E·XFL

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Details	
Product Status	Not For New Designs
Core Processor	ARM® Cortex®-A9
Number of Cores/Bus Width	4 Core, 32-Bit
Speed	1.0GHz
Co-Processors/DSP	Multimedia; NEON™ SIMD
RAM Controllers	LPDDR2, LVDDR3, DDR3
Graphics Acceleration	Yes
Display & Interface Controllers	Keypad, LCD
Ethernet	10/100/1000Mbps (1)
SATA	SATA 3Gbps (1)
USB	USB 2.0 + PHY (4)
Voltage - I/O	1.8V, 2.5V, 2.8V, 3.3V
Operating Temperature	-40°C ~ 125°C (TJ)
Security Features	ARM TZ, Boot Security, Cryptography, RTIC, Secure Fusebox, Secure JTAG, Secure Memory, Secure RTC, Tamper Detection
Package / Case	624-FBGA, FCBGA
Supplier Device Package	624-FCBGA (21x21)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mcimx6q4avt10acr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Modules List

Block Mnemonic	Block Name	Subsystem	Brief Description	
EPIT-1 EPIT-2	Enhanced Periodic Interrupt Timer	Timer Peripherals	Each EPIT is a 32-bit "set and forget" timer that starts counting after the EPIT is enabled by software. It is capable of providing precise interrupts at regular intervals with minimal processor intervention. It has a 12-bit prescaler for division of input clock frequency to get the required time setting for the interrupts to occur, and counter value can be programmed on the fly.	
ESAI	Enhanced Serial Audio Interface	Connectivity Peripherals	The Enhanced Serial Audio Interface (ESAI) provides a full-duplex serial port for serial communication with a variety of serial devices, including industry-standard codecs, SPDIF transceivers, and other processors. The ESAI consists of independent transmitter and receiver sections, each section with its own clock generator. All serial transfers are synchronized to a clock. Additional synchronization signals are used to delineate the word frames. The normal mode of operation is used to transfer data at a periodic rate, one word per period. The network mode is also intended for periodic transfers; however, it supports up to 32 words (time slots) per period. This mode can be used to build time division multiplexed (TDM) networks. In contrast, the on-demand mode is intended for non-periodic transfers of data and to transfer data serially at high speed when the data becomes available. The ESAI has 12 pins for data and clocking connection to external devices.	
FlexCAN-1 FlexCAN-2	Flexible Controller Area Network	Connectivity Peripherals	The CAN protocol was primarily, but not only, designed to be used as a vehicle serial data bus, meeting the specific requirements of this field: real-time processing, reliable operation in the Electromagnetic interference (EMI) environment of a vehicle, cost-effectiveness and required bandwidth. The FlexCAN module is a full implementation of the CAN protocol specification, Version 2.0 B, which supports both standard and extended message frames.	
GPIO-1 GPIO-2 GPIO-3 GPIO-4 GPIO-5 GPIO-6 GPIO-7	General Purpose I/O Modules	System Control Peripherals	Used for general purpose input/output to external devices. Each GPIO module supports 32 bits of I/O.	
GPMI	General Purpose Media Interface	Connectivity Peripherals	The GPMI module supports up to 8x NAND devices. 40-bit ECC encryption/decryption for NAND Flash controller (GPMI2). The GPMI supports separate DMA channels per NAND device.	
GPT	General Purpose Timer	Timer Peripherals	Each GPT is a 32-bit "free-running" or "set and forget" mode timer with programmable prescaler and compare and capture register. A timer counter value can be captured using an external event and can be configured to trigger a capture event on either the leading or trailing edges of an input pulse. When the timer is configured to operate in "set and forget" mode, it is capable of providing precise interrupts at regular intervals with minimal processor intervention. The counter has output compare logic to provide the status and interrupt at comparison. This timer can be configured to run either on an external clock or on an internal clock.	

Modules List

Block Mnemonic	Block Name Subsystem		Brief Description		
LDB	LVDS Display Bridge	Connectivity Peripherals	 LVDS Display Bridge is used to connect the IPU (Image Processing Unit) to External LVDS Display Interface. LDB supports two channels; each channel has following signals: One clock pair Four data pairs Each signal pair contains LVDS special differential pad (PadP, PadM). 		
MLB150	MediaLB	Connectivity / Multimedia Peripherals	The MLB interface module provides a link to a MOST [®] data network, using the standardized MediaLB protocol (up to 150 Mbps). The module is backward compatible to MLB-50.		
MMDC	Multi-Mode DDR Controller	Connectivity Peripherals	 DDR Controller has the following features: Support 16/32/64-bit DDR3-1066 (LV) or LPDDR2-1066 Supports both dual x32 for LPDDR2 and x64 DDR3 / LPDDR2 configurations (including 2x32 interleaved mode) Support up to 4 GByte DDR memory space 		
OCOTP_CTRL	OTP Controller	Security	The On-Chip OTP controller (OCOTP_CTRL) provides an interface for reading, programming, and/or overriding identification and control information stored in on-chip fuse elements. The module supports electrically-programmable poly fuses (eFUSEs). The OCOTP_CTRL also provides a set of volatile software-accessible signals that can be used for software control of hardware elements, not requiring non-volatility. The OCOTP_CTRL provides the primary user-visible mechanism for interfacing with on-chip fuse elements. Among the uses for the fuses are unique chip identifiers, mask revision numbers, cryptographic keys, JTAG secure mode, boot characteristics, and various control signals, requiring permanent non-volatility.		
OCRAM	On-Chip Memory Controller	Data Path	The On-Chip Memory controller (OCRAM) module is designed as an interface between system's AXI bus and internal (on-chip) SRAM memory module. In i.MX 6Dual/6Quad processors, the OCRAM is used for controlling the 256 KB multimedia RAM through a 64-bit AXI bus.		
OSC 32 kHz	OSC 32 kHz	Clocking	Generates 32.768 kHz clock from an external crystal.		
PCle	PCI Express 2.0	Connectivity Peripherals	The PCIe IP provides PCI Express Gen 2.0 functionality.		
PMU	Power-Management Functions	Data Path	Integrated power management unit. Used to provide power to various SoC domains.		
PWM-1 PWM-2 PWM-3 PWM-4	Pulse Width Modulation	Connectivity Peripherals	The pulse-width modulator (PWM) has a 16-bit counter and is optimized to generate sound from stored sample audio images and it can also generate tones. It uses 16-bit resolution and a 4x16 data FIFO to generate sound.		
RAM 16 KB	Secure/non-secure RAM	Secured Internal Memory	Secure/non-secure Internal RAM, interfaced through the CAAM.		
RAM 256 KB	Internal RAM	Internal Memory	Internal RAM, which is accessed through OCRAM memory controllers.		

