E·XFL

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Not For New Designs
Core Processor	ARM® Cortex®-A9
Number of Cores/Bus Width	4 Core, 32-Bit
Speed	852MHz
Co-Processors/DSP	Multimedia; NEON™ SIMD
RAM Controllers	LPDDR2, LVDDR3, DDR3
Graphics Acceleration	Yes
Display & Interface Controllers	Keypad, LCD
Ethernet	10/100/1000Mbps (1)
SATA	SATA 3Gbps (1)
USB	USB 2.0 + PHY (4)
Voltage - I/O	1.8V, 2.5V, 2.8V, 3.3V
Operating Temperature	-40°C ~ 125°C (TJ)
Security Features	ARM TZ, Boot Security, Cryptography, RTIC, Secure Fusebox, Secure JTAG, Secure Memory, Secure RTC, Tamper Detection
Package / Case	624-FBGA, FCBGA
Supplier Device Package	624-FCBGA (21x21)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mcimx6q6avt08acr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Modules List

Block Mnemonic	Block Name	Subsystem	Brief Description
SSI-1 SSI-2 SSI-3	I2S/SSI/AC97 Interface	Connectivity Peripherals	The SSI is a full-duplex synchronous interface, which is used on the processor to provide connectivity with off-chip audio peripherals. The SSI supports a wide variety of protocols (SSI normal, SSI network, I2S, and AC-97), bit depths (up to 24 bits per word), and clock / frame sync options. The SSI has two pairs of 8x24 FIFOs and hardware support for an external DMA controller to minimize its impact on system performance. The second pair of FIFOs provides hardware interleaving of a second audio stream that reduces CPU overhead in use cases where two time slots are being used simultaneously.
TEMPMON	Temperature Monitor	System Control Peripherals	The temperature monitor/sensor IP module for detecting high temperature conditions. The temperature read out does not reflect case or ambient temperature. It reflects the temperature in proximity of the sensor location on the die. Temperature distribution may not be uniformly distributed; therefore, the read out value may not be the reflection of the temperature value for the entire die.
TZASC	Trust-Zone Address Space Controller	Security	The TZASC (TZC-380 by ARM) provides security address region control functions required for intended application. It is used on the path to the DRAM controller.
UART-1 UART-2 UART-3 UART-4 UART-5	UART Interface	Connectivity Peripherals	 Each of the UARTv2 modules support the following serial data transmit/receive protocols and configurations: 7- or 8-bit data words, 1 or 2 stop bits, programmable parity (even, odd or none) Programmable baud rates up to 5 MHz 32-byte FIFO on Tx and 32 half-word FIFO on Rx supporting auto-baud IrDA 1.0 support (up to SIR speed of 115200 bps) Option to operate as 8-pins full UART, DCE, or DTE
USBOH3A	USB 2.0 High Speed OTG and 3x HS Hosts	Connectivity Peripherals	 USBOH3 contains: One high-speed OTG module with integrated HS USB PHY One high-speed Host module with integrated HS USB PHY Two identical high-speed Host modules connected to HSIC USB ports.

4.1.9 PCIe 2.0 Maximum Power Consumption

Table 12 provides PCIe PHY currents for certain operating modes.

Table 12. PCIe PHY Current Drain

Mode	Test Conditions	Supply	Max Current	Unit	
P0: Normal Operation	5G Operations	PCIE_VP (1.1 V)	40	mA	
		PCIE_VPTX (1.1 V)	20	Ī	
		PCIE_VPH (2.5 V)	21	Ī	
	2.5G Operations	PCIE_VP (1.1 V)	27		
		PCIE_VPTX (1.1 V)	20	1	
		PCIE_VPH (2.5 V)	20	1	
P0s: Low Recovery Time	5G Operations	PCIE_VP (1.1 V)	30	mA	
Latency, Power Saving State		PCIE_VPTX (1.1 V)	2.4	Ī	
		PCIE_VPH (2.5 V)	18	1	
	2.5G Operations	PCIE_VP (1.1 V)	20		
		PCIE_VPTX (1.1 V)	2.4	1	
		PCIE_VPH (2.5 V)	18	1	
P1: Longer Recovery Time	_	PCIE_VP (1.1 V)	12	mA	
Latency, Lower Power State		PCIE_VPTX (1.1 V)	2.4	Ī	
		PCIE_VPH (2.5 V)	12	Ī	
Power Down	_	PCIE_VP (1.1 V)	1.3	mA	
		PCIE_VPTX (1.1 V)	0.18		
		PCIE_VPH (2.5 V)	0.36		

Optionally LDO_SOC and VDD_SOC_CAP can be used to power the HDMI, PCIe, and SATA PHY's through external connections.

For additional information, see the i.MX 6Dual/6Quad reference manual (IMX6DQRM).

