E·XFL

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Active
Core Processor	ARM® Cortex®-A9
Number of Cores/Bus Width	4 Core, 32-Bit
Speed	1.0GHz
Co-Processors/DSP	Multimedia; NEON™ SIMD
RAM Controllers	LPDDR2, LVDDR3, DDR3
Graphics Acceleration	Yes
Display & Interface Controllers	Keypad, LCD
Ethernet	10/100/1000Mbps (1)
SATA	SATA 3Gbps (1)
USB	USB 2.0 + PHY (4)
Voltage - I/O	1.8V, 2.5V, 2.8V, 3.3V
Operating Temperature	-40°C ~ 125°C (TJ)
Security Features	ARM TZ, Boot Security, Cryptography, RTIC, Secure Fusebox, Secure JTAG, Secure Memory, Secure RTC, Tamper Detection
Package / Case	624-FBGA, FCBGA
Supplier Device Package	624-FCBGA (21x21)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mcimx6q4avt10adr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Modules List

Block Mnemonic	Block Name	Subsystem	Brief Description
EPIT-1 EPIT-2	Enhanced Periodic Interrupt Timer	Timer Peripherals	Each EPIT is a 32-bit "set and forget" timer that starts counting after the EPIT is enabled by software. It is capable of providing precise interrupts at regular intervals with minimal processor intervention. It has a 12-bit prescaler for division of input clock frequency to get the required time setting for the interrupts to occur, and counter value can be programmed on the fly.
ESAI	Enhanced Serial Audio Interface	Connectivity Peripherals	The Enhanced Serial Audio Interface (ESAI) provides a full-duplex serial port for serial communication with a variety of serial devices, including industry-standard codecs, SPDIF transceivers, and other processors. The ESAI consists of independent transmitter and receiver sections, each section with its own clock generator. All serial transfers are synchronized to a clock. Additional synchronization signals are used to delineate the word frames. The normal mode of operation is used to transfer data at a periodic rate, one word per period. The network mode is also intended for periodic transfers; however, it supports up to 32 words (time slots) per period. This mode can be used to build time division multiplexed (TDM) networks. In contrast, the on-demand mode is intended for non-periodic transfers of data and to transfer data serially at high speed when the data becomes available.
FlexCAN-1 FlexCAN-2	Flexible Controller Area Network	Connectivity Peripherals	The CAN protocol was primarily, but not only, designed to be used as a vehicle serial data bus, meeting the specific requirements of this field: real-time processing, reliable operation in the Electromagnetic interference (EMI) environment of a vehicle, cost-effectiveness and required bandwidth. The FlexCAN module is a full implementation of the CAN protocol specification, Version 2.0 B, which supports both standard and extended message frames.
GPIO-1 GPIO-2 GPIO-3 GPIO-4 GPIO-5 GPIO-6 GPIO-7	General Purpose I/O Modules	System Control Peripherals	Used for general purpose input/output to external devices. Each GPIO module supports 32 bits of I/O.
GPMI	General Purpose Media Interface	Connectivity Peripherals	The GPMI module supports up to 8x NAND devices. 40-bit ECC encryption/decryption for NAND Flash controller (GPMI2). The GPMI supports separate DMA channels per NAND device.
GPT	General Purpose Timer	Timer Peripherals	Each GPT is a 32-bit "free-running" or "set and forget" mode timer with programmable prescaler and compare and capture register. A timer counter value can be captured using an external event and can be configured to trigger a capture event on either the leading or trailing edges of an input pulse. When the timer is configured to operate in "set and forget" mode, it is capable of providing precise interrupts at regular intervals with minimal processor intervention. The counter has output compare logic to provide the status and interrupt at comparison. This timer can be configured to run either on an external clock or on an internal clock.

