E·XFL

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Active
Core Processor	ARM® Cortex®-A9
Number of Cores/Bus Width	4 Core, 32-Bit
Speed	852MHz
Co-Processors/DSP	Multimedia; NEON™ SIMD
RAM Controllers	LPDDR2, LVDDR3, DDR3
Graphics Acceleration	Yes
Display & Interface Controllers	Keypad, LCD
Ethernet	10/100/1000Mbps (1)
SATA	SATA 3Gbps (1)
USB	USB 2.0 + PHY (4)
Voltage - I/O	1.8V, 2.5V, 2.8V, 3.3V
Operating Temperature	-40°C ~ 125°C (TJ)
Security Features	ARM TZ, Boot Security, Cryptography, RTIC, Secure Fusebox, Secure JTAG, Secure Memory, Secure RTC, Tamper Detection
Package / Case	624-FBGA, FCBGA
Supplier Device Package	624-FCBGA (21x21)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mcimx6q4avt08ad

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Modules List

Block Mnemonic	Block Name	Subsystem	Brief Description			
EPIT-1 EPIT-2	Enhanced Periodic Interrupt Timer	Timer Peripherals	Each EPIT is a 32-bit "set and forget" timer that starts counting after EPIT is enabled by software. It is capable of providing precise interru at regular intervals with minimal processor intervention. It has a 12-b prescaler for division of input clock frequency to get the required time setting for the interrupts to occur, and counter value can be programm on the fly.			
ESAI	Enhanced Serial Audio Interface	Connectivity Peripherals	The Enhanced Serial Audio Interface (ESAI) provides a full-duplex serial port for serial communication with a variety of serial devices, including industry-standard codecs, SPDIF transceivers, and other processors. The ESAI consists of independent transmitter and receiver sections, each section with its own clock generator. All serial transfers are synchronized to a clock. Additional synchronization signals are used to delineate the word frames. The normal mode of operation is used to transfer data at a periodic rate, one word per period. The network mode is also intended for periodic transfers; however, it supports up to 32 words (time slots) per period. This mode can be used to build time division multiplexed (TDM) networks. In contrast, the on-demand mode is intended for non-periodic transfers of data and to transfer data serially at high speed when the data becomes available.			
FlexCAN-1 FlexCAN-2	Flexible Controller Area Network	Connectivity Peripherals	The CAN protocol was primarily, but not only, designed to be used as a vehicle serial data bus, meeting the specific requirements of this field: real-time processing, reliable operation in the Electromagnetic interference (EMI) environment of a vehicle, cost-effectiveness and required bandwidth. The FlexCAN module is a full implementation of the CAN protocol specification, Version 2.0 B, which supports both standard and extended message frames.			
GPIO-1 GPIO-2 GPIO-3 GPIO-4 GPIO-5 GPIO-6 GPIO-7	General Purpose I/O Modules	System Control Peripherals	Used for general purpose input/output to external devices. Each GPIO module supports 32 bits of I/O.			
GPMI	General Purpose Media Interface	Connectivity Peripherals	The GPMI module supports up to 8x NAND devices. 40-bit ECC encryption/decryption for NAND Flash controller (GPMI2). The GPMI supports separate DMA channels per NAND device.			
GPT	General Purpose Timer	Timer Peripherals	Each GPT is a 32-bit "free-running" or "set and forget" mode timer with programmable prescaler and compare and capture register. A timer counter value can be captured using an external event and can be configured to trigger a capture event on either the leading or trailing edges of an input pulse. When the timer is configured to operate in "set and forget" mode, it is capable of providing precise interrupts at regular intervals with minimal processor intervention. The counter has output compare logic to provide the status and interrupt at comparison. This timer can be configured to run either on an external clock or on an internal clock.			

from either a ~3 V backup battery (VDD_SNVS_IN) or VDD_HIGH_IN such as the oscillator consumes power from VDD_HIGH_IN when that supply is available and transitions to the back up battery when VDD_HIGH_IN is lost.

In addition, if the clock monitor determines that the OSC32K is not present, then the source of the 32 kHz clock will automatically switch to the internal ring oscillator.

CAUTION

The internal RTC oscillator does not provide an accurate frequency and is affected by process, voltage, and temperature variations. Freescale strongly recommends using an external crystal as the RTC_XTALI reference. If the internal oscillator is used instead, careful consideration must be given to the timing implications on all of the SoC modules dependent on this clock.

The OSC32k runs from VDD_SNVS_CAP, which comes from the VDD_HIGH_IN/VDD_SNVS_IN power mux. The target battery is a ~3 V coin cell. Proper choice of coin cell type is necessary for chosen VDD_HIGH_IN range. Appropriate series resistor (Rs) must be used when connecting the coin cell. Rs depends on the charge current limit that depends on the chosen coin cell. For example, for Panasonic ML621:

- Average Discharge Voltage is 2.5 V
- Maximum Charge Current is 0.6 mA

For a charge voltage of 3.2 V, Rs = (3.2-2.5)/0.6 m = 1.17 k

NOTE

Always refer to the chosen coin cell manufacturer's data sheet for the latest information.