4.3.2 Regulators for Analog Modules

4.3.2.1 LDO_1P1

The LDO_1P1 regulator implements a programmable linear-regulator function from VDD_HIGH_IN (see Table 6 for minimum and maximum input requirements). Typical Programming Operating Range is 1.0 V to 1.2 V with the nominal default setting as 1.1 V. The LDO_1P1 supplies the USB PHY, LVDS PHY, HDMI PHY, MIPI PHY, and PLLs. A programmable brown-out detector is included in the regulator that can be used by the system to determine when the load capability of the regulator is being exceeded to take the necessary steps. Current-limiting can be enabled to allow for in-rush current requirements during start-up, if needed. Active-pull-down can also be enabled for systems requiring this feature.

For information on external capacitor requirements for this regulator, see the Hardware Development Guide for i.MX 6Quad, 6Dual, 6DualLite, 6Solo Families of Applications Processors (IMX6DQ6SDLHDG).

For additional information, see the i.MX 6Dual/6Quad reference manual (IMX6DQRM).

4.3.2.2 LDO_2P5

The LDO_2P5 module implements a programmable linear-regulator function from VDD_HIGH_IN (see Table 6 for min and max input requirements). Typical Programming Operating Range is 2.25 V to 2.75 V with the nominal default setting as 2.5 V. The LDO_2P5 supplies the SATA PHY, USB PHY, LVDS PHY, HDMI PHY, MIPI PHY, E-fuse module and PLLs. A programmable brown-out detector is included in the regulator that can be used by the system to determine when the load capability of the regulator is being exceeded, to take the necessary steps. Current-limiting can be enabled to allow for in-rush current requirements during start-up, if needed. Active-pull-down can also be enabled for systems requiring this feature. An alternate self-biased low-precision weak-regulator is included that can be enabled for applications needing to keep the output voltage alive during low-power modes where the main regulator driver and its associated global bandgap reference module are disabled. The output of the weak-regulator is not programmable and is a function of the input supply as well as the load current. Typically, with a 3 V input supply the weak-regulator output is 2.525 V and its output impedance is approximately $40 \, \Omega$.

For information on external capacitor requirements for this regulator, see the Hardware Development Guide for i.MX 6Quad, 6Dual, 6DualLite, 6Solo Families of Applications Processors (IMX6DQ6SDLHDG).

For additional information, see the i.MX 6Dual/6Quad reference manual (IMX6DQRM).

4.3.2.3 LDO_USB

The LDO_USB module implements a programmable linear-regulator function from the USB_OTG_VBUS and USB_H1_VBUS voltages (4.4 V–5.25 V) to produce a nominal 3.0 V output

from either a ~3 V backup battery (VDD_SNVS_IN) or VDD_HIGH_IN such as the oscillator consumes power from VDD_HIGH_IN when that supply is available and transitions to the back up battery when VDD_HIGH_IN is lost.

In addition, if the clock monitor determines that the OSC32K is not present, then the source of the 32 kHz clock will automatically switch to the internal ring oscillator.

CAUTION

The internal RTC oscillator does not provide an accurate frequency and is affected by process, voltage, and temperature variations. Freescale strongly recommends using an external crystal as the RTC_XTALI reference. If the internal oscillator is used instead, careful consideration must be given to the timing implications on all of the SoC modules dependent on this clock.

The OSC32k runs from VDD_SNVS_CAP, which comes from the VDD_HIGH_IN/VDD_SNVS_IN power mux. The target battery is a ~3 V coin cell. Proper choice of coin cell type is necessary for chosen VDD_HIGH_IN range. Appropriate series resistor (Rs) must be used when connecting the coin cell. Rs depends on the charge current limit that depends on the chosen coin cell. For example, for Panasonic ML621:

- Average Discharge Voltage is 2.5 V
- Maximum Charge Current is 0.6 mA

For a charge voltage of 3.2 V, Rs = (3.2-2.5)/0.6 m = 1.17 k

NOTE

Always refer to the chosen coin cell manufacturer's data sheet for the latest information.

Parameter	Min	Тур	Max	Comments	
Fosc	—	32.768 kHz	—	This frequency is nominal and determined mainly by the crystal selected. 32.0 K would work as well.	
Current consumption		4 μΑ	_	The typical value shown is only for the oscillator, driven by an external crystal. If the internal ring oscillator is used instead of an external crystal, then approximately 25 μ A should be added to this value.	
Bias resistor	_	14 MΩ	_	This the integrated bias resistor that sets the amplifier into a high gain state. Any leakage through the ESD network, external board leakage, or even a scope probe that is significant relative to this value will debias the amplifier. The debiasing will result in low gain, and will impact the circuit's ability to start up and maintain oscillations.	
				Target Crystal Properties	
Cload	—	10 pF	_	Usually crystals can be purchased tuned for different Cloads. This Cload value is typically 1/2 of the capacitances realized on the PCB on either side of the quartz. A higher Cload will decrease oscillation margin, but increases current oscillating through the crystal.	
ESR	—	50 kΩ	100 kΩ	Equivalent series resistance of the crystal. Choosing a crystal with a higher value will decrease the oscillating margin.	