Block Mnemonic	Block Name	Subsystem	Brief Description
ROM 96KB	Boot ROM	Internal Memory	Supports secure and regular Boot Modes. Includes read protection on 4K region for content protection
ROMCP	ROM Controller with Patch	Data Path	ROM Controller with ROM Patch support
SATA	Serial ATA	Connectivity Peripherals	The SATA controller and PHY is a complete mixed-signal IP solution designed to implement SATA II, 3.0 Gbps HDD connectivity.
SDMA	Smart Direct Memory Access	System Control Peripherals	 The SDMA is multi-channel flexible DMA engine. It helps in maximizing system performance by off-loading the various cores in dynamic data routing. It has the following features: Powered by a 16-bit Instruction-Set micro-RISC engine Multi-channel DMA supporting up to 32 time-division multiplexed DMA channels 48 events with total flexibility to trigger any combination of channels Memory accesses including linear, FIFO, and 2D addressing Shared peripherals between ARM and SDMA Very fast context-switching with 2-level priority based preemptive multi-tasking DMA units with auto-flush and prefetch capability Flexible address management for DMA transfers (increment, decrement, and no address changes on source and destination address) DMA ports can handle unit-directional and bi-directional flows (copy mode) Up to 8-word buffer for configurable burst transfers Support of byte-swapping and CRC calculations Library of Scripts and API is available
SJC	System JTAG Controller	System Control Peripherals	The SJC provides JTAG interface, which complies with JTAG TAP standards, to internal logic. The i.MX 6Dual/6Quad processors use JTAG port for production, testing, and system debugging. In addition, the SJC provides BSR (Boundary Scan Register) standard support, which complies with IEEE1149.1 and IEEE1149.6 standards. The JTAG port must be accessible during platform initial laboratory bring-up, for manufacturing tests and troubleshooting, as well as for software debugging by authorized entities. The i.MX 6Dual/6Quad SJC incorporates three security modes for protecting against unauthorized accesses. Modes are selected through eFUSE configuration.
SNVS	Secure Non-Volatile Storage	Security	Secure Non-Volatile Storage, including Secure Real Time Clock, Security State Machine, Master Key Control, and Violation/Tamper Detection and reporting.
SPDIF	Sony Philips Digital Interconnect Format	Multimedia Peripherals	A standard audio file transfer format, developed jointly by the Sony and Phillips corporations. It supports Transmitter and Receiver functionality.

Table 2. i.MX 6Dual/6Quad Modules List (continued)

4.1.7 USB PHY Current Consumption

4.1.7.1 Power Down Mode

In power down mode, everything is powered down, including the VBUS valid detectors, typ condition. Table 10 shows the USB interface current consumption in power down mode.

Table 10. USB PHY Current Consumption in Power Down Mode

	VDD_USB_CAP (3.0 V)	VDD_HIGH_CAP (2.5 V)	NVCC_PLL_OUT (1.1 V)
Current	5.1 μA	1.7 μA	<0.5 μA

NOTE

The currents on the VDD_HIGH_CAP and VDD_USB_CAP were identified to be the voltage divider circuits in the USB-specific level shifters.

4.1.8 SATA Typical Power Consumption

Table 11 provides SATA PHY currents for certain Tx operating modes.

NOTE

Tx power consumption values are provided for a single transceiver. If T = single transceiver power and C = Clock module power, the total power required for N lanes = N x T + C.

Table 11. SATA PHY Current Drain

Mode	Test Conditions	Supply	Typical Current	Unit
P0: Full-power state ¹	Single Transceiver	SATA_VP	11	mA
		SATA_VPH	13	
	Clock Module	SATA_VP	6.9	
		SATA_VPH	6.2	
P0: Mobile ²	Single Transceiver	SATA_VP	11	mA
		SATA_VPH	11	
	Clock Module	SATA_VP	6.9	
		SATA_VPH	6.2	
P0s: Transmitter idle	Single Transceiver	SATA_VP	9.4	mA
		SATA_VPH	2.9	
	Clock Module	SATA_VP	6.9	1
		SATA_VPH	6.2]

from either a ~3 V backup battery (VDD_SNVS_IN) or VDD_HIGH_IN such as the oscillator consumes power from VDD_HIGH_IN when that supply is available and transitions to the back up battery when VDD_HIGH_IN is lost.

In addition, if the clock monitor determines that the OSC32K is not present, then the source of the 32 kHz clock will automatically switch to the internal ring oscillator.

CAUTION

The internal RTC oscillator does not provide an accurate frequency and is affected by process, voltage, and temperature variations. Freescale strongly recommends using an external crystal as the RTC_XTALI reference. If the internal oscillator is used instead, careful consideration must be given to the timing implications on all of the SoC modules dependent on this clock.

The OSC32k runs from VDD_SNVS_CAP, which comes from the VDD_HIGH_IN/VDD_SNVS_IN power mux. The target battery is a ~3 V coin cell. Proper choice of coin cell type is necessary for chosen VDD_HIGH_IN range. Appropriate series resistor (Rs) must be used when connecting the coin cell. Rs depends on the charge current limit that depends on the chosen coin cell. For example, for Panasonic ML621:

- Average Discharge Voltage is 2.5 V
- Maximum Charge Current is 0.6 mA

For a charge voltage of 3.2 V, Rs = (3.2-2.5)/0.6 m = 1.17 k

NOTE

Always refer to the chosen coin cell manufacturer's data sheet for the latest information.

