs SD_CMD,	SD_DATAx (Ref	erence to SI	D_CLK)						
SD2	uSDHC Output Delay	t _{OD}	2.5	7.1	ns					
uSDHC Input / Card Outputs SD_CMD, SD_DATAx (Reference to SD_CLK)										
SD3	uSDHC Input Setup Time	t _{ISU}	2.6	_	ns					
SD4	uSDHC Input Hold Time	t _{IH}	1.5	_	ns					

4.11.5.1.2 MII Transmit Signal Timing (ENET_TX_DATA3,2,1,0, ENET_TX_EN, ENET_TX_ER, and ENET_TX_CLK)

The transmitter functions correctly up to an ENET_TX_CLK maximum frequency of 25 MHz + 1%. There is no minimum frequency requirement. Additionally, the processor clock frequency must exceed twice the ENET_TX_CLK frequency.

Figure 49 shows MII transmit signal timings. Table 58 describes the timing parameters (M5–M8) shown in the figure.

Figure 49. MII Transmit Signal Timing Diagram

Table	58.	MII	Transmit	Signal	Timing
-------	-----	-----	----------	--------	--------

ID	Characteristic ¹	Min	Max	Unit
M5	ENET_TX_CLK to ENET_TX_DATA3,2,1,0, ENET_TX_EN, ENET_TX_ER invalid	5	—	ns
M6	ENET_TX_CLK to ENET_TX_DATA3,2,1,0, ENET_TX_EN, ENET_TX_ER valid	—	20	ns
M7	ENET_TX_CLK pulse width high	35%	65%	ENET_TX_CLK period
M8	ENET_TX_CLK pulse width low	35%	65%	ENET_TX_CLK period

¹ ENET_TX_EN, ENET_TX_CLK, and ENET0_TXD0 have the same timing in 10-Mbps 7-wire interface mode.

4.11.5.1.3 MII Asynchronous Inputs Signal Timing (ENET_CRS and ENET_COL)

Figure 50 shows MII asynchronous input timings. Table 59 describes the timing parameter (M9) shown in the figure.

Figure 50. MII Async Inputs Timing Diagram

4.11.5.3 RGMII Signal Switching Specifications

The following timing specifications meet the requirements for RGMII interfaces for a range of transceiver devices.

Symbol	Description	Min	Max	Unit
T _{cyc} ²	Clock cycle duration	7.2	8.8	ns
T _{skewT} ³	Data to clock output skew at transmitter	-100	900	ps
T _{skewR} ³	Data to clock input skew at receiver	1	2.6	ns
Duty_G ⁴	Duty cycle for Gigabit	45	55	%
Duty_T ⁴	Duty cycle for 10/100T	40	60	%
Tr/Tf	Rise/fall time (20–80%)	_	0.75	ns

Table 62. RGMII Signal Switching Specifications¹

¹ The timings assume the following configuration: DDR_SEL = (11)b

DSE (drive-strength) = (111)b

 $^2~$ For 10 Mbps and 100 Mbps, T_{cyc} will scale to 400 ns ±40 ns and 40 ns ±4 ns respectively.

³ For all versions of RGMII prior to 2.0; This implies that PC board design will require clocks to be routed such that an additional delay of greater than 1.2 ns and less than 1.7 ns will be added to the associated clock signal. For 10/100, the max value is unspecified.

⁴ Duty cycle may be stretched/shrunk during speed changes or while transitioning to a received packet's clock domain as long as minimum duty cycle is not violated and stretching occurs for no more than three Tcyc of the lowest speed transitioned between.

Figure 53. RGMII Transmit Signal Timing Diagram Original

Power-up time for the HDMI 3D Tx PHY while operating with the fastest input reference clock supported (340 MHz) is 133 μ s.

4.11.7.2 Electrical Characteristics

The table below provides electrical characteristics for the HDMI 3D Tx PHY. The following three figures illustrate various definitions and measurement conditions specified in the table below.