Modules List

Block Mnemonic	Block Name	Subsystem	Brief Description
WDOG-2 (TZ)	Watchdog (TrustZone)	Timer Peripherals	The TrustZone Watchdog (TZ WDOG) timer module protects against TrustZone starvation by providing a method of escaping normal mode and forcing a switch to the TZ mode. TZ starvation is a situation where the normal OS prevents switching to the TZ mode. Such a situation is undesirable as it can compromise the system's security. Once the TZ WDOG module is activated, it must be serviced by TZ software on a periodic basis. If servicing does not take place, the timer times out. Upon a time-out, the TZ WDOG asserts a TZ mapped interrupt that forces switching to the TZ mode. If it is still not served, the TZ WDOG asserts a security violation signal to the CSU. The TZ WDOG module cannot be programmed or deactivated by a normal mode Software.
EIM	NOR-Flash /PSRAM interface	Connectivity Peripherals	 The EIM NOR-FLASH / PSRAM provides: Support 16-bit (in muxed IO mode only) PSRAM memories (sync and async operating modes), at slow frequency Support 16-bit (in muxed IO mode only) NOR-Flash memories, at slow frequency Multiple chip selects
XTALOSC	Crystal Oscillator interface	—	The XTALOSC module enables connectivity to external crystal oscillator device. In a typical application use-case, it is used for 24 MHz oscillator.

3.1 Special Signal Considerations

The package contact assignments can be found in Section 6, "Package Information and Contact Assignments." Signal descriptions are defined in the i.MX 6Dual/6Quad reference manual (IMX6DQRM). Special signal consideration information is contained in the Hardware Development Guide for i.MX 6Quad, 6Dual, 6DualLite, 6Solo Families of Applications Processors (IMX6DQ6SDLHDG).

3.2 Recommended Connections for Unused Analog Interfaces

The recommended connections for unused analog interfaces can be found in the section, "Unused analog interfaces," of the Hardware Development Guide for i.MX 6Quad, 6Dual, 6DualLite, 6Solo Families of Applications Processors (IMX6DQ6SDLHDG).

4.4.4 480 MHz PLL

Parameter	Value
Clock output range	480 MHz PLL output
Reference clock	24 MHz
Lock time	<383 reference cycles

Table 17. 480 MHz PLL Electrical Parameters

4.4.5 MLB PLL

The MediaLB PLL is necessary in the MediaLB 6-Pin implementation to phase align the internal and external clock edges, effectively tuning out the delay of the differential clock receiver and is also responsible for generating the higher speed internal clock, when the internal-to-external clock ratio is not 1:1.

Table 18. MLB PLL Electrical Parameters

Parameter	Value
Lock time	<1.5 ms

4.4.6 ARM PLL

Table 19. ARM PLL Electrical Parameters

Parameter	Value
Clock output range	650 MHz~1.3 GHz
Reference clock	24 MHz
Lock time	<2250 reference cycles

4.5 **On-Chip Oscillators**


4.5.1 OSC24M

This block implements an amplifier that when combined with a suitable quartz crystal and external load capacitors implements an oscillator. The oscillator is powered from NVCC_PLL_OUT.

The system crystal oscillator consists of a Pierce-type structure running off the digital supply. A straight forward biased-inverter implementation is used.

4.5.2 OSC32K

This block implements an amplifier that when combined with a suitable quartz crystal and external load capacitors implements a low power oscillator. It also implements a power mux such that it can be powered

4.6.2 General Purpose I/O (GPIO) DC Parameters

Table 22 shows DC parameters for GPIO pads. The parameters in Table 22 are guaranteed per the operating ranges in Table 6, unless otherwise noted.

Parameter	Symbol	Test Conditions	Min	Max	Unit
High-level output voltage ¹	Voh	loh = -0.1 mA (DSE ² = 001, 010) loh = -1 mA (DSE = 011, 100, 101, 110, 111)	OVDD - 0.15	_	V
Low-level output voltage ¹	Vol	lol = 0.1 mA (DSE ² = 001, 010) lol = 1mA (DSE = 011, 100, 101, 110, 111)	_	0.15	V
High-Level DC input voltage ^{1, 3}	Vih	—	$0.7 \times \text{OVDD}$	OVDD	V
Low-Level DC input voltage ^{1, 3}	Vil		0	$0.3 \times \text{OVDD}$	V
Input Hysteresis	Vhys	OVDD = 1.8 V OVDD = 3.3 V	0.25	_	V
Schmitt trigger VT+ ^{3, 4}	VT+	_	0.5 imes OVDD	_	V
Schmitt trigger VT-3, 4	VT–			$0.5 \times \text{OVDD}$	V
Input current (no pull-up/down)	lin	Vin = OVDD or 0	-1	1	μA
Input current (22 kΩ pull-up)	lin	Vin = 0 V Vin = OVDD	—	212 1	μA
Input current (47 kΩ pull-up)	lin	Vin = 0 V Vin = OVDD	—	100 1	μA
Input current (100 kΩ pull-up)	lin	Vin = 0 V Vin= OVDD	—	48 1	μA
Input current (100 kΩ pull-down)	lin	Vin = 0 V Vin = OVDD	—	1 48	μA
Keeper circuit resistance	Rkeep	Vin = 0.3 x OVDD Vin = 0.7 x OVDD	105	175	kΩ