Parameter	Min	Тур	Max	Comments
Fosc	—	32.768 kHz	—	This frequency is nominal and determined mainly by the crystal selected. 32.0 K would work as well.
Current consumption		4 μΑ	_	The typical value shown is only for the oscillator, driven by an external crystal. If the internal ring oscillator is used instead of an external crystal, then approximately 25 μ A should be added to this value.
Bias resistor	_	14 MΩ	_	This the integrated bias resistor that sets the amplifier into a high gain state. Any leakage through the ESD network, external board leakage, or even a scope probe that is significant relative to this value will debias the amplifier. The debiasing will result in low gain, and will impact the circuit's ability to start up and maintain oscillations.
				Target Crystal Properties
Cload	—	10 pF	_	Usually crystals can be purchased tuned for different Cloads. This Cload value is typically 1/2 of the capacitances realized on the PCB on either side of the quartz. A higher Cload will decrease oscillation margin, but increases current oscillating through the crystal.
ESR	—	50 kΩ	100 kΩ	Equivalent series resistance of the crystal. Choosing a crystal with a higher value will decrease the oscillating margin.

Table 20.	OSC32K	Main	Characteristics
-----------	--------	------	-----------------

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Single output slew rate, measured between Vol(ac) and Voh(ac)	tsr	Driver impedance = 34Ω	2.5	—	5	V/ns
Skew between pad rise/fall asymmetry + skew caused by SSN	t _{SKD}	clk = 533 MHz	—	—	0.1	ns

¹ Note that the JEDEC JESD79_3C specification supersedes any specification in this document.

² Vid(ac) specifies the input differential voltage IVtr-Vcpl required for switching, where Vtr is the "true" input signal and Vcp is the "complementary" input signal. The Minimum value is equal to Vih(ac) – Vil(ac).

³ The typical value of Vix(ac) is expected to be about 0.5 × OVDD. and Vix(ac) is expected to track variation of OVDD. Vix(ac) indicates the voltage at which differential input signal must cross.

4.7.3 LVDS I/O AC Parameters

The differential output transition time waveform is shown in Figure 6.

Figure 6. Differential LVDS Driver Transition Time Waveform

Table 31 shows the AC parameters for LVDS I/O.

Table 31. I/O AC Parameters of LVDS Pad

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Differential pulse skew ¹	t _{SKD}		—	—	0.25	ns
Transition Low to High Time ²	t _{TLH}	Rload = 100 Ω , Cload = 2 pF	—	—	0.5	
Transition High to Low Time ²	t _{THL}		—	—	0.5	
Operating Frequency	f	—	—	600	800	MHz
Offset voltage imbalance	Vos	—	—	_	150	mV

¹ t_{SKD} = I t_{PHLD} – t_{PLHD} I, is the magnitude difference in differential propagation delay time between the positive going edge and the negative going edge of the same channel.

² Measurement levels are 20–80% from output voltage.

4.7.4 MLB 6-Pin I/O AC Parameters

The differential output transition time waveform is shown in Figure 7.

Figure 16. Muxed Address/Data (A/D) Mode, Synchronous Write Access, WSC=6,ADVA=0, ADVN=1, and ADH=1

NOTE

In 32-bit muxed address/data (A/D) mode the 16 MSBs are driven on the data bus.

Figure 22. DTACK Mode Read Access (DAP=0)

1

Electrical Characteristics

Table 48. Asynchronous Mode Timing Parameters¹ (continued)

ID	Parameter	Symbol	Timing T = GPMI Clock Cycle		
			Min	Мах	
NF16	Data setup on read	tDSR	_	(DS \times T -0.67)/18.38 [see ^{5,6}]	ns
NF17	Data hold on read	tDHR	0.82/11.83 [see ^{5,6}]	—	ns

The GPMI asynchronous mode output timing can be controlled by the module's internal registers HW_GPMI_TIMING0_ADDRESS_SETUP, HW_GPMI_TIMING0_DATA_SETUP, and HW_GPMI_TIMING0_DATA_HOLD. This AC timing depends on these registers settings. In the table, AS/DS/DH represents each of these settings.

² AS minimum value can be 0, while DS/DH minimum value is 1.

³ T = GPMI clock period -0.075ns (half of maximum p-p jitter).

⁴ NF12 is met automatically by the design.

⁵ Non-EDO mode.

⁶ EDO mode, GPMI clock ≈ 100 MHz (AS=DS=DH=1, GPMI_CTL1 [RDN_DELAY] = 8, GPMI_CTL1 [HALF_PERIOD] = 0).

In EDO mode (Figure 34), NF16/NF17 are different from the definition in non-EDO mode (Figure 33). They are called tREA/tRHOH (NAND_RE_B access time/NAND_RE_B HIGH to output hold). The typical value for them are 16 ns (max for tREA)/15 ns (min for tRHOH) at 50 MB/s EDO mode. In EDO mode, GPMI will sample NAND_DATAxx at rising edge of delayed NAND_RE_B provided by an internal DPLL. The delay value can be controlled by GPMI_CTRL1.RDN_DELAY (see the GPMI chapter of the i.MX 6Dual/6Quad reference manual (IMX6DQRM)). The typical value of this control register is 0x8 at 50 MT/s EDO mode. However, if the board delay is large enough and cannot be ignored, the delay value should be made larger to compensate the board delay.

