E·XFL

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Not For New Designs
Core Processor	ARM® Cortex®-A9
Number of Cores/Bus Width	4 Core, 32-Bit
Speed	1.0GHz
Co-Processors/DSP	Multimedia; NEON™ SIMD
RAM Controllers	LPDDR2, LVDDR3, DDR3
Graphics Acceleration	Yes
Display & Interface Controllers	Keypad, LCD
Ethernet	10/100/1000Mbps (1)
SATA	SATA 3Gbps (1)
USB	USB 2.0 + PHY (4)
Voltage - I/O	1.8V, 2.5V, 2.8V, 3.3V
Operating Temperature	-40°C ~ 125°C (TJ)
Security Features	ARM TZ, Boot Security, Cryptography, RTIC, Secure Fusebox, Secure JTAG, Secure Memory, Secure RTC, Tamper Detection
Package / Case	624-FBGA, FCBGA
Supplier Device Package	624-FCBGA (21x21)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mcimx6q6avt10ac

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.1 Ordering Information

Table 1 shows examples of orderable part numbers covered by this data sheet. This table does not include all possible orderable part numbers. The latest part numbers are available on freescale.com/imx6series. If your desired part number is not listed in the table, or you have questions about available parts, see freescale.com/imx6series or contact your Freescale representative.

Part Number	Quad/Dual CPU	Options	Speed ¹ Grade	Temperature Grade	Package
MCIMX6Q6AVT10AC	i.MX 6Quad	With VPU, GPU	1 GHz	Automotive	21 mm x 21 mm, 0.8 mm pitch, FCPBGA (lidded)
MCIMX6Q6AVT10AD	i.MX 6Quad	With VPU, GPU	1 GHz	Automotive	21 mm x 21 mm, 0.8 mm pitch, FCPBGA (lidded)
MCIMX6Q4AVT10AC	i.MX 6Quad	With GPU, no VPU	1 GHz	Automotive	21 mm x 21 mm, 0.8 mm pitch, FCPBGA (lidded)
MCIMX6Q4AVT10AD	i.MX 6Quad	With GPU, no VPU	1 GHz	Automotive	21 mm x 21 mm, 0.8 mm pitch, FCPBGA (lidded)
MCIMX6Q6AVT08AC	i.MX 6Quad	With VPU, GPU	852 MHz	Automotive	21 mm x 21 mm, 0.8 mm pitch, FCPBGA (lidded)
MCIMX6Q6AVT08AD	i.MX 6Quad	With VPU, GPU	852 MHz	Automotive	21 mm x 21 mm, 0.8 mm pitch, FCPBGA (lidded)
MCIMX6Q4AVT08AC	i.MX 6Quad	With GPU, no VPU	852 MHz	Automotive	21 mm x 21 mm, 0.8 mm pitch, FCPBGA (lidded)
MCIMX6Q4AVT08AD	i.MX 6Quad	With GPU, no VPU	852 MHz	Automotive	21 mm x 21 mm, 0.8 mm pitch, FCPBGA (lidded)
MCIMX6D6AVT10AC	i.MX 6Dual	With VPU, GPU	1 GHz	Automotive	21 mm x 21 mm, 0.8 mm pitch, FCPBGA (lidded)
MCIMX6D6AVT10AD	i.MX 6Dual	With VPU, GPU	1 GHz	Automotive	21 mm x 21 mm, 0.8 mm pitch, FCPBGA (lidded)
MCIMX6D4AVT10AC	i.MX 6Dual	With GPU, no VPU	1 GHz	Automotive	21 mm x 21 mm, 0.8 mm pitch, FCPBGA (lidded)
MCIMX6D4AVT10AD	i.MX 6Dual	With GPU, no VPU	1 GHz	Automotive	21 mm x 21 mm, 0.8 mm pitch, FCPBGA (lidded)
MCIMX6D6AVT08AC	i.MX 6Dual	With VPU, GPU	852 MHz	Automotive	21 mm x 21 mm, 0.8 mm pitch, FCPBGA (lidded)
MCIMX6D6AVT08AD	i.MX 6Dual	With VPU, GPU	852 MHz	Automotive	21 mm x 21 mm, 0.8 mm pitch, FCPBGA (lidded)
MCIMX6D4AVT08AC	i.MX 6Dual	With GPU, no VPU	852 MHz	Automotive1	21 mm x 21 mm, 0.8 mm pitch, FCPBGA (lidded)
MCIMX6D4AVT08AD	i.MX 6Dual	With GPU, no VPU	852 MHz	Automotive	21 mm x 21 mm, 0.8 mm pitch, FCPBGA (lidded)

Table 1. Example Orderable Part Number
--

¹ If a 24 MHz input clock is used (required for USB), the maximum SoC speed is limited to 996 MHz.