Parameter	Min	Тур	Max	Comments	
Fosc	—	32.768 kHz	—	This frequency is nominal and determined mainly by the crystal selected. 32.0 K would work as well.	
Current consumption		4 μΑ	_	The typical value shown is only for the oscillator, driven by an external crystal. If the internal ring oscillator is used instead of an external crystal, then approximately 25 μ A should be added to this value.	
Bias resistor	_	14 MΩ	_	This the integrated bias resistor that sets the amplifier into a high gain state. Any leakage through the ESD network, external board leakage, or even a scope probe that is significant relative to this value will debias the amplifier. The debiasing will result in low gain, and will impact the circuit's ability to start up and maintain oscillations.	
				Target Crystal Properties	
Cload	—	10 pF	_	Usually crystals can be purchased tuned for different Cloads. This Cload value is typically 1/2 of the capacitances realized on the PCB on either side of the quartz. A higher Cload will decrease oscillation margin, but increases current oscillating through the crystal.	
ESR	—	50 kΩ	100 kΩ	Equivalent series resistance of the crystal. Choosing a crystal with a higher value will decrease the oscillating margin.	

Table 20.	OSC32K	Main	Characteristics
-----------	--------	------	-----------------

4.6.3.1 LPDDR2 Mode I/O DC Parameters

The LPDDR2 interface mode fully complies with JESD209-2B LPDDR2 JEDEC standard release June, 2009. The parameters in Table 23 are guaranteed per the operating ranges in Table 6, unless otherwise noted.

Parameters	Symbol	Test Conditions	Min	Мах	Unit
High-level output voltage	Voh	loh = -0.1 mA	$0.9 \times \text{OVDD}$	—	V
Low-level output voltage	Vol	lol = 0.1 mA	—	$0.1 \times OVDD$	V
Input reference voltage	Vref	—	0.49 imes OVDD	0.51 imes OVDD	
DC input High Voltage	Vih(dc)	—	Vref+0.13V	OVDD	V
DC input Low Voltage	Vil(dc)	—	OVSS	Vref-0.13V	V
Differential Input Logic High	Vih(diff)	—	0.26	See Note ²	—
Differential Input Logic Low	Vil(diff)	—	See Note ²	-0.26	—
Input current (no pull-up/down)	lin	Vin = 0 or OVDD	-2.5	2.5	μA
Pull-up/pull-down impedance mismatch	MMpupd	—	-15	+15	%
240 Ω unit calibration resolution	Rres	_	_	10	Ω
Keeper circuit resistance	Rkeep	—	110	175	kΩ

Table 23. LPDDR2 I/O DC Electrical Parameters¹

¹ Note that the JEDEC LPDDR2 specification (JESD209_2B) supersedes any specification in this document.

² The single-ended signals need to be within the respective limits (Vih(dc) max, Vil(dc) min) for single-ended signals as well as the limitations for overshoot and undershoot (see Table 29).

4.6.3.2 DDR3/DDR3L Mode I/O DC Parameters

The DDR3/DDR3L interface mode fully complies with JESD79-3D DDR3 JEDEC standard release April, 2008. The parameters in Table 24 are guaranteed per the operating ranges in Table 6, unless otherwise noted.

Parameters	Symbol	Test Conditions	Min	Мах	Unit
High-level output voltage	Voh	loh = -0.1 mA Voh (DSE = 001)		_	v
	Von	loh = -1 mA Voh (for all except DSE = 001)	0.0 × 0400		
Low-level output voltage	Vol	lol = 0.1 mA Vol (DSE = 001)			V
	VOI	Iol = 1 mA Vol (for all except DSE = 001)		0.2 × 0400	v
Input reference voltage	Vref ²	_	$0.49 \times \text{OVDD}$	$0.51 \times \text{OVDD}$	
DC input Logic High	Vih(dc)	_	Vref+0.1	OVDD	V

Table 24. DDR3/DDR3L I/O DC Electrical Parameters

Parameter	Symbol	Test Conditions	Min	Max	Unit
Output Differential Voltage	V _{OD}	Rload = 50 Ω between padP and padN	300	500	mV
Output High Voltage	V _{OH}		1.15	1.75	V
Output Low Voltage	V _{OL}		0.75	1.35	V
Common-mode Output Voltage ((Vpad_P + Vpad_N) / 2))	V _{OCM}		1	1.5	V
Differential Output Impedance	Z _O	_	1.6		kΩ

Table 26. MLB I/O DC Parameters

4.7 I/O AC Parameters

This section includes the AC parameters of the following I/O types:

- General Purpose I/O (GPIO)
- Double Data Rate I/O (DDR) for LPDDR2 and DDR3/DDR3L modes
- LVDS I/O
- MLB I/O

The GPIO and DDR I/O load circuit and output transition time waveforms are shown in Figure 4 and Figure 5.