4.11.2.1 ECSPI Master Mode Timing

Figure 41 depicts the timing of ECSPI in master mode and Table 51 lists the ECSPI master mode timing characteristics.

Note: ECSPIx_MOSI is always driven (not tri-stated) between actual data transmissions. This limits the ECSPI to be connected between a single master and a single slave.

Figure 41. ECSPI Master Mode Timing Diagram

ID	Parameter	Symbol	Min	Max	Unit
CS1	ECSPIx_SCLK Cycle Time-Read	t _{clk}		—	ns
	• Slow group'		55		
	Fast group Sci K Cuelo Timo, Write		40		
			15		
CS2	ECSPIx_SCLK High or Low Time-Read	t _{SW}		—	ns
	• Slow group		26		
	• Fast group ²		20		
	ECSPIx_SCLK High or Low Time–Write		7		
CS3	ECSPIx_SCLK Rise or Fall ³	t _{RISE/FALL}	_	—	ns
CS4	ECSPIx_SSx pulse width	t _{CSLH}	Half ECSPIx_SCLK period	—	ns
CS5	ECSPIx_SSx Lead Time (CS setup time)	t _{SCS}	Half ECSPIx_SCLK period - 4	—	ns
CS6	ECSPIx_SSx Lag Time (CS hold time)	t _{HCS}	Half ECSPIx_SCLK period - 2	—	ns
CS7	ECSPIx_MOSI Propagation Delay (C _{LOAD} = 20 pF)	t _{PDmosi}	-1	1	ns
CS8	ECSPIx_MISO Setup Time	t _{Smiso}		—	ns
	• Slow group ¹		21.5		
	• Fast group ²		16		
CS9	ECSPIx_MISO Hold Time	t _{Hmiso}	0	—	ns
CS10	ECSPIx_RDY to ECSPIx_SSx Time ⁴	t _{SDRY}	5	—	ns

Table 51. ECSPI Master Mode Timing Parameters

¹ ECSPI slow includes:

ECSPI1/DISP0_DAT22, ECSPI1/KEY_COL1, ECSPI1/CSI0_DAT6, ECSPI2/EIM_OE, ECSPI2/ECSPI2/CSI0_DAT10, ECSPI3/DISP0_DAT2

² ECSPI fast includes:

ECSPI1/EIM_D17, ECSPI4/EIM_D22, ECSPI5/SD2_DAT0, ECSPI5/SD1_DAT0

³ See specific I/O AC parameters Section 4.7, "I/O AC Parameters."

⁴ ECSPI_RDY is sampled internally by ipg_clk and is asynchronous to all other CSPI signals.

4.11.2.2 ECSPI Slave Mode Timing

Figure 42 depicts the timing of ECSPI in slave mode and Table 52 lists the ECSPI slave mode timing characteristics.

Note: ECSPIx_MISO is always driven (not tri-stated) between actual data transmissions. This limits the ECSPI to be connected between a single master and a single slave.

Figure 42. ECSPI Slave Mode Timing Diagram

ID	Parameter	Symbol	Min	Max	Unit
CS1	ECSPIx_SCLK Cycle Time-Read • Slow group ¹ • Fast group ² ECSPIx_SCLK Cycle Time-Write	t _{clk}	55 40 15	—	ns
CS2	ECSPIx_SCLK High or Low Time–Read • Slow group ¹ • Fast group ² ECSPIx_SCLK High or Low Time–Write	t _{SW}	26 20 7	_	ns
CS4	ECSPIx_SSx pulse width	t _{CSLH}	Half ECSPIx_SCLK period	—	ns
CS5	ECSPIx_SSx Lead Time (CS setup time)	t _{SCS}	5	—	ns
CS6	ECSPIx_SSx Lag Time (CS hold time)	t _{HCS}	5	—	ns
CS7	ECSPIx_MOSI Setup Time	t _{Smosi}	4	—	ns
CS8	ECSPIx_MOSI Hold Time	t _{Hmosi}	4	—	ns
CS9	ECSPIx_MISO Propagation Delay (C _{LOAD} = 20 pF) • Slow group ¹ • Fast group ²	t _{PDmiso}	4	25 17	ns

Table 52. ECSPI Slave Mode Timing Parameters

¹ ECSPI slow includes:

ECSPI1/DISP0_DAT22, ECSPI1/KEY_COL1, ECSPI1/CSI0_DAT6, ECSPI2/EIM_OE, ECSPI2/DISP0_DAT17, ECSPI2/CSI0_DAT10, ECSPI3/DISP0_DAT2

² ECSPI fast includes:

ECSPI1/EIM_D17, ECSPI4/EIM_D22, ECSPI5/SD2_DAT0, ECSPI5/SD1_DAT0

4.11.3 Enhanced Serial Audio Interface (ESAI) Timing Parameters

The ESAI consists of independent transmitter and receiver sections, each section with its own clock generator. Table 53 shows the interface timing values. The number field in the table refers to timing signals found in Figure 43 and Figure 44.