Figure 56. Driver Measuring Conditions

Figure 57. Driver Definitions

Figure 58. Source Termination

Table 63. Electrical Characteristics

Symbol	vmbol Parameter Condition			Тур	Max	Unit			
	Operating conditions for HDMI								
avddtmds	Termination supply voltage	_	3.15	3.3	3.45	V			

Symbol	Parameter	Condition	Min	Тур	Мах	Unit					
R _T	Termination resistance	_	45	50	55	Ω					
	TMDS drivers DC specifications										
V _{OFF}	Single-ended standby voltage	$RT = 50 \Omega$	avddt	mds ± [·]	10 mV	mV					
V _{SWING}	Single-ended output swing voltage	definitions, see the first two figures above. Compliance point TP1 as defined in the HDMI specification, version 1.3a, section 4.2.4.	400	_	600	mV					
V _H	Single-ended output high voltage For definition, see the second	If attached sink supports TMDSCLK < or = 165 MHz	avddt	mds ± '	10 mV	mV					
	figure above.	If attached sink supports TMDSCLK > 165 MHz	avddtmds – 200 mV	—	avddtmds + 10 mV	mV					
VL	Single-ended output low voltage For definition, see the second	If attached sink supports TMDSCLK < or = 165 MHz	avddtmds – 600 mV	—	avddtmds - 400mV	mV					
	ngure above.	If attached sink supports TMDSCLK > 165 MHz	avddtmds – 700 mV	—	avddtmds - 400 mV	mV					
R _{term}	Differential source termination load (inside HDMI 3D Tx PHY) Although the HDMI 3D Tx PHY includes differential source termination, the user-defined value is set for each single line (for illustration, see the third figure above). Note: R _{TERM} can also be configured to be open and not present on TMDS channels.		50		200	Ω					
Hot plug detect specifications											
HPD ^{VH}	Hot plug detect high range	—	2.0		5.3	V					
VHPD	Hot plug detect low range	_	0		0.8	V					
HPD	Hot plug detect input impedance	_	10		_	kΩ					
HPD t	Hot plug detect time delay				100	μs					

Table 63. Electrical Characteristics (continued)

4.11.8 Switching Characteristics

Table 64 describes switching characteristics for the HDMI 3D Tx PHY. Figure 59 to Figure 63 illustrate various parameters specified in table.

NOTE

All dynamic parameters related to the TMDS line drivers' performance imply the use of assembly guidelines.

4.11.10.1 IPU Sensor Interface Signal Mapping

The IPU supports a number of sensor input formats. Table 66 defines the mapping of the Sensor Interface Pins used for various supported interface formats.