Table 20.	OSC32K	Main	Characteristics
-----------	--------	------	-----------------

4.6.2 General Purpose I/O (GPIO) DC Parameters

Table 22 shows DC parameters for GPIO pads. The parameters in Table 22 are guaranteed per the operating ranges in Table 6, unless otherwise noted.

Parameter	Parameter Symbol Test Conditions		Min	Мах	Unit
High-level output voltage ¹	Voh	loh = -0.1 mA (DSE ² = 001, 010) loh = -1 mA (DSE = 011, 100, 101, 110, 111)	OVDD - 0.15	_	V
Low-level output voltage ¹	I output voltage ¹ Vol Iol = 0.1 mA (DSE ² = 001, 010) Iol = 1mA (DSE = 011, 100, 101, 110, 111)		—	0.15	V
High-Level DC input voltage ^{1, 3}	Vih	_	$0.7 \times \text{OVDD}$	OVDD	V
Low-Level DC input voltage ^{1, 3}	Vil	_	0	$0.3 \times OVDD$	V
Input Hysteresis	Vhys	OVDD = 1.8 V OVDD = 3.3 V	0.25	_	V
Schmitt trigger VT+ ^{3, 4}	VT+	—	$0.5 \times \text{OVDD}$	—	V
Schmitt trigger VT- ^{3, 4}	VT–	—	—	$0.5 \times \text{OVDD}$	V
Input current (no pull-up/down)	lin	Vin = OVDD or 0	-1	1	μA
Input current (22 kΩ pull-up)	lin	Vin = 0 V Vin = OVDD	—	212 1	μA
Input current (47 kΩ pull-up)	lin	Vin = 0 V Vin = OVDD	—	100 1	μA
Input current (100 k Ω pull-up)	lin	Vin = 0 V Vin= OVDD	_	48 1	μA
Input current (100 kΩ pull-down)	lin	Vin = 0 V Vin = OVDD	—	1 48	μA
Keeper circuit resistance	Rkeep	Vin = 0.3 x OVDD Vin = 0.7 x OVDD	105	175	kΩ

Table 22. GPIO I/O DC Parameters

¹ Overshoot and undershoot conditions (transitions above OVDD and below GND) on switching pads must be held below 0.6 V, and the duration of the overshoot/undershoot must not exceed 10% of the system clock cycle. Overshoot/ undershoot must be controlled through printed circuit board layout, transmission line impedance matching, signal line termination, or other methods. Non-compliance to this specification may affect device reliability or cause permanent damage to the device.

² DSE is the Drive Strength Field setting in the associated IOMUX control register.

³ To maintain a valid level, the transition edge of the input must sustain a constant slew rate (monotonic) from the current DC level through to the target DC level, Vil or Vih. Monotonic input transition time is from 0.1 ns to 1 s.

⁴ Hysteresis of 250 mV is guaranteed over all operating conditions when hysteresis is enabled.

4.6.3 DDR I/O DC Parameters

The DDR I/O pads support LPDDR2 and DDR3/DDR3L operational modes.

Parameters	Symbol	Test Conditions	Min	Мах	Unit
DC input Logic Low	Vil(dc)	_	OVSS	Vref-0.1	V
Differential input Logic High	Vih(diff)	_	0.2	See Note ³	V
Differential input Logic Low	Vil(diff)	_	See Note ³	-0.2	V
Termination Voltage	Vtt	Vtt tracking OVDD/2	$0.49 \times \text{OVDD}$	$0.51 \times \text{OVDD}$	V
Input current (no pull-up/down)	lin	Vin = 0 or OVDD	-2.9	2.9	μA
Pull-up/pull-down impedance mismatch	MMpupd	_	-10	10	%
240 Ω unit calibration resolution	Rres	_	—	10	Ω
Keeper circuit resistance	Rkeep	—	105	175	kΩ

Table 24. DDR3/DDR3L I/O DC Electrical Parameters (continued)

¹ OVDD – I/O power supply (1.425 V–1.575 V for DDR3 and 1.283 V–1.45 V for DDR3L).

² Vref – DDR3/DDR3L external reference voltage.

³ The single-ended signals need to be within the respective limits (Vih(dc) max, Vil(dc) min) for single-ended signals as well as the limitations for overshoot and undershoot (see Table 30).

4.6.4 LVDS I/O DC Parameters

The LVDS interface complies with TIA/EIA 644-A standard. See TIA/EIA STANDARD 644-A, "Electrical Characteristics of Low Voltage Differential Signaling (LVDS) Interface Circuits" for details.

Table 25 shows the Low Voltage Differential Signalling (LVDS) I/O DC parameters.