Table 22. GPIO I/O DC Parameters

¹ Overshoot and undershoot conditions (transitions above OVDD and below GND) on switching pads must be held below 0.6 V, and the duration of the overshoot/undershoot must not exceed 10% of the system clock cycle. Overshoot/ undershoot must be controlled through printed circuit board layout, transmission line impedance matching, signal line termination, or other methods. Non-compliance to this specification may affect device reliability or cause permanent damage to the device.

² DSE is the Drive Strength Field setting in the associated IOMUX control register.

³ To maintain a valid level, the transition edge of the input must sustain a constant slew rate (monotonic) from the current DC level through to the target DC level, Vil or Vih. Monotonic input transition time is from 0.1 ns to 1 s.

⁴ Hysteresis of 250 mV is guaranteed over all operating conditions when hysteresis is enabled.

4.6.3 DDR I/O DC Parameters

The DDR I/O pads support LPDDR2 and DDR3/DDR3L operational modes.

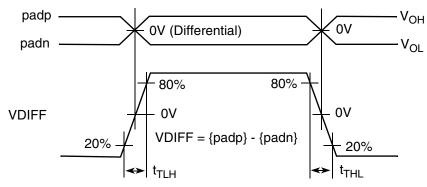


Figure 7. Differential MLB Driver Transition Time Waveform

A 4-stage pipeline is used in the MLB 6-pin implementation to facilitate design, maximize throughput, and allow for reasonable PCB trace lengths. Each cycle is one ipp_clk_in* (internal clock from MLB PLL) clock period. Cycles 2, 3, and 4 are MLB PHY related. Cycle 2 includes clock-to-output delay of Signal/Data sampling flip-flop and Transmitter, Cycle 3 includes clock-to-output delay of Signal/Data clocked receiver, Cycle 4 includes clock-to-output delay of Signal/Data sampling flip-flop.

MLB 6-pin pipeline diagram is shown in Figure 8.

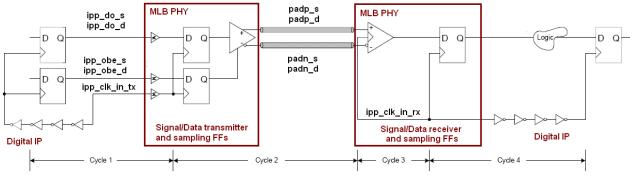


Figure 8. MLB 6-Pin Pipeline Diagram

Table 32 shows the AC parameters for MLB I/O.

Table 32. I/O AC	Parameters of MLB PHY
------------------	-----------------------

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Differential pulse skew ¹	t _{SKD}	Rload = 50 Ω	_		0.1	
Transition Low to High Time ²	t _{TLH}	between padP	_		1	ns
Transition High to Low Time	t _{THL}	and padN	_		1	
MLB external clock Operating Frequency	fclk_ext	—	_		102.4	MHz
MLB PLL clock Operating Frequency	fclk_pll	—	_		307.2	MHz

¹ t_{SKD} = | t_{PHLD} - t_{PLHD} |, is the magnitude difference in differential propagation delay time between the positive going edge and the negative going edge of the same channel.

² Measurement levels are 20-80% from output voltage.

4.8.1 GPIO Output Buffer Impedance

Table 33 shows the GPIO output buffer impedance (OVDD 1.8 V).

Table 33. GPIO Output Buffer Average Impedance (OVDD 1.8 V)

Parameter	Symbol	Drive Strength (ipp_dse)	Typ Value	Unit
		001	260	
	Rdrv	010	130	
		011	90	
Output Driver		100	60	Ω
Impedance		101	50	
		110	40	
		111	33	

Table 34 shows the GPIO output buffer impedance (OVDD 3.3 V).

Table 34. GPIO Output Buffer Average Impedance (OVDD 3.3 V)

Parameter	Symbol	Drive Strength (ipp_dse)	Typ Value	Unit
		001	150	
	Rdrv	010	75	
		011	50	
Output Driver Impedance		100	37	Ω
Impedance		101	30	
		110		
		111	20	

4.9.3.4 General EIM Timing-Asynchronous Mode

Figure 18 through Figure 22 and Table 41 provide timing parameters relative to the chip select (CS) state for asynchronous and DTACK EIM accesses with corresponding EIM bit fields and the timing parameters mentioned above.

Asynchronous read & write access length in cycles may vary from what is shown in Figure 18 through Figure 21 as RWSC, OEN & CSN is configured differently. See the i.MX 6Dual/6Quad reference manual (IMX6DQRM) for the EIM programming model.