CL includes package, probe and fixture capacitance

Figure 4. Load Circuit for Output

Figure 5. Output Transition Time Waveform

Figure 9. Impedance Matching Load for Measurement

Figure 23. DTACK Mode Write Access (DAP=0)

Ref No.	Parameter	Determination by Synchronous measured parameters	Min	Мах	Unit
WE31	EIM_CSx_B valid to Address Valid	WE4-WE6-CSA×t	-3.5-CSA×t	3.5-CSA×t	ns
WE32	Address Invalid to EIM_CSx_B Invalid	WE7-WE5-CSN×t	-3.5-CSN×t	3.5-CSN×t	ns
WE32A (muxed A/D)	EIM_CSx_B valid to Address Invalid	t+WE4-WE7+ (ADVN+ADVA+1-CSA)×t	t - 3.5+(ADVN+A DVA+1-CSA)×t	t + 3.5+(ADVN+ADVA+ 1-CSA)×t	ns
WE33	EIM_CSx_B Valid to EIM_WE_B Valid	WE8-WE6+(WEA-WCSA)×t	-3.5+(WEA-WCS A)×t	3.5+(WEA-WCSA)×t	ns
WE34	EIM_WE_B Invalid to EIM_CSx_B Invalid	WE7-WE9+(WEN-WCSN)×t	-3.5+(WEN-WCS N)×t	3.5+(WEN-WCSN)×t	ns
WE35	EIM_CSx_B Valid to EIM_OE_B Valid	WE10- WE6+(OEA-RCSA)×t	-3.5+(OEA-RCS A)×t	3.5+(OEA-RCSA)×t	ns
WE35A (muxed A/D)	EIM_CSx_B Valid to EIM_OE_B Valid	WE10-WE6+(OEA+RADVN+R ADVA+ADH+1-RCSA)×t	-3.5+(OEA+RAD VN+RADVA+ADH +1-RCSA)×t	3.5+(OEA+RADVN+RA DVA+ADH+1-RCSA)×t	ns
WE36	EIM_OE_B Invalid to EIM_CSx_B Invalid	WE7-WE11+(OEN-RCSN)×t	-3.5+(OEN-RCS N)×t	3.5+(OEN-RCSN)×t	ns
WE37	EIM_CSx_B Valid to EIM_EBx_B Valid (Read access)	WE12-WE6+(RBEA-RCSA)×t	-3.5+(RBEA- RC SA)×t	3.5+(RBEA - RCSA)×t	ns
WE38	EIM_EBx_B Invalid to EIM_CSx_B Invalid (Read access)	WE7-WE13+(RBEN-RCSN)×t	-3.5+ (RBEN-RCSN)×t	3.5+(RBEN-RCSN)×t	ns
WE39	EIM_CSx_B Valid to EIM_LBA_B Valid	WE14-WE6+(ADVA-CSA)×t	-3.5+ (ADVA-CSA)×t	3.5+(ADVA-CSA)×t	ns

Table 41. EIM Asynchronous	Timing Parameters	Relative to Chip	Select ^{1, 2}
----------------------------	-------------------	-------------------------	------------------------

Figure 38. NAND_DQS/NAND_DQ Read Valid Window

ID	Parameter	Symbol	Timing T = GPMI Clock Cycle		Unit
			Min	Мах	
NF18	NAND_CEx_B access time	tCE	CE_DELAY × T -	0.79 [see ²]	ns
NF19	NAND_CEx_B hold time	tCH	0.5 × tCK - 0.6	63 [see ²]	ns
NF20	Command/address NAND_DATAxx setup time	tCAS	$0.5 imes tCK \cdot$	0.05	ns
NF21	Command/address NAND_DATAxx hold time	tCAH	0.5 × tCK - 1.23		ns
NF22	clock period	tCK	_		ns
NF23	preamble delay	tPRE	PRE_DELAY × T - 0.29 [see ²]		ns
NF24	postamble delay	tPOST	- POST_DELAY × T - 0.78 [see ²]		ns
NF25	NAND_CLE and NAND_ALE setup time	tCALS	0.5 × tCK - 0.86		ns
NF26	NAND_CLE and NAND_ALE hold time	tCALH	0.5 × tCK - 0.37		ns
NF27	NAND_CLK to first NAND_DQS latching transition	tDQSS	S T - 0.41 [see ²]		ns
NF28	Data write setup	tDS 0.25 × tCK - 0.35		_	
NF29	Data write hold	tDH	0.25 × tCK - 0.85		_
NF30	NAND_DQS/NAND_DQ read setup skew	tDQSQ	_	2.06	
NF31	NAND_DQS/NAND_DQ read hold skew	IS/NAND_DQ read hold skew tQHS — 1.95		1.95	—

Table 49. Source Synchronous Mode Timing Parameters¹

¹ The GPMI source synchronous mode output timing can be controlled by the module's internal registers GPMI_TIMING2_CE_DELAY, GPMI_TIMING_PREAMBLE_DELAY, GPMI_TIMING2_POST_DELAY. This AC timing depends on these registers settings. In the table, CE_DELAY/PRE_DELAY/POST_DELAY represents each of these settings.

² T = tCK (GPMI clock period) -0.075ns (half of maximum p-p jitter).

Figure 38 shows the timing diagram of NAND_DQS/NAND_DATAxx read valid window. For Source Synchronous mode, the typical value of tDQSQ is 0.85 ns (max) and 1 ns (max) for tQHS at 200MB/s. GPMI will sample NAND_DATA[7:0] at both rising and falling edge of a delayed NAND_DQS signal, which can be provided by an internal DPLL. The delay value can be controlled by GPMI register GPMI_READ_DDR_DLL_CTRL.SLV_DLY_TARGET (see the GPMI chapter of the i.MX 6Dual/6Quad reference manual (IMX6DQRM)). Generally, the typical delay value of this register is equal to 0x7 which means 1/4 clock cycle delay expected. However, if the board delay is large enough and cannot be ignored, the delay value should be made larger to compensate the board delay.