Parameter	Symbol	Test Conditions	Min	Мах	Unit
Output Differential Voltage	V _{OD}	Rload=100 Ω between padP and padN	250	450	mV
Output High Voltage	V _{OH}	I _{OH} = 0 mA	1.25	1.6	
Output Low Voltage	V _{OL}	I _{OL} = 0 mA	0.9	1.25	V
Offset Voltage	V _{OS}	_	1.125	1.375	1

Table 25. LVDS I/O DC Parameters

4.6.5 MLB 6-Pin I/O DC Parameters

The MLB interface complies with Analog Interface of 6-pin differential Media Local Bus specification version 4.1. See 6-pin differential MLB specification v4.1, "MediaLB 6-pin interface Electrical Characteristics" for details.

NOTE

The MLB 6-pin interface does not support speed mode 8192fs.

Table 26 shows the Media Local Bus (MLB) I/O DC parameters.

System Modules Timing 4.9

This section contains the timing and electrical parameters for the modules in each i.MX 6Dual/6Quad processor.

Reset Timing Parameters 4.9.1

Figure 10 shows the reset timing and Table 37 lists the timing parameters.

← CC1 →

Figure 10. Reset Timing Diagram

Table 37.	Reset	Timing	Parameters
-----------	-------	--------	------------

ID	Parameter	Min	Max	Unit
CC1	Duration of SRC_POR_B to be qualified as valid	1	—	XTALOSC_RTC_XTALI cycle

4.9.2 **WDOG Reset Timing Parameters**

Figure 11 shows the WDOG reset timing and Table 38 lists the timing parameters.

WDOG1_B (Output)

Figure 11. WDOG1_B Timing Diagram

Table 38. WDOG1_B Timing Parameters

ID	Parameter	Min	Max	Unit
CC3	Duration of WDOG1_B Assertion	1	_	XTALOSC_RTC_ XTALI cycle

NOTE

XTALOSC_RTC_XTALI is approximately 32 kHz. XTALOSC_RTC_XTALI cycle is one period or approximately 30 µs.

NOTE

WDOG1_B output signals (for each one of the Watchdog modules) do not have dedicated pins, but are muxed out through the IOMUX. See the IOMUX manual for detailed information.

- ² In this table:
 - t means clock period from axi_clk frequency.
 - CSA means register setting for WCSA when in write operations or RCSA when in read operations.
 - CSN means register setting for WCSN when in write operations or RCSN when in read operations.
 - ADVN means register setting for WADVN when in write operations or RADVN when in read operations.
 - ADVA means register setting for WADVA when in write operations or RADVA when in read operations.

4.9.4 DDR SDRAM Specific Parameters (DDR3/DDR3L and LPDDR2)

4.9.4.1 DDR3/DDR3L Parameters

Figure 24 shows the DDR3/DDR3L basic timing diagram. The timing parameters for this diagram appear in Table 42.

Figure 24. DDR3/DDR3L Command and Address Timing Diagram

Table 42. DDR3/DDR3L Timing Parameter

ID	Paramator ^{1,2}	Symbol	CK = 53	32 MHz	Unit
	Falallet	Symbol Min		Max	Onit
DDR1	DRAM_SDCLKx_P clock high-level width	tсн	0.47	0.53	tск
DDR2	DRAM_SDCLKx_P clock low-level width	tCL	0.47	0.53	tск

п	Parameter ^{1,2}	Symbol	CK = 53	Unit	
		Symbol	Min	Мах	Onit
LP1	DRAM_SDCLKx_P clock high-level width	tсн	0.45	0.55	tск
LP2	DRAM_SDCLKx_P clock low-level width	tCL	0.45	0.55	tск
LP3	DRAM_CSx_B, DRAM_ADDRxx setup time	tis	270	—	ps
LP4	DRAM_CSx_B, DRAM_ADDRxx hold time	tıн	270	—	ps
LP3	DRAM_ADDRxx setup time	tis	230	—	ps
LP4	DRAM_ADDRxx hold time	tін	230	_	ps

Table 45. LPDDR2 Timing Parameter

¹ All measurements are in reference to Vref level.

 $^2\,$ Measurements were completed using balanced load and a 25 Ω resistor from outputs to DRAM_VREF.

Figure 28 shows the LPDDR2 write timing diagram. The timing parameters for this diagram appear in Table 46.

Figure 28. LPDDR2 Write Cycle

Table 46. LPDDR2 Write Cycle

П	Parameter ^{1,2,3}	Symbol	CK = 53	Unit	
	i diameter	Gymbol	Min	Max	Onic
LP17	DRAM_DATAxx and DRAM_DQMx setup time to DRAM_SDQSx_P (differential strobe)	tDS	235	—	ps
LP18	DRAM_DATAxx and DRAM_DQMx hold time to DRAM_SDQSx_P (differential strobe)	tdн	235	—	ps
LP21	DRAM_SDQSx_P latching rising transitions to associated clock edges	tDQSS	0.75	1.25	tCK
LP22	DRAM_SDQSx_P high level width	t DQSH	0.4	—	tCK
LP23	DRAM_SDQSx_P low level width	tDQSL	0.4	—	tCK

4.10.1 Asynchronous Mode AC Timing (ONFI 1.0 Compatible)

Asynchronous mode AC timings are provided as multiplications of the clock cycle and fixed delay. The Maximum I/O speed of GPMI in Asynchronous mode is about 50 MB/s. Figure 30 through Figure 33 depict the relative timing between GPMI signals at the module level for different operations under Asynchronous mode. Table 48 describes the timing parameters (NF1–NF17) that are shown in the figures.