Signal Name ¹	RGB565 8 bits 2 cycles	RGB565 ² 8 bits 3 cycles	RGB666 ³ 8 bits 3 cycles	RGB888 8 bits 3 cycles	YCbCr ⁴ 8 bits 2 cycles	RGB565 ⁵ 16 bits 2 cycles	YCbCr ⁶ 16 bits 1 cycle	YCbCr ⁷ 16 bits 1 cycle	YCbCr ⁸ 20 bits 1 cycle
IPUx_CSIx_ DATA00	_	—	_	_	_	—	_	0	C[0]
IPUx_CSIx_ DATA01	—	—	_	—	—	_	_	0	C[1]
IPUx_CSIx_ DATA02	—	—		—	—	—	—	C[0]	C[2]
IPUx_CSIx_ DATA03	—	_		—	—	_	—	C[1]	C[3]
IPUx_CSIx_ DATA04	—	—	—	—	—	B[0]	C[0]	C[2]	C[4]
IPU2_CSIx_ DATA_05	—	—	_	—	—	B[1]	C[1]	C[3]	C[5]
IPUx_CSIx_ DATA06	—	—	_	—	—	B[2]	C[2]	C[4]	C[6]
IPUx_CSIx_ DATA07	—	—	_	—	—	B[3]	C[3]	C[5]	C[7]
IPUx_CSIx_ DATA08	—	—	—	—	—	B[4]	C[4]	C[6]	C[8]
IPUx_CSIx_ DATA09	—	—	—	—	—	G[0]	C[5]	C[7]	C[9]
IPUx_CSIx_ DATA10	—	—	—	—	—	G[1]	C[6]	0	Y[0]
IPUx_CSIx_ DATA11	—	—	—	—	—	G[2]	C[7]	0	Y[1]
IPUx_CSIx_ DATA12	B[0], G[3]	R[2],G[4],B[2]	R/G/B[4]	R/G/B[0]	Y/C[0]	G[3]	Y[0]	Y[0]	Y[2]
IPUx_CSIx_ DATA13	B[1], G[4]	R[3],G[5],B[3]	R/G/B[5]	R/G/B[1]	Y/C[1]	G[4]	Y[1]	Y[1]	Y[3]
IPUx_CSIx_ DATA14	B[2], G[5]	R[4],G[0],B[4]	R/G/B[0]	R/G/B[2]	Y/C[2]	G[5]	Y[2]	Y[2]	Y[4]
IPUx_CSIx_ DATA15	B[3], R[0]	R[0],G[1],B[0]	R/G/B[1]	R/G/B[3]	Y/C[3]	R[0]	Y[3]	Y[3]	Y[5]
IPUx_CSIx_ DATA16	B[4], R[1]	R[1],G[2],B[1]	R/G/B[2]	R/G/B[4]	Y/C[4]	R[1]	Y[4]	Y[4]	Y[6]
IPUx_CSIx_ DATA17	G[0], R[2]	R[2],G[3],B[2]	R/G/B[3]	R/G/B[5]	Y/C[5]	R[2]	Y[5]	Y[5]	Y[7]
IPUx_CSIx_ DATA18	G[1], R[3]	R[3],G[4],B[3]	R/G/B[4]	R/G/B[6]	Y/C[6]	R[3]	Y[6]	Y[6]	Y[8]
IPUx_CSIx_ DATA19	G[2], R[4]	R[4],G[5],B[4]	R/G/B[5]	R/G/B[7]	Y/C[7]	R[4]	Y[7]	Y[7]	Y[9]

Table 66. Camera Input Signal Cross Reference, Format, and Bits Per Cycle

¹ IPU2_CSIx stands for IPU2_CSI1 or IPU2_CSI2.

Figure 69. TFT Panels Timing Diagram—Horizontal Sync Pulse

Figure 70 depicts the vertical timing (timing of one frame). All parameters shown in the figure are programmable.

Figure 70. TFT Panels Timing Diagram—Vertical Sync Pulse

4.11.12.2 D-PHY Signaling Levels

The signal levels are different for differential HS mode and single-ended LP mode. Figure 72 shows both the HS and LP signal levels on the left and right sides, respectively. The HS signalling levels are below the LP low-level input threshold such that LP receiver always detects low on HS signals.

Figure 72. D-PHY Signaling Levels

4.11.12.3 HS Line Driver Characteristics

Figure 73. Ideal Single-ended and Resulting Differential HS Signals

4.11.12.9 Low-Power Receiver Timing

4.11.13 HSI Host Controller Timing Parameters

This section describes the timing parameters of the HSI Host Controller which are compliant with High-Speed Synchronous Serial Interface (HSI) Physical Layer specification version 1.01.

4.11.13.1 Synchronous Data Flow

Figure 79. Synchronized Data Flow READY Signal Timing (Frame and Stream Transmission)

4.11.13.2 Pipelined Data Flow

Figure 80. Pipelined Data Flow READY Signal Timing (Frame Transmission Mode)

4.11.22 USB HSIC Timings

This section describes the electrical information of the USB HSIC port.

NOTE

HSIC is a DDR signal. The following timing specification is for both rising and falling edges.