4.11.4.3 SDR50/SDR104 AC Timing

Figure 47 depicts the timing of SDR50/SDR104, and Table 56 lists the SDR50/SDR104 timing characteristics.

Figure 47. SDR50/SDR104 Timing

Table 56.	SDR50/SDR104	Interface	Timing	Specification
-----------	--------------	-----------	--------	---------------

ID	Parameter	Symbols	Min	Мах	Unit				
Card Input Clock									
SD1	Clock Frequency Period	t _{CLK}	4.8	_	ns				
SD2	Clock Low Time	t _{CL}	$0.3 imes t_{CLK}$	$0.7 imes t_{CLK}$	ns				
SD2	Clock High Time	t _{CH}	$0.3 imes t_{CLK}$	$0.7 imes t_{CLK}$	ns				
uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in SDR50 (Reference to SDx_CLK)									
SD4	uSDHC Output Delay	t _{OD}	-3	1	ns				
	uSDHC Output/Card Inputs SD_CMD,	SDx_DATAx in S	DR104 (Refer	ence to SDx_C	LK)				
SD5	uSDHC Output Delay	t _{OD}	-1.6	1	ns				
	uSDHC Input/Card Outputs SD_CMD,	SDx_DATAx in S	SDR50 (Refere	ence to SDx_CI	_K)				
SD6	uSDHC Input Setup Time	t _{ISU}	2.5	—	ns				
SD7	uSDHC Input Hold Time	t _{IH}	1.5	—	ns				
	uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in SDR104 (Reference to SDx_CLK) ¹								
SD8	Card Output Data Window	t _{odw}	$0.5 imes t_{CLK}$	—	ns				

¹Data window in SDR100 mode is variable.

Figure 55. RGMII Receive Signal Timing Diagram with Internal Delay

4.11.6 Flexible Controller Area Network (FlexCAN) AC Electrical Specifications

The Flexible Controller Area Network (FlexCAN) module is a communication controller implementing the CAN protocol according to the CAN 2.0B protocol specification. The processor has two CAN modules available for systems design. Tx and Rx ports for both modules are multiplexed with other I/O pins. See the IOMUXC chapter of the i.MX 6Dual/6Quad reference manual (IMX6DQRM) to see which pins expose Tx and Rx pins; these ports are named FLEXCAN_TX and FLEXCAN_RX, respectively.

4.11.7 HDMI Module Timing Parameters

4.11.7.1 Latencies and Timing Information

Power-up time (time between TX_PWRON assertion and TX_READY assertion) for the HDMI 3D Tx PHY while operating with the slowest input reference clock supported (13.5 MHz) is 3.35 ms.

Symbol	Parameter	Condition	Condition Min Typ M							
R _T	Termination resistance	_	45 50 55			Ω				
	TMDS drivers DC specifications									
V _{OFF}	Single-ended standby voltage	$RT = 50 \Omega$ avddtmds ± 10 mV								
V _{SWING}	Single-ended output swing voltage	definitions, see the first two figures above. Compliance point TP1 as defined in the HDMI specification, version 1.3a, section 4.2.4.	400	_	600	mV				
V _H	Single-ended output high voltage For definition, see the second	If attached sink supports TMDSCLK < or = 165 MHz	avddt	mds ± '	10 mV	mV				
figure above.		If attached sink supports TMDSCLK > 165 MHz	avddtmds – 200 mV	—	avddtmds + 10 mV	mV				
VL	Single-ended output low voltage For definition, see the second	If attached sink supports TMDSCLK < or = 165 MHz	avddtmds – 600 mV	—	avddtmds - 400mV	mV				
	ngure above.	If attached sink supports TMDSCLK > 165 MHz	avddtmds – 700 mV	—	avddtmds - 400 mV	mV				
R _{term}	Differential source termination load (inside HDMI 3D Tx PHY) Although the HDMI 3D Tx PHY includes differential source termination, the user-defined value is set for each single line (for illustration, see the third figure above). Note: R _{TERM} can also be configured to be open and not present on TMDS channels.		50		200	Ω				
		Hot plug detect specifications								
HPD ^{VH}	Hot plug detect high range	—	2.0		5.3	V				
VHPD	Hot plug detect low range	_	0		0.8	V				
HPD	Hot plug detect input impedance	_	10		_	kΩ				
HPD t	Hot plug detect time delay				100	μs				

Table 63. Electrical Characteristics (continued)

4.11.8 Switching Characteristics

Table 64 describes switching characteristics for the HDMI 3D Tx PHY. Figure 59 to Figure 63 illustrate various parameters specified in table.

NOTE

All dynamic parameters related to the TMDS line drivers' performance imply the use of assembly guidelines.