Figure 30. Command Latch Cycle Timing Diagram

Figure 31. Address Latch Cycle Timing Diagram

ID	Parameter		Timing T = GPMI Clock (Cycle	Unit
			Min	Мах	
NF28	Data write setup	tDS ⁶	0.25 × tCK - 0.32	—	ns
NF29	Data write hold	tDH ⁶	0.25 × tCK - 0.79	—	ns
NF30	NAND_DQS/NAND_DQ read setup skew	tDQSQ ⁷	—	3.18	—
NF31	NAND_DQS/NAND_DQ read hold skew	tQHS ⁷		3.27	—

Table 50. Samsung Toggle Mode Timing Parameters¹ (continued)

¹ The GPMI toggle mode output timing can be controlled by the module's internal registers HW_GPMI_TIMING0_ADDRESS_SETUP, HW_GPMI_TIMING0_DATA_SETUP, and HW_GPMI_TIMING0_DATA_HOLD. This AC timing depends on these registers settings. In the table, AS/DS/DH represents each of these settings.

² AS minimum value can be 0, while DS/DH minimum value is 1.

³ T = tCK (GPMI clock period) -0.075ns (half of maximum p-p jitter).

⁴ CE_DELAY represents HW_GPMI_TIMING2[CE_DELAY]. NF18 is met automatically by the design. Read/Write operation is started with enough time of ALE/CLE assertion to low level.

⁵ PRE_DELAY+1) \geq (AS+DS)

⁶ Shown in Figure 36.

⁷ Shown in Figure 37.

Figure 38 shows the timing diagram of NAND_DQS/NAND_DATAxx read valid window. For DDR Toggle mode, the typical value of tDQSQ is 1.4 ns (max) and 1.4 ns (max) for tQHS at 133 MB/s. GPMI will sample NAND_DATA[7:0] at both rising and falling edge of a delayed NAND_DQS signal, which is provided by an internal DPLL. The delay value of this register can be controlled by GPMI register GPMI_READ_DDR_DLL_CTRL.SLV_DLY_TARGET (see the GPMI chapter of the i.MX 6Dual/6Quad reference manual (IMX6DQRM)). Generally, the typical delay value is equal to 0x7 which means 1/4 clock cycle delay expected. However, if the board delay is large enough and cannot be ignored, the delay value should be made larger to compensate the board delay.

4.11 External Peripheral Interface Parameters

The following subsections provide information on external peripheral interfaces.

4.11.1 AUDMUX Timing Parameters

The AUDMUX provides a programmable interconnect logic for voice, audio, and data routing between internal serial interfaces (SSIs) and external serial interfaces (audio and voice codecs). The AC timing of AUDMUX external pins is governed by the SSI module. For more information, see the respective SSI electrical specifications found within this document.

4.11.2 ECSPI Timing Parameters

This section describes the timing parameters of the ECSPI block. The ECSPI has separate timing parameters for master and slave modes.

4.11.5.3 RGMII Signal Switching Specifications

The following timing specifications meet the requirements for RGMII interfaces for a range of transceiver devices.

Symbol	Description	Min	Max	Unit
T _{cyc} ²	Clock cycle duration	7.2	8.8	ns
T _{skewT} ³	Data to clock output skew at transmitter	-100	900	ps
T _{skewR} ³	Data to clock input skew at receiver	1	2.6	ns
Duty_G ⁴	Duty cycle for Gigabit	45	55	%
Duty_T ⁴	Duty cycle for 10/100T	40	60	%
Tr/Tf	Rise/fall time (20–80%)	—	0.75	ns

Table 62. RGMII Signal Switching Specifications¹

¹ The timings assume the following configuration: DDR_SEL = (11)b

DSE (drive-strength) = (111)b

 $^2~$ For 10 Mbps and 100 Mbps, T_{cyc} will scale to 400 ns ±40 ns and 40 ns ±4 ns respectively.

³ For all versions of RGMII prior to 2.0; This implies that PC board design will require clocks to be routed such that an additional delay of greater than 1.2 ns and less than 1.7 ns will be added to the associated clock signal. For 10/100, the max value is unspecified.

⁴ Duty cycle may be stretched/shrunk during speed changes or while transitioning to a received packet's clock domain as long as minimum duty cycle is not violated and stretching occurs for no more than three Tcyc of the lowest speed transitioned between.