Architectural Overview

2 Architectural Overview

The following subsections provide an architectural overview of the i.MX 6Dual/6Quad processor system.

2.1 Block Diagram

Figure 2 shows the functional modules in the i.MX 6Dual/6Quad processor system.

Figure 2. i.MX 6Dual/6Quad Automotive Grade System Block Diagram

NOTE

The numbers in brackets indicate number of module instances. For example, PWM (4) indicates four separate PWM peripherals.

NP

Electrical Characteristics

- At power up, an internal ring oscillator is used. After crystal oscillator is stable, the clock circuit switches over to the crystal oscillator automatically.
- Higher accuracy than ring oscillator.
- If no external crystal is present, then the ring oscillator is used.

The decision to choose a clock source should be based on real-time clock use and precision timeout.

4.1.5 Maximum Supply Currents

Power consumption is highly dependent on the application. Estimating the maximum supply currents required for power supply design is difficult because the use case that requires maximum supply current is not a realistic use case.

To help illustrate the effect of the application on power consumption, data was collected while running industry standard benchmarks that are designed to be compute and graphic intensive. The results provided are intended to be used as guidelines for power supply design.

Description of test conditions:

- The Power Virus data shown in Table 8 represent a use case designed specifically to show the maximum current consumption possible for the ARM core complex. All cores are running at the defined maximum frequency and are limited to L1 cache accesses only to ensure no pipeline stalls. Although a valid condition, it would have a very limited, if any, practical use case, and be limited to an extremely low duty cycle unless the intention was to specifically cause the worst case power consumption.
- EEMBC CoreMark: Benchmark designed specifically for the purpose of measuring the performance of a CPU core. More information available at www.eembc.org/coremark. Note that this benchmark is designed as a core performance benchmark, not a power benchmark. This use case is provided as an example of power consumption that would be typical in a computationally-intensive application rather than the Power Virus.
- 3DMark Mobile 2011: Suite of benchmarks designed for the purpose of measuring graphics and overall system performance. More information available at www.rightware.com/benchmarks. Note that this benchmark is designed as a graphics performance benchmark, not a power benchmark. This use case is provided as an example of power consumption that would be typical in a very graphics-intensive application.
- Devices used for the tests were from the high current end of the expected process variation.

The Freescale power management IC, MMPF0100xxxx, which is targeted for the i.MX 6 series processor family, supports the power consumption shown in Table 8, however a robust thermal design is required for the increased system power dissipation.

See the *i.MX 6Dual/6Quad Power Consumption Measurement Application Note* (AN4509) for more details on typical power consumption under various use case definitions.