Figure 63. TMDS Output Signals Rise and Fall Time Definition

Symbol	Parameter	Conditions	Min	Тур	Max	Unit				
	TMDS Drivers Specifications									
_	Maximum serial data rate	-	—		3.4	Gbps				
F TMDSCLK	TMDSCLK frequency	On TMDSCLKP/N outputs	25		340	MHz				
PTMDSCLK	TMDSCLK period	RL = 50 Ω See Figure 59.	2.94	_	40	ns				
t CDC	TMDSCLK duty cycle	$t_{CDC} = t_{CPH} / P_{TMDSCLK}$ RL = 50 Ω See Figure 59.	40	50	60	%				
t СРН	TMDSCLK high time	RL = 50 Ω See Figure 59.	4	5	6	UI				
t CPL	TMDSCLK low time	RL = 50 Ω See Figure 59.	4	5	6	UI				
_	TMDSCLK jitter ¹	RL = 50 Ω	—		0.25	UI				
t SK(p)	Intra-pair (pulse) skew	RL = 50 Ω See Figure 61.	—	_	0.15	UI				
t SK(pp)	Inter-pair skew	RL = 50 Ω See Figure 62.	—	—	1	UI				
t _R	Differential output signal rise time	20–80% RL = 50 Ω See Figure 63.	75		0.4 UI	ps				

Table 64. Switching Characteristics

- ² The MSB bits are duplicated on LSB bits implementing color extension.
- ³ The two MSB bits are duplicated on LSB bits implementing color extension.
- ⁴ YCbCr, 8 bits—Supported within the BT.656 protocol (sync embedded within the data stream).
- ⁵ RGB, 16 bits—Supported in two ways: (1) As a "generic data" input—with no on-the-fly processing; (2) With on-the-fly processing, but only under some restrictions on the control protocol.
- ⁶ YCbCr, 16 bits—Supported as a "generic-data" input—with no on-the-fly processing.
- ⁷ YCbCr, 16 bits—Supported as a sub-case of the YCbCr, 20 bits, under the same conditions (BT.1120 protocol).
- ⁸ YCbCr, 20 bits—Supported only within the BT.1120 protocol (syncs embedded within the data stream).

4.11.10.2 Sensor Interface Timings

There are three camera timing modes supported by the IPU.

4.11.10.2.1 BT.656 and BT.1120 Video Mode

Smart camera sensors, which include imaging processing, usually support video mode transfer. They use an embedded timing syntax to replace the IPU2_CSIx_VSYNC and IPU2_CSIx_HSYNC signals. The timing syntax is defined by the BT.656/BT.1120 standards.

This operation mode follows the recommendations of ITU BT.656/ ITU BT.1120 specifications. The only control signal used is IPU2_CSIx_PIX_CLK. Start-of-frame and active-line signals are embedded in the data stream. An active line starts with a SAV code and ends with a EAV code. In some cases, digital blanking is inserted in between EAV and SAV code. The CSI decodes and filters out the timing-coding from the data stream, thus recovering IPU2_CSIx_VSYNC and IPU2_CSIx_HSYNC signals for internal use. On BT.656 one component per cycle is received over the IPU2_CSIx_DATA_EN bus. On BT.1120 two components per cycle are received over the IPU2_CSIx_DATA_EN bus.

4.11.10.2.2 Gated Clock Mode

The IPU2_CSIx_VSYNC, IPU2_CSIx_HSYNC, and IPU2_CSIx_PIX_CLK signals are used in this mode. See Figure 65.

Figure 65. Gated Clock Mode Timing Diagram

A frame starts with a rising edge on IPU2_CSIx_VSYNC (all the timings correspond to straight polarity of the corresponding signals). Then IPU2_CSIx_HSYNC goes to high and hold for the entire line. Pixel clock is valid as long as IPU2_CSIx_HSYNC is high. Data is latched at the rising edge of the valid pixel clocks. IPU2_CSIx_HSYNC goes to low at the end of line. Pixel clocks then become invalid and the CSI

Parameter	Symbol	Test Conditions	Min	Мах	Unit
Common-mode output voltage: (V _{O+} - V _{O-}) / 2	V _{OCM}	_	1.0	1.5	V
Difference in common-mode output between (high/low) steady-states: I V _{OCM, high} - V _{OCM, low} I	ΔV _{OCM}	_	-50	50	mV
Variations on common-mode output during a logic state transitions	V _{CMV}	See Note ²	—	150	mVpp
Short circuit current	ll _{OS} l	See Note ³	—	43	mA
Differential output impedance	Z _O	_	1.6	—	kΩ
	Receiv	er Characteristics			
Differential clock input: • logic low steady-state • logic high steady-state • hysteresis	V _{ILC} V _{IHC} V _{HSC}	See Note ⁴	50 -25	-50 25	mV mV mV
Differential signal/data input: • logic low steady-state • logic high steady-state	V _{ILS} V _{IHS}	_	— 50	-50	mV mV
Signal-ended input voltage (steady-state): • MLB_SIG_P, MLB_DATA_P • MLB_SIG_N, MLB_DATA_N	V _{IN+} V _{IN-}	_	0.5 0.5	2.0 2.0	V V

Table 76. MediaLB 6-Pin Interface Electrical DC Specifications (continued)

¹ The signal-ended output voltage of a driver is defined as V_{O+} on MLB_CLK_P, MLB_SIG_P, and MLB_DATA_P. The signal-ended output voltage of a driver is defined as V_{O-} on MLB_CLK_N, MLB_SIG_N, and MLB_DATA_N.

² Variations in the common-mode voltage can occur between logic states (for example, during state transitions) as a result of differences in the transition rate of V_{O+} and V_{O-}.

 $^3\,$ Short circuit current is applicable when V_{O_{+}} and V_{O_{-}} are shorted together and/or shorted to ground.

⁴ The logic state of the receiver is undefined when -50 mV < V_{ID} < 50 mV.