Figure 53. RGMII Transmit Signal Timing Diagram Original

Symbol	Parameter	Conditions	Min	Тур	Max	Unit			
t _F	Differential output signal fall time	20–80% RL = 50 Ω See Figure 63.	75	—	0.4 UI	ps			
_	Differential signal overshoot	Referred to 2x V _{SWING}	—	_	15	%			
_	Differential signal undershoot	Referred to 2x V _{SWING}	—	_	25	%			
	Data and Control Interface Specifications								
t _{Power-up} 2	HDMI 3D Tx PHY power-up time	From power-down to HSI_TX_READY assertion	_	—	3.35	ms			

Table 64. Switching Characteristics (continued)

¹ Relative to ideal recovery clock, as specified in the HDMI specification, version 1.4a, section 4.2.3.

² For information about latencies and associated timings, see Section 4.11.7.1, "Latencies and Timing Information."

4.11.9 I²C Module Timing Parameters

This section describes the timing parameters of the I²C module. Figure 64 depicts the timing of I²C module, and Table 65 lists the I²C module timing characteristics.

Figure 64. I²C Bus Timing

Table 65. I²C Module Timing Parameters

	Parameter	Standa	ard Mode	Fast Mo	Unit	
	Farameter	Min	Мах	Min	Max	Unit
IC1	I2Cx_SCL cycle time	10	—	2.5		μs
IC2	Hold time (repeated) START condition	4.0	—	0.6		μs
IC3	Set-up time for STOP condition	4.0	—	0.6		μs
IC4	Data hold time	01	3.45 ²	0 ¹	0.9 ²	μs
IC5	HIGH Period of I2Cx_SCL Clock	4.0	—	0.6		μs
IC6	LOW Period of the I2Cx_SCL Clock	4.7	—	1.3		μs
IC7	Set-up time for a repeated START condition	4.7	—	0.6	_	μs
IC8	Data set-up time	250	—	100 ³		ns

i.MX 6Dual/6Quad				LCD				
	RGB,	R	GB/TV	Signal A	Allocation	n (Examp	ole)	Comment ^{1,2}
Port Name (x = 0, 1)	Signal Name (General)	16-bit RGB	18-bit RGB	24 Bit RGB	8-bit YCrCb ³	16-bit YCrCb	20-bit YCrCb	
IPUx_DISPx_DAT07	DAT[7]	G[2]	G[1]	B[7]	Y/C[7]	C[7]	C[7]	—
IPUx_DISPx_DAT08	DAT[8]	G[3]	G[2]	G[0]	—	Y[0]	C[8]	_
IPUx_DISPx_DAT09	DAT[9]	G[4]	G[3]	G[1]	—	Y[1]	C[9]	_
IPUx_DISPx_DAT10	DAT[10]	G[5]	G[4]	G[2]	—	Y[2]	Y[0]	
IPUx_DISPx_DAT11	DAT[11]	R[0]	G[5]	G[3]	—	Y[3]	Y[1]	_
IPUx_DISPx_DAT12	DAT[12]	R[1]	R[0]	G[4]	—	Y[4]	Y[2]	_
IPUx_DISPx_DAT13	DAT[13]	R[2]	R[1]	G[5]	—	Y[5]	Y[3]	_
IPUx_DISPx_DAT14	DAT[14]	R[3]	R[2]	G[6]	—	Y[6]	Y[4]	_
IPUx_DISPx_DAT15	DAT[15]	R[4]	R[3]	G[7]	—	Y[7]	Y[5]	_
IPUx_DISPx_DAT16	DAT[16]	_	R[4]	R[0]		—	Y[6]	_
IPUx_DISPx_DAT17	DAT[17]	—	R[5]	R[1]			Y[7]	_
IPUx_DISPx_DAT18	DAT[18]	_	_	R[2]		—	Y[8]	_
IPUx_DISPx_DAT19	DAT[19]	_	_	R[3]		—	Y[9]	_
IPUx_DISPx_DAT20	DAT[20]	_	_	R[4]		—	—	_
IPUx_DISPx_DAT21	DAT[21]			R[5]	—	—	—	_
IPUx_DISPx_DAT22	DAT[22]			R[6]	—	—	—	_
IPUx_DISPx_DAT23	DAT[23]			R[7]	—	—	—	_
IPUx_DIx_DISP_CLK			I	PixCLK			1	_
IPUx_DIx_PIN01								May be required for anti-tearing
IPUx_DIx_PIN02				HSYNC	;			
IPUx_DIx_PIN03				VSYNC				VSYNC out
IPUx_DIx_PIN04				_				Additional frame/row synchronous
IPUx_DIx_PIN05	1			_				signals with programmable timing
IPUx_DIx_PIN06	_						1	
IPUx_DIx_PIN07				_				1
IPUx_DIx_PIN08				_				

Table 68. Video Signal Cross-Reference (continued)

Symbol	Parameters	Test Conditions	Min	Тур	Max	Unit		
V _{IDTL}	Differential input low voltage threshold	_	-70			mV		
V _{IHHS}	Single ended input high voltage	_			460	mV		
V _{ILHS}	Single ended input low voltage	_	-40			mV		
V _{CMRXDC}	Input common mode voltage	_	70		330	mV		
Z _{ID}	Differential input impedance	_	80		125	Ω		
	LP Li	ne Receiver DC Specifications						
V _{IL}	Input low voltage	_	_		550	mV		
V _{IH}	Input high voltage	_	920		_	mV		
V _{HYST}	Input hysteresis	_	25		_	mV		
	Contention Line Receiver DC Specifications							
V _{ILF}	Input low fault threshold	_	200	_	450	mV		

Table 72. Electrical and Timing Information (continued)

4.11.12.9 Low-Power Receiver Timing

4.11.13 HSI Host Controller Timing Parameters

This section describes the timing parameters of the HSI Host Controller which are compliant with High-Speed Synchronous Serial Interface (HSI) Physical Layer specification version 1.01.