Mode	Test Conditions	Supply	Typical ¹	Unit
STOP_ON	ARM LDO set to 0.9 V	VDD_ARM_IN (1.4 V)	7.5	mA
	ModeTest ConditionsSTOP_ON• ARM LDO set to 0.9 V • SoC and PU LDOs set to 1.225 V • HIGH LDO set to 2.5 V • PLLs disabled • DDR is in self refreshSTOP_OFF• ARM LDO set to 0.9 V • SoC LDO set to 1.225 V • PU LDO is power gated • HIGH LDO set to 2.5 V • PU LDO is power gated • DDR is in self refreshSTANDBY• ARM and PU LDOs are power gated • SoC LDO is in bypass • HIGH LD is set to 2.5 V • PLLs are disabled • Low voltage • Well Bias ON • Crystal oscillator is enabledep Sleep Mode (DSM)• ARM and PU LDOs are power gated • SoC LDO is in bypass • HIGH LDO is set to 2.5 V • PLLs are disabled • Low voltage • Well Bias ON • Crystal oscillator is enabledstart disabled • LOW voltage • Well Bias ON • Crystal oscillator and bandgap are disabled • Low voltage • Well Bias ON • Crystal oscillator and bandgap are disabled • Low voltage • Well Bias ON • Crystal oscillator and bandgap are disabled	VDD_SOC_IN (1.4 V)	22	mA
		VDD_HIGH_IN (3.0 V)	3.7	mA
		Total	52	mW
STOP_OFF	ARM LDO set to 0.9 V	Supply Typical ¹ Unit VDD_ARM_IN (1.4 V) 7.5 mA VDD_SOC_IN (1.4 V) 22 mA VDD_HIGH_IN (3.0 V) 3.7 mA VDD_ARM_IN (1.4 V) 7.5 mA VDD_ARM_IN (1.4 V) 7.5 mA VDD_ARM_IN (1.4 V) 7.5 mA VDD_SOC_IN (1.4 V) 13.5 mA VDD_HIGH_IN (3.0 V) 3.7 mA VDD_ARM_IN (0.9 V) 0.1 mA VDD_SOC_IN (0.9 V) 0.1 mA VDD_SOC_IN (0.9 V) 3.7 mA VDD_SOC_IN (0.9 V) 0.1 mA VDD_SOC_IN (0.9 V) 0.5 mA VDD_HIGH_IN (3.0 V) 0.5 mA VDD_SNVS_IN (2.8V) 41 µA Abled </td		
	 ARM LDO set to 0.9 V SoC LDO set to 1.225 V PU LDO is power gated HIGH LDO set to 2.5 V PLLs disabled DDR is in self refresh ARM and PU LDOs are power gated SoC LDO is in bypass HIGH LDO is set to 2.5 V PLLs are disabled Low voltage 	VDD_SOC_IN (1.4 V)	13.5	mA
		VDD_HIGH_IN (3.0 V)	3.7	mA
		Total	41	mW
STANDBY ARM and PU LDOs are power gated SoC LDO is in bypass HIGH LDO is set to 2.5 V PLLs are disabled 	ARM and PU LDOs are power gated	VDD_ARM_IN (0.9 V)	0.1	mA
	VDD_SOC_IN (0.9 V)	13	mA	
	ARM and PU LDOs are power gated SoC LDO is in bypass HIGH LDO is set to 2.5 V PLLs are disabled Low voltage Well Bias ON	VDD_HIGH_IN (3.0 V)	3.7	mA
	Well Bias ON Crystal oscillator is enabled	Total	22	mW
Deep Sleep Mode	ARM and PU LDOs are power gated	VDD_ARM_IN (0.9 V)	0.1	mA
(DSM)	 Soc LDO is in bypass HIGH LDO is set to 2.5 V 	VDD_SOC_IN (0.9 V)	2	mA
	PLLs are disabled Low voltage	VDD_HIGH_IN (3.0 V)	0.5	mA
	 Well Bias ON Crystal oscillator and bandgap are disabled 	Total	3.4	mW
SNVS Only	VDD_SNVS_IN powered	VDD_SNVS_IN (2.8V)	41	μA
	PFF • ARM LDO set to 0.9 V • SoC LDO set to 1.225 V • PU LDO is power gated • HIGH LDO set to 2.5 V • PLLs disabled • DDR is in self refresh 3Y • ARM and PU LDOs are power gated • SoC LDO is in bypass • HIGH LDO is set to 2.5 V • PLLs are disabled • Low voltage • Well Bias ON • Crystal oscillator is enabled • SoC LDO is in bypass • HIGH LDO is set to 2.5 V • PLLs are disabled • Low voltage • Well Bias ON • Crystal oscillator is enabled • SoC LDO is in bypass • HIGH LDO is set to 2.5 V • PLLs are disabled • Low voltage • Well Bias ON • Crystal oscillator and bandgap are disabled • Low voltage • Well Bias ON • Crystal oscillator and bandgap are disabled • NDSNVS_IN powered • All other supplies off • SRTC running	Total	115	μW

Table 9. Stop Mode Current and Power Consumption (continued)

¹ The typical values shown here are for information only and are not guaranteed. These values are average values measured on a worst-case wafer at 25°C.

4.1.7 USB PHY Current Consumption

4.1.7.1 Power Down Mode

In power down mode, everything is powered down, including the VBUS valid detectors, typ condition. Table 10 shows the USB interface current consumption in power down mode.

Table 10. USB PHY Current Consumption in Power Down Mode

	VDD_USB_CAP (3.0 V)	VDD_HIGH_CAP (2.5 V)	NVCC_PLL_OUT (1.1 V)
Current	5.1 μA	1.7 μA	<0.5 μA

NOTE

The currents on the VDD_HIGH_CAP and VDD_USB_CAP were identified to be the voltage divider circuits in the USB-specific level shifters.

4.1.8 SATA Typical Power Consumption

Table 11 provides SATA PHY currents for certain Tx operating modes.

NOTE

Tx power consumption values are provided for a single transceiver. If T = single transceiver power and C = Clock module power, the total power required for N lanes = N x T + C.