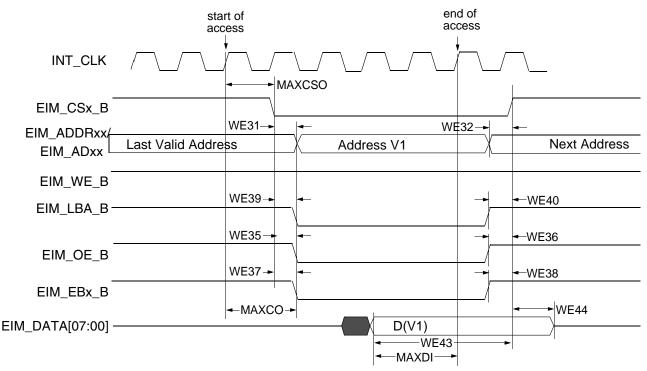


Figure 18. Asynchronous Memory Read Access (RWSC = 5)

4.10.1 Asynchronous Mode AC Timing (ONFI 1.0 Compatible)

Asynchronous mode AC timings are provided as multiplications of the clock cycle and fixed delay. The Maximum I/O speed of GPMI in Asynchronous mode is about 50 MB/s. Figure 30 through Figure 33 depict the relative timing between GPMI signals at the module level for different operations under Asynchronous mode. Table 48 describes the timing parameters (NF1–NF17) that are shown in the figures.

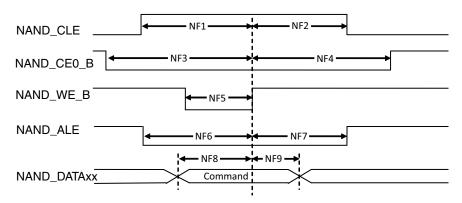
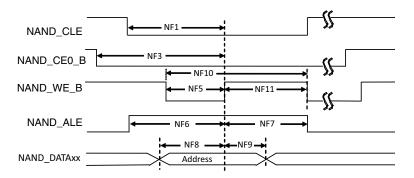
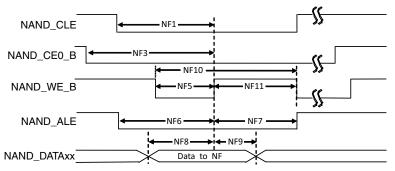
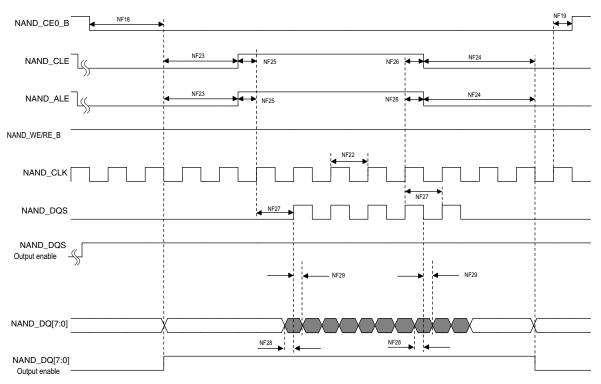
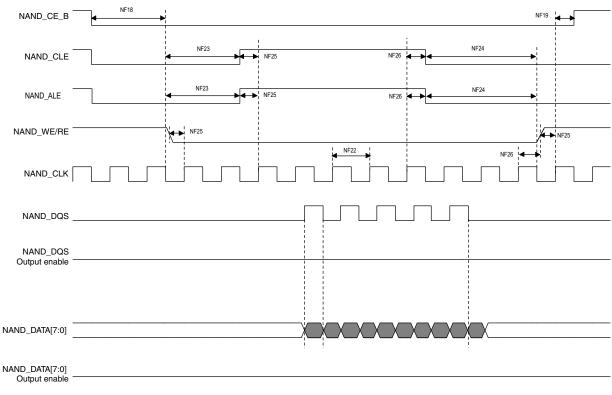


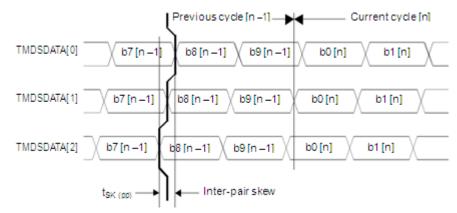
Figure 30. Command Latch Cycle Timing Diagram


Figure 31. Address Latch Cycle Timing Diagram



Electrical Characteristics



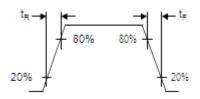


Figure 63. TMDS Output Signals Rise and Fall Time Definition

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	T	MDS Drivers Specifications				
	Maximum serial data rate	—	—	—	3.4	Gbps
F TMDSCLK	TMDSCLK frequency	On TMDSCLKP/N outputs	25	—	340	MHz
P TMDSCLK	TMDSCLK period	RL = 50 Ω See Figure 59.	2.94	_	40	ns
t CDC	TMDSCLK duty cycle	$t_{CDC} = t_{CPH} / P_{TMDSCLK}$ RL = 50 Ω See Figure 59.	40	50	60	%
t CPH	TMDSCLK high time	RL = 50 Ω See Figure 59.	4	5	6	UI
t CPL	TMDSCLK low time	RL = 50 Ω See Figure 59.	4	5	6	UI
_	TMDSCLK jitter ¹	RL = 50 Ω	_	—	0.25	UI
t SK(p)	Intra-pair (pulse) skew	RL = 50 Ω See Figure 61.	-	_	0.15	UI
t SK(pp)	Inter-pair skew	RL = 50 Ω See Figure 62.	-	—	1	UI
t _R	Differential output signal rise time	20–80% RL = 50 Ω See Figure 63.	75	—	0.4 UI	ps

Table 64. Switching Characteristics

4.11.10.1 IPU Sensor Interface Signal Mapping

The IPU supports a number of sensor input formats. Table 66 defines the mapping of the Sensor Interface Pins used for various supported interface formats.