4.11.22.1 Transmit Timing

Figure 104. USB HSIC Transmit Waveform

Table 95. USB HSIC Transmit Parameters

Name	Parameter	Min	Мах	Unit	Comment
Tstrobe	strobe period	4.166	4.167	ns	_
Todelay	data output delay time	550	1350	ps	Measured at 50% point
Tslew	strobe/data rising/falling time	0.7	2	V/ns	Averaged from 30% – 70% points

4.11.22.2 Receive Timing

Figure 105. USB HSIC Receive Waveform

Table 96. USB HSIC Receive Parameters¹

Name	Parameter	Min	Мах	Unit	Comment
Tstrobe	strobe period	4.166	4.167	ns	_
Thold	data hold time	300	—	ps	Measured at 50% point
Tsetup	data setup time	365	_	ps	Measured at 50% point
Tslew	strobe/data rising/falling time	0.7	2	V/ns	Averaged from 30% – 70% points

¹ The timings in the table are guaranteed when:

-AC I/O voltage is between 0.9x to 1x of the I/O supply

-DDR_SEL configuration bits of the I/O are set to (10)b

Pin	Direction at Reset	eFuse Name
EIM_A18	Input	BOOT_CFG3[2]
EIM_A19	Input	BOOT_CFG3[3]
EIM_A20	Input	BOOT_CFG3[4]
EIM_A21	Input	BOOT_CFG3[5]
EIM_A22	Input	BOOT_CFG3[6]
EIM_A23	Input	BOOT_CFG3[7]
EIM_A24	Input	BOOT_CFG4[0]
EIM_WAIT	Input	BOOT_CFG4[1]
EIM_LBA	Input	BOOT_CFG4[2]
EIM_EB0	Input	BOOT_CFG4[3]
EIM_EB1	Input	BOOT_CFG4[4]
EIM_RW	Input	BOOT_CFG4[5]
EIM_EB2	Input	BOOT_CFG4[6]
EIM_EB3	Input	BOOT_CFG4[7]

Table 97. Fuses and Associated Pins Used for Boot (continued)

¹ Pin value overrides fuse settings for BT_FUSE_SEL = '0'. Signal Configuration as Fuse Override Input at Power Up. These are special I/O lines that control the boot up configuration during product development. In production, the boot configuration can be controlled by fuses.

5.2 Boot Devices Interfaces Allocation

Table 98 lists the interfaces that can be used by the boot process in accordance with the specific boot mode configuration. The table also describes the interface's specific modes and IOMUXC allocation, which are configured during boot when appropriate.

Interface	IP Instance	Allocated Pads During Boot	Comment
SPI	ECSPI-1	EIM_D17, EIM_D18, EIM_D16, EIM_EB2, EIM_D19, EIM_D24, EIM_D25	_
SPI	ECSPI-2	CSI0_DAT10, CSI0_DAT9, CSI0_DAT8, CSI0_DAT11, EIM_LBA, EIM_D24, EIM_D25	_
SPI	ECSPI-3	DISP0_DAT2, DISP0_DAT1, DISP0_DAT0, DISP0_DAT3, DISP0_DAT4, DISP0_DAT5, DISP0_DAT6	_
SPI	ECSPI-4	EIM_D22, EIM_D28, EIM_D21, EIM_D20, EIM_A25, EIM_D24, EIM_D25	_
SPI	ECSPI-5	SD1_DAT0, SD1_CMD, SD1_CLK, SD1_DAT1, SD1_DAT2, SD1_DAT3, SD2_DAT3	_
EIM	EIM	EIM_DA[15:0], EIM_D[31:16], CSI0_DAT[19:4], CSI0_DATA_EN, CSI0_VSYNC	Used for NOR, OneNAND boot Only CS0 is supported

Table 98. Interfaces Allocation During Boot

How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc. Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. ARM, Cortex, TrustZone, and NEON are registered trademarksof ARM Limited (or its subsidiaries) in the EU and/or elsewhere.

© 2012-2015 Freescale Semiconductor, Inc. All rights reserved.

Document Number: IMX6DQAEC Rev. 4 07/2015