4.11.13.1 Synchronous Data Flow

Figure 79. Synchronized Data Flow READY Signal Timing (Frame and Stream Transmission)

4.11.13.2 Pipelined Data Flow

Figure 80. Pipelined Data Flow READY Signal Timing (Frame Transmission Mode)

4.11.13.9 DATA and FLAG Signal Timing

Figure 86. DATA and FLAG Signal Timing

4.11.14 MediaLB (MLB) Characteristics

4.11.14.1 MediaLB (MLB) DC Characteristics

Table 75 lists the MediaLB 3-pin interface electrical characteristics.

Table 75	. MediaLB 3-Pin	Interface	Electrical	DC Specifications
----------	-----------------	-----------	------------	--------------------------

Parameter	Symbol	Test Conditions	Min	Мах	Unit
Maximum input voltage	—	_	—	3.6	V
Low level input threshold	V _{IL}	_		0.7	V
High level input threshold	V _{IH}	See Note ¹	1.8		V
Low level output threshold	V _{OL}	I _{OL} = 6 mA	—	0.4	V
High level output threshold	V _{OH}	I _{OH} = -6 mA	2.0		V
Input leakage current	ΙL	0 < V _{in} < VDD	—	±10	μA

¹ Higher V_{IH} thresholds can be used; however, the risks associated with less noise margin in the system must be evaluated and assumed by the customer.

Table 76 lists the MediaLB 6-pin interface electrical characteristics.

Table 76. MediaLB 6-Pin Interface Electrical DC Specifications

Parameter	Symbol	Test Conditions	Min	Мах	Unit
	Drive	r Characteristics			
Differential output voltage (steady-state): I $V_{O_{+}}$ - $V_{O_{-}}$ I	V _{OD}	See Note ¹	300	500	mV
Difference in differential output voltage between (high/low) steady-states: I V _{OD, high} - V _{OD, low} I	ΔV _{OD}	_	-50	50	mV

4.11.20.2 SSI Receiver Timing with Internal Clock

Figure 97 depicts the SSI receiver internal clock timing and Table 87 lists the timing parameters for the receiver timing with the internal clock.

Figure 97. SSI Receiver Internal Clock Timing Diagram

ID	Parameter	Min	Мах	Unit					
Internal Clock Operation									
SS1	AUDx_TXC/AUDx_RXC clock period	81.4	—	ns					
SS2	AUDx_TXC/AUDx_RXC clock high period	36.0	_	ns					
SS3	AUDx_TXC/AUDx_RXC clock rise time	_	6.0	ns					
SS4	AUDx_TXC/AUDx_RXC clock low period	36.0	_	ns					
SS5	AUDx_TXC/AUDx_RXC clock fall time	_	6.0	ns					
SS7	AUDx_RXC high to AUDx_TXFS (bl) high	_	15.0	ns					
SS9	AUDx_RXC high to AUDx_TXFS (bl) low	_	15.0	ns					
SS11	AUDx_RXC high to AUDx_TXFS (wl) high	_	15.0	ns					
SS13	AUDx_RXC high to AUDx_TXFS (wI) low	_	15.0	ns					
SS20	AUDx_RXD setup time before AUDx_RXC low	10.0	_	ns					
SS21	AUDx_RXD hold time after AUDx_RXC low	0.0	_	ns					

Package Information and Contact Assignments

NOTES:

- 1. ALL DIMENSIONS IN MILLIMETERS.
- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
- $^{\prime}$ 3. Maximum solder ball diameter measured parallel to datum A.

A. DATUM A, THE SEATING PLANE, IS DETERMINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS.

PARALLELISM MEASUREMENT SHALL EXCLUDE ANY EFFECT OF MARK ON TOP SURFACE OF PACKAGE.

6. 21.2MM MAXIMUM PACKAGE ASSEMBLY (LID + LAMINATE) X AND Y.