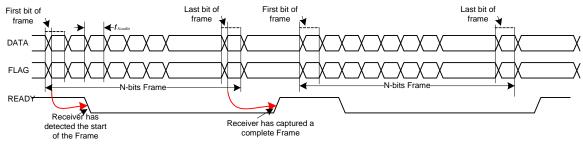

Signal Name ¹	RGB565 8 bits 2 cycles	RGB565 ² 8 bits 3 cycles	RGB666 ³ 8 bits 3 cycles	RGB888 8 bits 3 cycles	YCbCr ⁴ 8 bits 2 cycles	RGB565 ⁵ 16 bits 2 cycles	YCbCr ⁶ 16 bits 1 cycle	YCbCr ⁷ 16 bits 1 cycle	YCbCr ⁸ 20 bits 1 cycle
IPUx_CSIx_ DATA00	—	—	—	_		—	—	0	C[0]
IPUx_CSIx_ DATA01	—	—	_		—	_	—	0	C[1]
IPUx_CSIx_ DATA02	—	—	—	_	—	-	—	C[0]	C[2]
IPUx_CSIx_ DATA03	—	—	_	_		—	—	C[1]	C[3]
IPUx_CSIx_ DATA04	—	—	_	_		B[0]	C[0]	C[2]	C[4]
IPU2_CSIx_ DATA_05	—	—	_	_		B[1]	C[1]	C[3]	C[5]
IPUx_CSIx_ DATA06	—	—	—	_	_	B[2]	C[2]	C[4]	C[6]
IPUx_CSIx_ DATA07		_	_	_		B[3]	C[3]	C[5]	C[7]
IPUx_CSIx_ DATA08	_	—	_			B[4]	C[4]	C[6]	C[8]
IPUx_CSIx_ DATA09	—	—	_	_		G[0]	C[5]	C[7]	C[9]
IPUx_CSIx_ DATA10	—	—	—	_		G[1]	C[6]	0	Y[0]
IPUx_CSIx_ DATA11	—	—	_	_		G[2]	C[7]	0	Y[1]
IPUx_CSIx_ DATA12	B[0], G[3]	R[2],G[4],B[2]	R/G/B[4]	R/G/B[0]	Y/C[0]	G[3]	Y[0]	Y[0]	Y[2]
IPUx_CSIx_ DATA13	B[1], G[4]	R[3],G[5],B[3]	R/G/B[5]	R/G/B[1]	Y/C[1]	G[4]	Y[1]	Y[1]	Y[3]
IPUx_CSIx_ DATA14	B[2], G[5]	R[4],G[0],B[4]	R/G/B[0]	R/G/B[2]	Y/C[2]	G[5]	Y[2]	Y[2]	Y[4]
IPUx_CSIx_ DATA15	B[3], R[0]	R[0],G[1],B[0]	R/G/B[1]	R/G/B[3]	Y/C[3]	R[0]	Y[3]	Y[3]	Y[5]
IPUx_CSIx_ DATA16	B[4], R[1]	R[1],G[2],B[1]	R/G/B[2]	R/G/B[4]	Y/C[4]	R[1]	Y[4]	Y[4]	Y[6]
IPUx_CSIx_ DATA17	G[0], R[2]	R[2],G[3],B[2]	R/G/B[3]	R/G/B[5]	Y/C[5]	R[2]	Y[5]	Y[5]	Y[7]
IPUx_CSIx_ DATA18	G[1], R[3]	R[3],G[4],B[3]	R/G/B[4]	R/G/B[6]	Y/C[6]	R[3]	Y[6]	Y[6]	Y[8]
IPUx_CSIx_ DATA19	G[2], R[4]	R[4],G[5],B[4]	R/G/B[5]	R/G/B[7]	Y/C[7]	R[4]	Y[7]	Y[7]	Y[9]

Table 66. Camera Input Signal Cross Reference, Format, and Bits Per Cycle

¹ IPU2_CSIx stands for IPU2_CSI1 or IPU2_CSI2.

4.11.13.3 Receiver Real-Time Data Flow

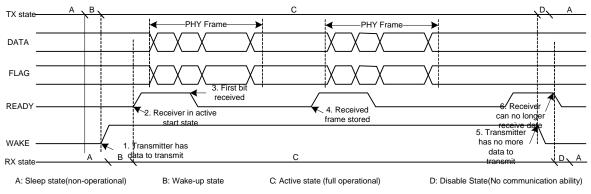
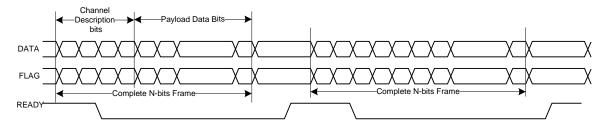



Figure 82. Synchronized Data Flow Transmission with WAKE

4.11.13.5 Stream Transmission Mode Frame Transfer

4.11.13.9 DATA and FLAG Signal Timing

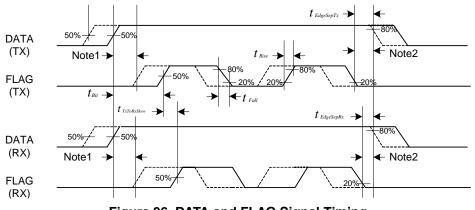


Figure 86. DATA and FLAG Signal Timing

4.11.14 MediaLB (MLB) Characteristics

4.11.14.1 MediaLB (MLB) DC Characteristics

Table 75 lists the MediaLB 3-pin interface electrical characteristics.