Baramatar	Symbol	Timing Para	Unit		
Falance	Symbol	Min	Max	Cint	
SPDIF_IN Skew: asynchronous inputs, no specs apply	—	_	0.7	ns	
SPDIF_OUT output (Load = 50pf) • Skew • Transition rising • Transition falling			1.5 24.2 31.3	ns	
SPDIF_OUT output (Load = 30pf) • Skew • Transition rising • Transition falling			1.5 13.6 18.0	ns	
Modulating Rx clock (SPDIF_SR_CLK) period	srckp	40.0	_	ns	
SPDIF_SR_CLK high period	srckph	16.0	—	ns	
SPDIF_SR_CLK low period	srckpl	16.0	—	ns	
Modulating Tx clock (SPDIF_ST_CLK) period	stclkp	40.0	—	ns	
SPDIF_ST_CLK high period	stclkph	16.0	—	ns	
SPDIF_ST_CLK low period	stclkpl	16.0	—	ns	

Table 84. SPDIF Timing Parameters

Figure 94. SPDIF_SR_CLK Timing Diagram

Figure 95. SPDIF_ST_CLK Timing Diagram

4.11.20 SSI Timing Parameters

This section describes the timing parameters of the SSI module. The connectivity of the serial synchronous interfaces are summarized in Table 85.

Port	Signal Nomenclature	Type and Access
AUDMUX port 1	SSI 1	Internal
AUDMUX port 2	SSI 2	Internal
AUDMUX port 3	AUD3	External – AUD3 I/O
AUDMUX port 4	AUD4	External – EIM or CSPI1 I/O through IOMUXC
AUDMUX port 5	AUD5	External – EIM or SD1 I/O through IOMUXC
AUDMUX port 6	AUD6	External – EIM or DISP2 through IOMUXC
AUDMUX port 7	SSI 3	Internal

Table 85. AUDMUX Port Allocation

NOTE

The terms WL and BL used in the timing diagrams and tables refer to Word Length (WL) and Bit Length (BL).

4.11.20.1 SSI Transmitter Timing with Internal Clock

Figure 96 depicts the SSI transmitter internal clock timing and Table 86 lists the timing parameters for the SSI transmitter internal clock.

Figure 96. SSI Transmitter Internal Clock Timing Diagram

ID	Parameter	Min	Мах	Unit				
Oversampling Clock Operation								
SS47	Oversampling clock period	15.04	_	ns				
SS48	Oversampling clock high period	6.0	_	ns				
SS49	Oversampling clock rise time	_	3.0	ns				
SS50	Oversampling clock low period	6.0	_	ns				
SS51	Oversampling clock fall time	_	3.0	ns				

Table 87. SSI Receiver Timing with Internal Clock (continued)

NOTE

- All the timings for the SSI are given for a non-inverted serial clock polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync (TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting the clock signal AUDx_TXC/AUDx_RXC and/or the frame sync AUDx_TXFS/AUDx_RXFS shown in the tables and in the figures.
- All timings are on Audiomux Pads when SSI is being used for data transfer.
- AUDx_TXC and AUDx_RXC refer to the Transmit and Receive sections of the SSI.
- The terms, WL and BL, refer to Word Length (WL) and Bit Length (BL).
- For internal Frame Sync operation using external clock, the frame sync timing is same as that of transmit data (for example, during AC97 mode of operation).

Boot Mode Configuration

Interface	IP Instance	Allocated Pads During Boot	Comment
NAND Flash	GPMI	NANDF_CLE, NANDF_ALE, NANDF_WP_B, SD4_CMD, SD4_CLK, NANDF_RB0, SD4_DAT0, NANDF_CS0, NANDF_CS1, NANDF_CS2, NANDF_CS3, NANDF_D[7:0]	8 bit Only CS0 is supported
SD/MMC	USDHC-1	SD1_CLK, SD1_CMD,SD1_DAT0, SD1_DAT1, SD1_DAT2, SD1_DAT3, NANDF_D0, NANDF_D1, NANDF_D2, NANDF_D3, KEY_COL1	1, 4, or 8 bit
SD/MMC	USDHC-2	SD2_CLK, SD2_CMD, SD2_DAT0, SD2_DAT1, SD2_DAT2, SD2_DAT3, NANDF_D4, NANDF_D5, NANDF_D6, NANDF_D7, KEY_ROW1	1, 4, or 8 bit
SD/MMC	USDHC-3	SD3_CLK, SD3_CMD, SD3_DAT0, SD3_DAT1, SD3_DAT2, SD3_DAT3, SD3_DAT4, SD3_DAT5, SD3_DAT6, SD3_DAT7, GPI0_18	1, 4, or 8 bit
SD/MMC	USDHC-4	SD4_CLK, SD4_CMD, SD4_DAT0, SD4_DAT1, SD4_DAT2, SD4_DAT3, SD4_DAT4, SD4_DAT5, SD4_DAT6, SD4_DAT7, NANDF_CS1	1, 4, or 8 bit
I2C	I2C-1	EIM_D28, EIM_D21	—
I2C	I2C-2	EIM_D16, EIM_EB2	—
I2C	I2C-3	EIM_D18, EIM_D17	—
SATA	SATA_PHY	SATA_TXM, SATA_TXP, SATA_RXP, SATA_RXM, SATA_REXT	_
USB	USB-OTG PHY	USB_OTG_DP USB_OTG_DN USB_OTG_VBUS	_

Table 98. Interfaces Allocation	n During Boot	(continued)
---------------------------------	---------------	-------------

Package Information and Contact Assignments

NOTES:

- 1. ALL DIMENSIONS IN MILLIMETERS.
- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
- $^{\prime}$ 3. Maximum solder ball diameter measured parallel to datum A.