ID	Parameter ^{1,2}	Symbol	Expression ²	Min	Max	Condition ³	Unit
62	Clock cycle ⁴	t _{SSICC}	$\begin{array}{c} 4 \times T_{C} \\ 4 \times T_{C} \end{array}$	30.0 30.0	_	i ck i ck	ns
63	Clock high period: • For internal clock • For external clock		$2 \times T_{c} - 9.0$ $2 \times T_{c}$	6 15			ns
64	Clock low period: • For internal clock • For external clock	_	$2 \times T_{c} - 9.0$ $2 \times T_{c}$	6 15			ns
65	ESAI_RX_CLK rising edge to ESAI_RX_FS out (bl) high			_	19.0 7.0	x ck i ck a	ns
66	ESAI_RX_CLK rising edge to ESAI_RX_FS out (bl) low		_	_	19.0 7.0	x ck i ck a	ns
67	ESAI_RX_CLK rising edge to ESAI_RX_FS out (wr) high ⁵		_	_	19.0 9.0	x ck i ck a	ns
68	ESAI_RX_CLK rising edge to ESAI_RX_FS out (wr) low^5		_		19.0 9.0	x ck i ck a	ns
69	ESAI_RX_CLK rising edge to ESAI_RX_FS out (wI) high	_	_	_	19.0 6.0	x ck i ck a	ns
70	ESAI_RX_CLK rising edge to ESAI_RX_FSout (wl) low		_	_	17.0 7.0	x ck i ck a	ns
71	Data in setup time before ESAI_RX_CLK (serial clock in synchronous mode) falling edge		_	12.0 19.0	_	x ck i ck	ns
72	Data in hold time after ESAI_RX_CLK falling edge		—	3.5 9.0	_	x ck i ck	ns
73	ESAI_RX_FS input (bl, wr) high before ESAI_RX_CLK falling edge ⁵			2.0 19.0	_	x ck i ck a	ns
74	ESAI_RX_FS input (wl) high before ESAI_RX_CLK falling edge		_	2.0 19.0	_	x ck i ck a	ns
75	ESAI_RX_FS input hold time after ESAI_RX_CLK falling edge		—	2.5 8.5	_	x ck i ck a	ns
78	ESAI_TX_CLK rising edge to ESAI_TX_FS out (bl) high			_	19.0 8.0	x ck i ck	ns
79	ESAI_TX_CLK rising edge to ESAI_TX_FS out (bl) low	—	—	_	20.0 10.0	x ck i ck	ns
80	ESAI_TX_CLK rising edge to ESAI_TX_FS out (wr) high ⁵		—	—	20.0 10.0	x ck i ck	ns

Table 53. Enhanced Serial Audio Interface (ESAI) Timing

4.11.5.2 RMII Mode Timing

In RMII mode, ENET_CLK is used as the REF_CLK, which is a 50 MHz \pm 50 ppm continuous reference clock. ENET_RX_EN is used as the ENET_RX_EN in RMII. Other signals under RMII mode include ENET_TX_EN, ENET0_TXD[1:0], ENET_RXD[1:0] and ENET_RX_ER.

Figure 52 shows RMII mode timings. Table 61 describes the timing parameters (M16–M21) shown in the figure.

Figure 52. RMII Mode Signal Timing Diagram

Table	61.	RMII	Signal	Timina
	• • • •		• . g a .	

ID	Characteristic	Min	Max	Unit
M16	ENET_CLK pulse width high	35%	65%	ENET_CLK period
M17	ENET_CLK pulse width low	35%	65%	ENET_CLK period
M18	ENET_CLK to ENET0_TXD[1:0], ENET_TX_EN invalid	4	_	ns
M19	ENET_CLK to ENET0_TXD[1:0], ENET_TX_EN valid	_	13.5	ns
M20	ENET_RXD[1:0], ENET_RX_EN(ENET_RX_EN), ENET_RX_ER to ENET_CLK setup	4	—	ns
M21	ENET_CLK to ENET_RXD[1:0], ENET_RX_EN, ENET_RX_ER hold	2	_	ns