Parameter	Symbol	Test Conditions	Min	Мах	Unit
Maximum input voltage	—	_	—	3.6	V
Low level input threshold	V _{IL}	_	_	0.7	V
High level input threshold	V _{IH}	See Note ¹	1.8	—	V
Low level output threshold	V _{OL}	I _{OL} = 6 mA	_	0.4	V
High level output threshold	V _{OH}	I _{OH} = -6 mA	2.0	—	V
Input leakage current	ΙL	$0 < V_{in} < VDD$	—	±10	μA

¹ Higher V_{IH} thresholds can be used; however, the risks associated with less noise margin in the system must be evaluated and assumed by the customer.

Table 76 lists the MediaLB 6-pin interface electrical characteristics.

Table 76. MediaLB 6-Pin Interface Electrical DC Specifications

Parameter	Symbol	Symbol Test Conditions		Мах	Unit		
Driver Characteristics							
Differential output voltage (steady-state): I $V_{O_{+}}$ - $V_{O_{-}}$ I	V _{OD}	See Note ¹	300	500	mV		
Difference in differential output voltage between (high/low) steady-states: I V _{OD, high} - V _{OD, low} I	ΔV _{OD}	_	-50	50	mV		

ID	Parameter	Min	Max	Unit			
	Internal Clock Operation						
SS1	SS1 AUDx_TXC/AUDx_RXC clock period		—	ns			
SS2	AUDx_TXC/AUDx_RXC clock high period	36.0	—	ns			
SS4	AUDx_TXC/AUDx_RXC clock low period	36.0	—	ns			
SS6	AUDx_TXC high to AUDx_TXFS (bl) high	—	15.0	ns			
SS8	AUDx_TXC high to AUDx_TXFS (bl) low	—	15.0	ns			
SS10	AUDx_TXC high to AUDx_TXFS (wl) high	_	15.0	ns			
SS12	AUDx_TXC high to AUDx_TXFS (wl) low	_	15.0	ns			
SS14	AUDx_TXC/AUDx_RXC Internal AUDx_TXFS rise time	_	6.0	ns			
SS15	AUDx_TXC/AUDx_RXC Internal AUDx_TXFS fall time	—	6.0	ns			
SS16	AUDx_TXC high to AUDx_TXD valid from high impedance	—	15.0	ns			
SS17	AUDx_TXC high to AUDx_TXD high/low	—	15.0	ns			
SS18	AUDx_TXC high to AUDx_TXD high impedance	—	15.0	ns			
	Synchronous Internal Clock Operation						
SS42	AUDx_RXD setup before AUDx_TXC falling	10.0	_	ns			
SS43	AUDx_RXD hold after AUDx_TXC falling	0.0	—	ns			

Table 86. SSI Transmitter Timing with Internal Clock

NOTE

- All the timings for the SSI are given for a non-inverted serial clock polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync (TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting the clock signal AUDx_TXC/AUDx_RXC and/or the frame sync AUDx_TXFS/AUDx_RXFS shown in the tables and in the figures.
- All timings are on Audiomux Pads when SSI is being used for data transfer.
- The terms, WL and BL, refer to Word Length (WL) and Bit Length (BL).
- For internal Frame Sync operation using external clock, the frame sync timing is the same as that of transmit data (for example, during AC97 mode of operation).

4.11.20.2 SSI Receiver Timing with Internal Clock

Figure 97 depicts the SSI receiver internal clock timing and Table 87 lists the timing parameters for the receiver timing with the internal clock.

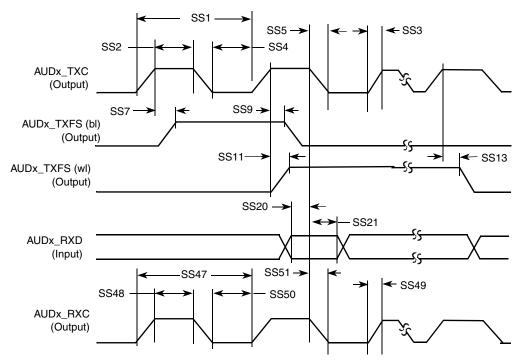


Figure 97. SSI Receiver Internal Clock Timing Diagram

ID	Parameter	Min	Мах	Unit
	Internal Clock Operatio	n		
SS1	AUDx_TXC/AUDx_RXC clock period	81.4	_	ns
SS2	AUDx_TXC/AUDx_RXC clock high period	36.0	_	ns
SS3	AUDx_TXC/AUDx_RXC clock rise time		6.0	ns
SS4	AUDx_TXC/AUDx_RXC clock low period	36.0	_	ns
SS5	AUDx_TXC/AUDx_RXC clock fall time	_	6.0	ns
SS7	AUDx_RXC high to AUDx_TXFS (bl) high	_	15.0	ns
SS9	AUDx_RXC high to AUDx_TXFS (bl) low	—	15.0	ns
SS11	AUDx_RXC high to AUDx_TXFS (wl) high	—	15.0	ns
SS13	AUDx_RXC high to AUDx_TXFS (wl) low	—	15.0	ns
SS20	AUDx_RXD setup time before AUDx_RXC low	10.0	—	ns
SS21	AUDx_RXD hold time after AUDx_RXC low	0.0	_	ns

4.11.22 USB HSIC Timings

This section describes the electrical information of the USB HSIC port.

NOTE

HSIC is a DDR signal. The following timing specification is for both rising and falling edges.