A. DATUM A, THE SEATING PLANE, IS DETERMINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS.

PARALLELISM MEASUREMENT SHALL EXCLUDE ANY EFFECT OF MARK ON TOP SURFACE OF PACKAGE.

6. 21.2MM MAXIMUM PACKAGE ASSEMBLY (LID + LAMINATE) X AND Y.

© FRE	EESCALE SEMICONDUCTOR, ALL RIGHTS RESERVED.	INC.	MECHANICAL OU	TLINE	PRINT VERSION NOT	TO SCALE	
TITLE:	TITLE: 624 L/O EC PBGA				DOCUMENT NO: 98ASA00330D REV: D		
	21 X 21 X 2 PKG,			STANDARD: NON-JEDEC			
0.8 MM PITCH, STAMPED LID			PED LID		08	3 OCT 2013	

Figure 107. 21 x 21 mm Lidded Package Top, Bottom, and Side Views (Sheet 2 of 2)

Package Information and Contact Assignments

				Out of Reset Condition ¹			
Ball Name	Ball	Power Group	Ball Type	Default Mode (Reset Mode)	Default Function (Signal Name)	Input/Output	Value ²
DRAM_D11	AE7	NVCC_DRAM	DDR	ALT0	DRAM_DATA11	Input	PU (100K)
DRAM_D12	AB5	NVCC_DRAM	DDR	ALT0	DRAM_DATA12	Input	PU (100K)
DRAM_D13	AC5	NVCC_DRAM	DDR	ALT0	DRAM_DATA13	Input	PU (100K)
DRAM_D14	AB6	NVCC_DRAM	DDR	ALT0	DRAM_DATA14	Input	PU (100K)
DRAM_D15	AC7	NVCC_DRAM	DDR	ALT0	DRAM_DATA15	Input	PU (100K)
DRAM_D16	AB7	NVCC_DRAM	DDR	ALT0	DRAM_DATA16	Input	PU (100K)
DRAM_D17	AA8	NVCC_DRAM	DDR	ALT0	DRAM_DATA17	Input	PU (100K)
DRAM_D18	AB9	NVCC_DRAM	DDR	ALT0	DRAM_DATA18	Input	PU (100K)
DRAM_D19	Y9	NVCC_DRAM	DDR	ALT0	DRAM_DATA19	Input	PU (100K)
DRAM_D2	AC4	NVCC_DRAM	DDR	ALT0	DRAM_DATA02	Input	PU (100K)
DRAM_D20	Y7	NVCC_DRAM	DDR	ALT0	DRAM_DATA20	Input	PU (100K)
DRAM_D21	Y8	NVCC_DRAM	DDR	ALT0	DRAM_DATA21	Input	PU (100K)
DRAM_D22	AC8	NVCC_DRAM	DDR	ALT0	DRAM_DATA22	Input	PU (100K)
DRAM_D23	AA9	NVCC_DRAM	DDR	ALT0	DRAM_DATA23	Input	PU (100K)
DRAM_D24	AE9	NVCC_DRAM	DDR	ALT0	DRAM_DATA24	Input	PU (100K)
DRAM_D25	Y10	NVCC_DRAM	DDR	ALT0	DRAM_DATA25	Input	PU (100K)
DRAM_D26	AE11	NVCC_DRAM	DDR	ALT0	DRAM_DATA26	Input	PU (100K)
DRAM_D27	AB11	NVCC_DRAM	DDR	ALT0	DRAM_DATA27	Input	PU (100K)
DRAM_D28	AC9	NVCC_DRAM	DDR	ALT0	DRAM_DATA28	Input	PU (100K)
DRAM_D29	AD9	NVCC_DRAM	DDR	ALT0	DRAM_DATA29	Input	PU (100K)
DRAM_D3	AA5	NVCC_DRAM	DDR	ALT0	DRAM_DATA03	Input	PU (100K)
DRAM_D30	AD11	NVCC_DRAM	DDR	ALT0	DRAM_DATA30	Input	PU (100K)
DRAM_D31	AC11	NVCC_DRAM	DDR	ALT0	DRAM_DATA31	Input	PU (100K)
DRAM_D32	AA17	NVCC_DRAM	DDR	ALT0	DRAM_DATA32	Input	PU (100K)
DRAM_D33	AA18	NVCC_DRAM	DDR	ALT0	DRAM_DATA33	Input	PU (100K)
DRAM_D34	AC18	NVCC_DRAM	DDR	ALT0	DRAM_DATA34	Input	PU (100K)
DRAM_D35	AE19	NVCC_DRAM	DDR	ALT0	DRAM_DATA35	Input	PU (100K)
DRAM_D36	Y17	NVCC_DRAM	DDR	ALT0	DRAM_DATA36	Input	PU (100K)
DRAM_D37	Y18	NVCC_DRAM	DDR	ALT0	DRAM_DATA37	Input	PU (100K)
DRAM_D38	AB19	NVCC_DRAM	DDR	ALT0	DRAM_DATA38	Input	PU (100K)
DRAM_D39	AC19	NVCC_DRAM	DDR	ALT0	DRAM_DATA39	Input	PU (100K)
DRAM_D4	AC1	NVCC_DRAM	DDR	ALT0	DRAM_DATA04	Input	PU (100K)
DRAM_D40	Y19	NVCC_DRAM	DDR	ALT0	DRAM_DATA40	Input	PU (100K)
DRAM_D41	AB20	NVCC_DRAM	DDR	ALT0	DRAM_DATA41	Input	PU (100K)
DRAM_D42	AB21	NVCC_DRAM	DDR	ALT0	DRAM_DATA42	Input	PU (100K)
DRAM_D43	AD21	NVCC_DRAM	DDR	ALT0	DRAM_DATA43	Input	PU (100K)