Figure 63. TMDS Output Signals Rise and Fall Time Definition

Symbol	Parameter	Conditions	Min	Тур	Max	Unit		
	TMDS Drivers Specifications							
_	Maximum serial data rate	-	—		3.4	Gbps		
F TMDSCLK	TMDSCLK frequency	On TMDSCLKP/N outputs	25		340	MHz		
PTMDSCLK	TMDSCLK period	RL = 50 Ω See Figure 59.	2.94	_	40	ns		
t CDC	TMDSCLK duty cycle	$t_{CDC} = t_{CPH} / P_{TMDSCLK}$ RL = 50 Ω See Figure 59.	40	50	60	%		
t СРН	TMDSCLK high time	RL = 50 Ω See Figure 59.	4	5	6	UI		
t CPL	TMDSCLK low time	RL = 50 Ω See Figure 59.	4	5	6	UI		
_	TMDSCLK jitter ¹	RL = 50 Ω	—		0.25	UI		
t SK(p)	Intra-pair (pulse) skew	RL = 50 Ω See Figure 61.	—	_	0.15	UI		
t SK(pp)	Inter-pair skew	RL = 50 Ω See Figure 62.	—	—	1	UI		
t _R	Differential output signal rise time	20–80% RL = 50 Ω See Figure 63.	75		0.4 UI	ps		

Table 64. Switching Characteristics

³ Display interface clock up time where CEIL(X) rounds the elements of X to the nearest integers towards infinity.

```
Tdicu = \frac{1}{2} \left( T_{diclk} \times ceil \left[ \frac{2 \times DISP\_CLK\_UP}{DI\_CLK\_PERIOD} \right] \right)
```

4.11.11 LVDS Display Bridge (LDB) Module Parameters

The LVDS interface complies with TIA/EIA 644-A standard. For more details, see TIA/EIA STANDARD 644-A, "Electrical Characteristics of Low Voltage Differential Signaling (LVDS) Interface Circuits."

Parameter	Symbol	Test Condition	Min	Max	Units
Differential Voltage Output Voltage	V _{OD}	100 Ω Differential load	250	450	mV
Output Voltage High	Voh	100 Ω differential load (0 V Diff—Output High Voltage static)	1.25	1.6	V
Output Voltage Low	Vol	100 Ω differential load (0 V Diff—Output Low Voltage static)	0.9	1.25	V
Offset Static Voltage	V _{OS}	Two 49.9 Ω resistors in series between N-P terminal, with output in either Zero or One state, the voltage measured between the 2 resistors.	1.15	1.375	V
VOS Differential	V _{OSDIFF}	Difference in V_{OS} between a One and a Zero state	-50	50	mV
Output short-circuited to GND	ISA ISB	With the output common shorted to GND	-24	24	mA
VT Full Load Test	VTLoad	100 Ω Differential load with a 3.74 k Ω load between GND and I/O supply voltage	247	454	mV

Table 71. LVDS Display Bridge (LDB) Electrical Specification

4.11.12 MIPI D-PHY Timing Parameters

This section describes MIPI D-PHY electrical specifications, compliant with MIPI CSI-2 version 1.0, D-PHY specification Rev. 1.0 (for MIPI sensor port x4 lanes) and MIPI DSI Version 1.01, and D-PHY specification Rev. 1.0 (and also DPI version 2.0, DBI version 2.0, DSC version 1.0a at protocol layer) (for MIPI display port x2 lanes).

4.11.12.1 Electrical and Timing Information

Symbol	Parameters Test Conditions		Min	Тур	Мах	Unit				
	Input DC Specifications—Apply to DSI_CLK_P/_N and DSI_DATA_P/_N Inputs									
VI	Input signal voltage range	Transient voltage range is limited from -300 mV to 1600 mV	-50	—	1350	mV				

Table 72. Electrical and Timing Information

Symbol	Parameters	Test Conditions	Min	Тур	Max	Unit
V _{LEAK}	Input leakage current	VGNDSH(min) = VI = VGNDSH(max) + VOH(absmax) Lane module in LP Receive Mode	-10	_	10	mA
V _{GNDSH}	Ground Shift	_	-50	_	50	mV
V _{OH(absmax)}	Maximum transient output voltage level	_	—	-	1.45	V
t _{voh(absmax)}	Maximum transient time above VOH(absmax)	_	—	_	20	ns
	HS L	ine Drivers DC Specifications				
IV _{OD} I	HS Transmit Differential output voltage magnitude	80 Ω<= RL< = 125 Ω	140	200	270	mV
ΔIV _{OD} I	Change in Differential output voltage magnitude between logic states	80 Ω<= RL< = 125 Ω			10	mV
V _{CMTX}	Steady-state common-mode output voltage.	80 Ω<= RL< = 125 Ω	150	200	250	mV
ΔV _{CMTX} (1,0)	Changes in steady-state common-mode output voltage between logic states	80 Ω<= RL< = 125 Ω		_	5	mV
V _{OHHS}	HS output high voltage	80 Ω<= RL< = 125 Ω	_	_	360	mV
Z _{OS}	Single-ended output impedance.		40	50	62.5	Ω
ΔZ_{OS}	Single-ended output impedance mismatch.	_	_		10	%
	LP L	ine Drivers DC Specifications				
V _{OL}	Output low-level SE voltage	—	-50		50	mV
V _{OH}	Output high-level SE voltage	_	1.1	1.2	1.3	V
Z _{OLP}	Single-ended output impedance.	_	110	_	_	Ω
ΔZ _{OLP(01-10)}	Single-ended output impedance mismatch driving opposite level	_			20	%
ΔZ _{OLP(0-11)}	Single-ended output impedance mismatch driving same level			_	5	%
	HS L	ine Receiver DC Specifications				
V _{IDTH}	Differential input high voltage threshold	_	_	_	70	mV