4.11.22.1 Transmit Timing

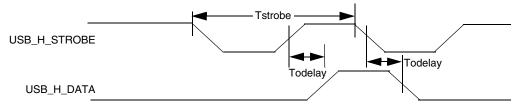


Figure 104. USB HSIC Transmit Waveform

Table 95. USB HSIC Transmit Parameters

Name	Parameter	Min	Max	Unit	Comment
Tstrobe	strobe period	4.166	4.167	ns	_
Todelay	data output delay time	550	1350	ps	Measured at 50% point
Tslew	strobe/data rising/falling time	0.7	2	V/ns	Averaged from 30% – 70% points

4.11.22.2 Receive Timing

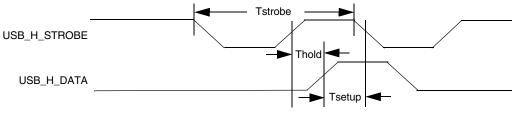


Figure 105. USB HSIC Receive Waveform

Table 96. USB HSIC Receive Parameters¹

Name	Parameter	Min	Max	Unit	Comment
Tstrobe	strobe period	4.166	4.167	ns	_
Thold	data hold time	300	_	ps	Measured at 50% point
Tsetup	data setup time	365	_	ps	Measured at 50% point
Tslew	strobe/data rising/falling time	0.7	2	V/ns	Averaged from 30% – 70% points

¹ The timings in the table are guaranteed when:

-AC I/O voltage is between 0.9x to 1x of the I/O supply

-DDR_SEL configuration bits of the I/O are set to (10)b

Package Information and Contact Assignments

6 Package Information and Contact Assignments

This section includes the contact assignment information and mechanical package drawing.

6.1 Updated Signal Naming Convention

The signal names of the i.MX6 series of products have been standardized to better align the signal names within the family and across the documentation. Some of the benefits of these changes are as follows:

- The names are unique within the scope of an SoC and within the series of products
- Searches will return all occurrences of the named signal
- The names are consistent between i.MX 6 series products implementing the same modules
- The module instance is incorporated into the signal name

This change applies only to signal names. The original ball names have been preserved to prevent the need to change schematics, BSDL models, IBIS models, etc.

Throughout this document, the updated signal names are used except where referenced as a ball name (such as the Functional Contact Assignments table, Ball Map table, and so on). A master list of the signal name changes is in the document, *IMX 6 Series Signal Name Mapping* (EB792). This list can be used to map the signal names used in older documentation to the new standardized naming conventions.

6.2 21 x 21 mm Package Information

6.2.1 Case FCPBGA, 21 x 21 mm, 0.8 mm Pitch, 25 x 25 Ball Matrix

				Out of Reset Condition ¹								
Ball Name	Ball	Power Group	Ball Type	Default Mode (Reset Mode)	Default Function (Signal Name)	Input/Output	Value ²					
PCIE_TXM	PCIE_TXM A3 PCIE_VPH		—	_	PCIE_TX_N	—	—					
PCIE_TXP	B3	PCIE_VPH	—	_	PCIE_TX_P	—	—					
PMIC_ON_REQ	D11	VDD_SNVS_IN	GPIO	ALT0	SNVS_PMIC_ON_REQ	Output	Open Drain with PU (100K)					
PMIC_STBY_REQ	F11	VDD_SNVS_IN	GPIO	ALT0	CCM_PMIC_STBY_REQ	Output	0					
POR_B	C11	VDD_SNVS_IN	GPIO	ALT0	SRC_POR_B	Input	PU (100K)					
RGMII_RD0	C24	NVCC_RGMII	DDR	ALT5	GPIO6_IO25	Input	PU (100K)					
RGMII_RD1	B23	NVCC_RGMII	DDR	ALT5	GPIO6_IO27	Input	PU (100K)					
RGMII_RD2	B24	NVCC_RGMII	DDR	ALT5	GPIO6_IO28	Input	PU (100K)					
RGMII_RD3	D23	NVCC_RGMII	DDR	ALT5	GPIO6_IO29	Input	PU (100K)					
RGMII_RX_CTL	D22	NVCC_RGMII	DDR	ALT5	GPIO6_IO24	Input	PD (100K)					
RGMII_RXC	B25	NVCC_RGMII	DDR	ALT5	GPIO6_IO30	Input	PD (100K)					
RGMII_TD0	C22	NVCC_RGMII	DDR	ALT5	GPIO6_IO20	Input	PU (100K)					
RGMII_TD1	F20	NVCC_RGMII	DDR	ALT5	GPIO6_IO21	Input	PU (100K)					
RGMII_TD2	E21	NVCC_RGMII	DDR	ALT5	GPI06_I022	Input	PU (100K)					
RGMII_TD3	A24	NVCC_RGMII	DDR	ALT5	GPIO6_IO23	Input	PU (100K)					
RGMII_TX_CTL	C23	NVCC_RGMII	DDR	ALT5	GPIO6_IO26	Input	PD (100K)					
RGMII_TXC	D21	NVCC_RGMII	DDR	ALT5	GPIO6_IO19	Input	PD (100K)					
RTC_XTALI	D9	VDD_SNVS_CAP	—	_	RTC_XTALI	—						
RTC_XTALO	C9	VDD_SNVS_CAP	—	_	RTC_XTALO	—						
SATA_RXM	A14	SATA_VPH	—	_	SATA_PHY_RX_N	_	_					
SATA_RXP	B14	SATA_VPH	—	_	SATA_PHY_RX_P	_	_					
SATA_TXM	B12	SATA_VPH	—	_	SATA_PHY_TX_N	_	—					
SATA_TXP	A12	SATA_VPH	—	_	SATA_PHY_TX_P	_	_					
SD1_CLK	D20	NVCC_SD1	GPIO	ALT5	GPIO1_IO20	Input	PU (100K)					
SD1_CMD	B21	NVCC_SD1	GPIO	ALT5	GPIO1_IO18	Input	PU (100K)					
SD1_DAT0	A21	NVCC_SD1	GPIO	ALT5	GPIO1_IO16	Input	PU (100K)					
SD1_DAT1	C20	NVCC_SD1	GPIO	ALT5	GPIO1_IO17	Input	PU (100K)					
SD1_DAT2	E19	NVCC_SD1	GPIO	ALT5	GPIO1_IO19	Input	PU (100K)					
SD1_DAT3	F18	NVCC_SD1	GPIO	ALT5	GPIO1_IO21	Input	PU (100K)					
SD2_CLK	C21	NVCC_SD2	GPIO	ALT5	GPIO1_IO10	Input	PU (100K)					
SD2_CMD	F19	NVCC_SD2	GPIO	ALT5	GPIO1_IO11	Input	PU (100K)					
SD2_DAT0	A22	NVCC_SD2	GPIO	ALT5	GPIO1_IO15	Input	PU (100K)					
SD2_DAT1	E20	NVCC_SD2	GPIO	ALT5	GPIO1_IO14	Input	PU (100K)					
SD2_DAT2	A23	NVCC_SD2	GPIO	ALT5	GPIO1_IO13	Input	PU (100K)					
SD2_DAT3	B22	NVCC_SD2	GPIO	ALT5	GPIO1_IO12	Input	PU (100K)					