Table 100. 21 x 21 mm Functional Contact Assignments (continued)

Package Information and Contact Assignments

				Out of Reset Condition ¹				
Ball Name	Ball	Power Group	Ball Type	Default Mode (Reset Mode)	Default Function (Signal Name)	Input/Output	Value ²	
SD3_CLK	D14	NVCC_SD3	GPIO	ALT5	GPI07_I003	Input	PU (100K)	
SD3_CMD	B13	NVCC_SD3	GPIO	ALT5	GPI07_I002	Input	PU (100K)	
SD3_DAT0	E14	NVCC_SD3	GPIO	ALT5	GPI07_I004	Input	PU (100K)	
SD3_DAT1	F14	NVCC_SD3	GPIO	ALT5	GPI07_I005	Input	PU (100K)	
SD3_DAT2	A15	NVCC_SD3	GPIO	ALT5	GPI07_I006	Input	PU (100K)	
SD3_DAT3	B15	NVCC_SD3	GPIO	ALT5	GPI07_I007	Input	PU (100K)	
SD3_DAT4	D13	NVCC_SD3	GPIO	ALT5	GPI07_I001	Input	PU (100K)	
SD3_DAT5	C13	NVCC_SD3	GPIO	ALT5	GPI07_I000	Input	PU (100K)	
SD3_DAT6	E13	NVCC_SD3	GPIO	ALT5	GPIO6_IO18	Input	PU (100K)	
SD3_DAT7	F13	NVCC_SD3	GPIO	ALT5	GPIO6_I017	Input	PU (100K)	
SD3_RST	D15	NVCC_SD3	GPIO	ALT5	GPI07_I008	Input	PU (100K)	
SD4_CLK	E16	NVCC_NANDF	GPIO	ALT5	GPI07_I010	Input	PU (100K)	
SD4_CMD	B17	NVCC_NANDF	GPIO	ALT5	GPI07_I009	Input	PU (100K)	
SD4_DAT0	D18	NVCC_NANDF	GPIO	ALT5	GPIO2_I008	Input	PU (100K)	
SD4_DAT1	B19	NVCC_NANDF	GPIO	ALT5	GPIO2_IO09	Input	PU (100K)	
SD4_DAT2	F17	NVCC_NANDF	GPIO	ALT5	GPIO2_IO10	Input	PU (100K)	
SD4_DAT3	A20	NVCC_NANDF	GPIO	ALT5	GPIO2_IO11	Input	PU (100K)	
SD4_DAT4	E18	NVCC_NANDF	GPIO	ALT5	GPIO2_I012	Input	PU (100K)	
SD4_DAT5	C19	NVCC_NANDF	GPIO	ALT5	GPIO2_IO13	Input	PU (100K)	
SD4_DAT6	B20	NVCC_NANDF	GPIO	ALT5	GPIO2_IO14	Input	PU (100K)	
SD4_DAT7	D19	NVCC_NANDF	GPIO	ALT5	GPIO2_IO15	Input	PU (100K)	
TAMPER	E11	VDD_SNVS_IN	GPIO	ALT0	SNVS_TAMPER	Input	PD (100K)	
TEST_MODE	E12	VDD_SNVS_IN	—	_	TCU_TEST_MODE	Input	PD (100K)	
USB_H1_DN	F10	VDD_USB_CAP	—	—	USB_H1_DN	—	—	
USB_H1_DP	E10	VDD_USB_CAP	—	_	USB_H1_DP	—	—	
USB_OTG_CHD_B	B8	VDD_USB_CAP	—	—	USB_OTG_CHD_B	—	—	
USB_OTG_DN	B6	VDD_USB_CAP	—	_	USB_OTG_DN	—	—	
USB_OTG_DP	A6	VDD_USB_CAP	—	—	USB_OTG_DP	—	—	
XTALI	A7	NVCC_PLL	—	—	XTALI	—	—	
XTALO	B7	NVCC_PLL	—	—	XTALO	—	—	

Table 100. 21 x 21 mm Functional Contact Assignments (continued)

¹ The state immediately after reset and before ROM firmware or software has executed.

² Variance of the pull-up and pull-down strengths are shown in the tables as follows:

- Table 22, "GPIO I/O DC Parameters," on page 39.
- Table 23, "LPDDR2 I/O DC Electrical Parameters," on page 40

• Table 24, "DDR3/DDR3L I/O DC Electrical Parameters," on page 40