Table 72. Electrical and Timing Information (continued)

4.11.12.4 Possible \triangle VCMTX and \triangle VOD Distortions of the Single-ended HS Signals

Figure 74. Possible \triangle VCMTX and \triangle VOD Distortions of the Single-ended HS Signals

4.11.12.5 D-PHY Switching Characteristics

Symbol	Parameters	Test Conditions	Min	Тур	Max	Unit		
HS Line Drivers AC Specifications								
_	Maximum serial data rate (forward direction)	On DATAP/N outputs. 80 $\Omega \leq RL \leq 125 \Omega$	80	_	1000	Mbps		
F _{DDRCLK}	DDR CLK frequency	On DATAP/N outputs.	40	_	500	MHz		
P _{DDRCLK}	DDR CLK period	80 Ω <= RL< = 125 Ω	2	—	25	ns		
t _{CDC}	DDR CLK duty cycle	$t_{CDC} = t_{CPH} / P_{DDRCLK}$	—	50	—	%		
t _{CPH}	DDR CLK high time	—	—	1	—	UI		
t _{CPL}	DDR CLK low time	—	—	1	—	UI		
_	DDR CLK / DATA Jitter	—	—	75	—	ps pk-pk		
t _{SKEW[PN]}	Intra-Pair (Pulse) skew	—	—	0.075	—	UI		
t _{SKEW[TX]}	Data to Clock Skew	—	0.350	—	0.650	UI		
t _r	Differential output signal rise time	20% to 80%, RL = 50 Ω	150	—	0.3UI	ps		
t _f	Differential output signal fall time	20% to 80%, RL = 50 Ω	150	—	0.3UI	ps		
ΔV _{CMTX(HF)}	Common level variation above 450 MHz	80 Ω<= RL< = 125 Ω		_	15	mV _{rms}		
ΔV _{CMTX(LF)}	Common level variation between 50 MHz and 450 MHz	80 Ω<= RL< = 125 Ω	—	—	25	mV _p		

Table 73. Electrical and Timing Information

4.11.20.2 SSI Receiver Timing with Internal Clock

Figure 97 depicts the SSI receiver internal clock timing and Table 87 lists the timing parameters for the receiver timing with the internal clock.

Figure 97. SSI Receiver Internal Clock Timing Diagram

ID	Parameter	Min	Мах	Unit
	Internal Clock Operatio	n		
SS1	AUDx_TXC/AUDx_RXC clock period	81.4	_	ns
SS2	AUDx_TXC/AUDx_RXC clock high period	36.0	_	ns
SS3	AUDx_TXC/AUDx_RXC clock rise time	_	6.0	ns
SS4	AUDx_TXC/AUDx_RXC clock low period	36.0	_	ns
SS5	AUDx_TXC/AUDx_RXC clock fall time	_	6.0	ns
SS7	AUDx_RXC high to AUDx_TXFS (bl) high	_	15.0	ns
SS9	AUDx_RXC high to AUDx_TXFS (bl) low	_	15.0	ns
SS11	AUDx_RXC high to AUDx_TXFS (wl) high	_	15.0	ns
SS13	AUDx_RXC high to AUDx_TXFS (wI) low	_	15.0	ns
SS20	AUDx_RXD setup time before AUDx_RXC low	10.0	_	ns
SS21	AUDx_RXD hold time after AUDx_RXC low	0.0	_	ns

4.11.21.2 UART RS-232 Serial Mode Timing

The following sections describe the electrical information of the UART module in the RS-232 mode.

4.11.21.2.1 UART Transmitter

Figure 100 depicts the transmit timing of UART in the RS-232 serial mode, with 8 data bit/1 stop bit format. Table 91 lists the UART RS-232 serial mode transmit timing characteristics.