Table 100. 21 x 21 m	m Functional Con	ntact Assignments	(continued)
----------------------	------------------	-------------------	-------------

Package Information and Contact Assignments

	-	7	e	4	5	9	2	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
M	CSI0_DAT10	CSI0_DAT12	CSI0_DAT11	CSI0_DAT14	CSI0_DAT15	CSI0_DAT18	HDMI_VPH	GND	VDDARM23_IN	GND	VDDARM23_CAP	GND	VDDARM_CAP	VDDARM_IN	GND		VDDPU_CAP	GND	NVCC_EIM2	EIM_DA11	EIM_DA9	EIM_DA10	EIM_DA13	EIM_DA12	EIM_WAIT
z	CSI0_DAT4	CSI0_VSYNC	CSI0_DAT7	CSI0_DAT6	CSI0_DAT9	CSI0_DAT8	NVCC_CSI	GND	VDDARM23_IN	GND	VDDARM23_CAP	VDD_CACHE_CAP	VDDARM_CAP	VDDARM_IN	GND	VDDSOC_IN	VDDPU_CAP	GND	DI0_DISP_CLK	DI0_PIN3	DI0_PIN15	EIM_BCLK	EIM_DA14	EIM_DA15	DI0_PIN2
٩.	CSI0_PIXCLK	CSI0_DAT5	CSI0_DATA_EN	CSI0_MCLK	GPIO_19	GPIO_18	NVCC_GPIO	GND	VDDARM23_IN	GND	VDDARM23_CAP	GND	VDDARM_CAP	VDDARM_IN	GND	VDDSOC_IN	VDDPU_CAP	GND	NVCC_LCD	DISP0_DAT4	DISP0_DAT3	DISP0_DAT1	DISP0_DAT2	DISP0_DAT0	DI0_PIN4
æ	GPIO_17	GPIO_16	GPIO_7	GPIO_5	GPIO_8	GPIO_4	GPIO_3	GND	VDDARM23_IN	VDDSOC_CAP	VDDARM23_CAP VDDARM23_CAP	GND	VDDARM_CAP	VDDARM_IN	GND		GND	NVCC_DRAM	NVCC_ENET	DISP0_DAT13	DISP0_DAT10	DISP0_DAT8	DISP0_DAT6	DISP0_DAT7	DISP0_DAT5
F	GPIO_2	GPIO_9	GPIO_6	GPIO_1	GPIO_0	KEY_COL4	KEY_ROW3	GND	ARM23_IN VDDARM23_IN	SOC_CAP VDDSOC_CAP	GND	GND	VDDSOC_CAP	VDDSOC_CAP	GND		GND	NVCC_DRAM	GND	DISP0_DAT21	DISP0_DAT16	DISP0_DAT15	DISP0_DAT11	DISP0_DAT12	DISP0_DAT9
Þ	LVDS0_TX0_P	LVDS0_TX0_N	LVDS0_TX1_P	LVDS0_TX1_N	KEY_COL3	KEY_ROW1	KEY_COL1	GND	VDDARM23_IN	VDDSOC_CAP	GND	GND	VDDSOC_CAP	VDDSOC_CAP	GND	VDDSOC_IN	GND	NVCC_DRAM	GND	ENET_TXD0	ENET_CRS_DV	DISP0_DAT20	DISP0_DAT19	DISP0_DAT17	DISP0_DAT14
>	LVDS0_TX2_P	LVDS0_TX2_N	LVDS0_CLK_P	LVDS0_CLK_N	KEY_ROW4	KEY_ROW0	NVCC_LVDS2P5	GND	NVCC_DRAM	NVCC_DRAM	NVCC_DRAM	NVCC_DRAM	NVCC_DRAM	NVCC_DRAM	NVCC_DRAM	NVCC_DRAM	NVCC_DRAM	NVCC_DRAM	GND	ENET_MDC	ENET_TX_EN	ENET_REF_CLK	ENET_MDIO	DISP0_DAT22	DISP0_DAT18
M	LVDS0_TX3_P	LVDS0_TX3_N	GND	KEY_ROW2	KEY_COL0	KEY_COL2	GND	GND	GND	GND	GND	GND	GND	DRAM_A4	GND	GND	GND	GND	GND	ENET_TXD1	ENET_RXD0	ENET_RXD1	ENET_RX_ER	DISP0_DAT23	DRAM_D63