© FRE	EESCALE SEMICONDUCTOR, ALL RIGHTS RESERVED.	INC.	MECHANICAL OU	TLINE	PRINT VERSION NOT	TO SCALE
TITLE: 624 I/O FC PBGA, 21 X 21 X 2 PKG,			DOCUMENT NO: 98ASA00330D REV: D			
			STANDARD: NON-JEDEC			
	0.8 MM PIICH, SIAMPED LID		08 OCT 2013			

Figure 107. 21 x 21 mm Lidded Package Top, Bottom, and Side Views (Sheet 2 of 2)

Package Information and Contact Assignments

				Out of Reset Condition ¹			
Ball Name	Ball	Power Group	Ball Type	Default Mode (Reset Mode)	Default Function (Signal Name)	Input/Output	Value ²
EIM_DA10	M22	NVCC_EIM2	GPIO	ALT0	EIM_AD10	Input	PU (100K)
EIM_DA11	M20	NVCC_EIM2	GPIO	ALT0	EIM_AD11	Input	PU (100K)
EIM_DA12	M24	NVCC_EIM2	GPIO	ALT0	EIM_AD12	Input	PU (100K)
EIM_DA13	M23	NVCC_EIM2	GPIO	ALT0	EIM_AD13	Input	PU (100K)
EIM_DA14	N23	NVCC_EIM2	GPIO	ALT0	EIM_AD14	Input	PU (100K)
EIM_DA15	N24	NVCC_EIM2	GPIO	ALT0	EIM_AD15	Input	PU (100K)
EIM_EB0	K21	NVCC_EIM2	GPIO	ALT0	EIM_EB0_B	Output	1
EIM_EB1	K23	NVCC_EIM2	GPIO	ALT0	EIM_EB1_B	Output	1
EIM_EB2	E22	NVCC_EIM0	GPIO	ALT5	GPIO2_IO30	Input	PU (100K)
EIM_EB3	F23	NVCC_EIM0	GPIO	ALT5	GPIO2_IO31	Input	PU (100K)
EIM_LBA	K22	NVCC_EIM1	GPIO	ALT0	EIM_LBA_B	Output	1
EIM_OE	J24	NVCC_EIM1	GPIO	ALT0	EIM_OE	Output	1
EIM_RW	K20	NVCC_EIM1	GPIO	ALT0	EIM_RW	Output	1
EIM_WAIT	M25	NVCC_EIM2	GPIO	ALT0	EIM_WAIT	Input	PU (100K)
ENET_CRS_DV	U21	NVCC_ENET	GPIO	ALT5	GPIO1_IO25	Input	PU (100K)
ENET_MDC	V20	NVCC_ENET	GPIO	ALT5	GPIO1_IO31	Input	PU (100K)
ENET_MDIO	V23	NVCC_ENET	GPIO	ALT5	GPIO1_IO22	Input	PU (100K)
ENET_REF_CLK ³	V22	NVCC_ENET	GPIO	ALT5	GPIO1_IO23	Input	PU (100K)
ENET_RX_ER	W23	NVCC_ENET	GPIO	ALT5	GPIO1_IO24	Input	PU (100K)
ENET_RXD0	W21	NVCC_ENET	GPIO	ALT5	GPIO1_IO27	Input	PU (100K)
ENET_RXD1	W22	NVCC_ENET	GPIO	ALT5	GPIO1_IO26	Input	PU (100K)
ENET_TX_EN	V21	NVCC_ENET	GPIO	ALT5	GPIO1_IO28	Input	PU (100K)
ENET_TXD0	U20	NVCC_ENET	GPIO	ALT5	GPIO1_IO30	Input	PU (100K)
ENET_TXD1	W20	NVCC_ENET	GPIO	ALT5	GPIO1_IO29	Input	PU (100K)
GPIO_0	T5	NVCC_GPIO	GPIO	ALT5	GPIO1_IO00	Input	PD (100K)
GPIO_1	T4	NVCC_GPIO	GPIO	ALT5	GPIO1_IO01	Input	PU (100K)
GPIO_16	R2	NVCC_GPIO	GPIO	ALT5	GPIO7_IO11	Input	PU (100K)
GPIO_17	R1	NVCC_GPIO	GPIO	ALT5	GPIO7_IO12	Input	PU (100K)
GPIO_18	P6	NVCC_GPIO	GPIO	ALT5	GPIO7_IO13	Input	PU (100K)
GPIO_19	P5	NVCC_GPIO	GPIO	ALT5	GPIO4_IO05	Input	PU (100K)
GPIO_2	T1	NVCC_GPIO	GPIO	ALT5	GPIO1_IO02	Input	PU (100K)
GPIO_3	R7	NVCC_GPIO	GPIO	ALT5	GPIO1_IO03	Input	PU (100K)
GPIO_4	R6	NVCC_GPIO	GPIO	ALT5	GPIO1_IO04	Input	PU (100K)
GPIO_5	R4	NVCC_GPIO	GPIO	ALT5	GPIO1_IO05	Input	PU (100K)
GPIO_6	T3	NVCC_GPIO	GPIO	ALT5	GPIO1_IO06	Input	PU (100K)
GPIO_7	R3	NVCC_GPIO	GPIO	ALT5	GPIO1_IO07	Input	PU (100K)

Table 100. 21 x 21 mm Functional Contact Assignments (continued)