Figure 100. UART RS-232 Serial Mode Transmit Timing Diagram

Table 91. RS-232 Serial Mode Transmit Timing Parameters

ID	Parameter	Symbol	Min	Мах	Unit
UA1	Transmit Bit Time	t _{Tbit}	$1/F_{baud_rate}^1 - T_{ref_clk}^2$	1/F _{baud_rate} + T _{ref_clk}	

¹ F_{baud_rate}: Baud rate frequency. The maximum baud rate the UART can support is (*ipg_perclk* frequency)/16.

² T_{ref_clk}: The period of UART reference clock *ref_clk* (*ipg_perclk* after RFDIV divider).

4.11.21.2.2 UART Receiver

Figure 101 depicts the RS-232 serial mode receive timing with 8 data bit/1 stop bit format. Table 92 lists serial mode receive timing characteristics.

Figure 101. UART RS-232 Serial Mode Receive Timing Diagram

 Table 92.
 RS-232 Serial Mode Receive Timing Parameters

ID	Parameter	Symbol	Min	Мах	Unit
UA2	Receive Bit Time ¹	t _{Rbit}	1/F _{baud_rate} ² – 1/(16 × F _{baud_rate})	1/F _{baud_rate} + 1/(16 × F _{baud_rate})	

The UART receiver can tolerate $1/(16 \times F_{baud_rate})$ tolerance in each bit. But accumulation tolerance in one frame must not exceed $3/(16 \times F_{baud_rate})$.

² F_{baud rate}: Baud rate frequency. The maximum baud rate the UART can support is (*ipg_perclk* frequency)/16.

4.11.22 USB HSIC Timings

This section describes the electrical information of the USB HSIC port.

NOTE

HSIC is a DDR signal. The following timing specification is for both rising and falling edges.

4.11.22.1 Transmit Timing

Figure 104. USB HSIC Transmit Waveform

Table 95. USB HSIC Transmit Parameters

Name	Parameter	Min	Мах	Unit	Comment
Tstrobe	strobe period	4.166	4.167	ns	_
Todelay	data output delay time	550	1350	ps	Measured at 50% point
Tslew	strobe/data rising/falling time	0.7	2	V/ns	Averaged from 30% – 70% points

4.11.22.2 Receive Timing

Figure 105. USB HSIC Receive Waveform

Table 96. USB HSIC Receive Parameters¹

Name	Parameter	Min	Мах	Unit	Comment
Tstrobe	strobe period	4.166	4.167	ns	_
Thold	data hold time	300	—	ps	Measured at 50% point
Tsetup	data setup time	365	_	ps	Measured at 50% point
Tslew	strobe/data rising/falling time	0.7	2	V/ns	Averaged from 30% – 70% points

¹ The timings in the table are guaranteed when:

-AC I/O voltage is between 0.9x to 1x of the I/O supply

-DDR_SEL configuration bits of the I/O are set to (10)b

Package Information and Contact Assignments

³ ENET_REF_CLK is used as a clock source for MII and RGMII modes only. RMII mode uses either GPIO_16 or RGMII_TX_CTL as a clock source. For more information on these clocks, see the device Reference Manual and the Hardware Development Guide for i.MX 6Quad, 6Dual, 6DualLite, 6Solo Families of Applications Processors (IMX6DQ6SDLHDG).

For most of the signals, the state during reset is same as the state after reset, given in Out of Reset Condition column of Table 100. However, there are few signals for which the state during reset is different from the state after reset. These signals along with their state during reset are given in Table 101.

Ball Name	Before Reset State				
Dail Name	Input/Output	Value			
EIM_A16	Input	PD (100K)			
EIM_A17	Input	PD (100K)			
EIM_A18	Input	PD (100K)			
EIM_A19	Input	PD (100K)			
EIM_A20	Input	PD (100K)			
EIM_A21	Input	PD (100K)			
EIM_A22	Input	PD (100K)			
EIM_A23	Input	PD (100K)			
EIM_A24	Input	PD (100K)			
EIM_A25	Input	PD (100K)			
EIM_DA0	Input	PD (100K)			
EIM_DA1	Input	PD (100K)			
EIM_DA2	Input	PD (100K)			
EIM_DA3	Input	PD (100K)			
EIM_DA4	Input	PD (100K)			
EIM_DA5	Input	PD (100K)			
EIM_DA6	Input	PD (100K)			
EIM_DA7	Input	PD (100K)			
EIM_DA8	Input	PD (100K)			
EIM_DA9	Input	PD (100K)			
EIM_DA10	Input	PD (100K)			
EIM_DA11	Input	PD (100K)			
EIM_DA12	Input	PD (100K)			
EIM_DA13	Input	PD (100K)			
EIM_DA14	Input	PD (100K)			
EIM_DA15	Input	PD (100K)			

Table 101. Signals with Differing Before Reset and After Reset States