Table 11. SATA PHY Current Drain

Mode	Test Conditions	Supply	Typical Current	Unit
P0: Full-power state ¹	Single Transceiver	SATA_VP	11	mA
		SATA_VPH	13	
	Clock Module	SATA_VP	6.9	
		SATA_VPH	Iy Typical Current Unit VP 11 mA /PH 13 mA /VP 6.9 mA /PH 6.2 mA /VP 11 mA /PH 6.2 mA /PH 11 mA /PH 11 mA /PH 6.9 mA /PH 6.9 mA /PH 6.9 mA /PH 6.2 mA /PH 6.2 mA /PH 6.2 mA /PH 6.2 mA /PH 6.9 mA /PH 6.9 mA /PH 6.9 mA /PH 6.9 mA	
P0: Mobile ²	Single Transceiver	SATA_VP	11	mA
		SATA_VPH	11	
	Clock Module Clock Module Single Transceiver Clock Module Single Transceiver Clock Module Clock Module	SATA_VP	6.9	
		SATA_VPH	6.2	
P0s: Transmitter idle	Single Transceiver	SATA_VP	9.4	mA
		SATA_VPH	2.9	
	Clock Module	SATA_VP	6.9	1
		SATA_VPH	6.2]

4.1.10 HDMI Maximum Power Consumption

Table 13 provides HDMI PHY currents for both Active 3D Tx with LFSR15 data pattern and Power-down modes.

Mode	Test Conditions	Supply	Max Current	Unit
Active	Bit rate 251.75 Mbps	HDMI_VPH	14	mA
		HDMI_VP	4.1	mA
	Bit rate 279.27 Mbps	HDMI_VPH	14	mA
		HDMI_VP	4.2	mA
	Bit rate 742.5 Mbps	HDMI_VPH	17	mA
		HDMI_VP	7.5	mA
	Bit rate 1.485 Gbps	HDMI_VPH	17	mA
		HDMI_VP	12	mA
	Bit rate 2.275 Gbps	HDMI_VPH	16	mA
		HDMI_VP	17	mA
	Bit rate 2.97 Gbps	HDMI_VPH	19	mA
		HDMI_VP	22	mA
Power-down	_	HDMI_VPH	49	μA
		HDMI_VP	1100	μA

Table 13.	. HDMI PHY	Current Drain
-----------	------------	---------------

4.10.1 Asynchronous Mode AC Timing (ONFI 1.0 Compatible)

Asynchronous mode AC timings are provided as multiplications of the clock cycle and fixed delay. The Maximum I/O speed of GPMI in Asynchronous mode is about 50 MB/s. Figure 30 through Figure 33 depict the relative timing between GPMI signals at the module level for different operations under Asynchronous mode. Table 48 describes the timing parameters (NF1–NF17) that are shown in the figures.

Figure 30. Command Latch Cycle Timing Diagram

Figure 31. Address Latch Cycle Timing Diagram

4.11.2.1 ECSPI Master Mode Timing

Figure 41 depicts the timing of ECSPI in master mode and Table 51 lists the ECSPI master mode timing characteristics.

Note: ECSPIx_MOSI is always driven (not tri-stated) between actual data transmissions. This limits the ECSPI to be connected between a single master and a single slave.

Figure 41. ECSPI Master Mode Timing Diagram

ID	Parameter	Symbol	Min	Max	Unit
CS1	ECSPIx_SCLK Cycle Time-Read	t _{clk}		—	ns
	• Slow group'		55		
	Fast group Sci K Cuelo Timo, Write		40		
			15		
CS2	ECSPIx_SCLK High or Low Time-Read	t _{SW}		—	ns
	• Slow group		26		
	• Fast group ²		20		
	ECSPIx_SCLK High or Low Time–Write		7		
CS3	ECSPIx_SCLK Rise or Fall ³	t _{RISE/FALL}	—	—	ns
CS4	ECSPIx_SSx pulse width	t _{CSLH}	Half ECSPIx_SCLK period	—	ns
CS5	ECSPIx_SSx Lead Time (CS setup time)	t _{SCS}	Half ECSPIx_SCLK period - 4	—	ns
CS6	ECSPIx_SSx Lag Time (CS hold time)	t _{HCS}	Half ECSPIx_SCLK period - 2	—	ns
CS7	ECSPIx_MOSI Propagation Delay (C _{LOAD} = 20 pF)	t _{PDmosi}	-1	1	ns
CS8	ECSPIx_MISO Setup Time	t _{Smiso}		—	ns
	• Slow group ¹		21.5		
	• Fast group ²		16		
CS9	ECSPIx_MISO Hold Time	t _{Hmiso}	0	—	ns
CS10	ECSPIx_RDY to ECSPIx_SSx Time ⁴	t _{SDRY}	5	—	ns

Table 51. ECSPI Master Mode Timing Parameters

¹ ECSPI slow includes:

ECSPI1/DISP0_DAT22, ECSPI1/KEY_COL1, ECSPI1/CSI0_DAT6, ECSPI2/EIM_OE, ECSPI2/ECSPI2/CSI0_DAT10, ECSPI3/DISP0_DAT2

² ECSPI fast includes:

ECSPI1/EIM_D17, ECSPI4/EIM_D22, ECSPI5/SD2_DAT0, ECSPI5/SD1_DAT0

³ See specific I/O AC parameters Section 4.7, "I/O AC Parameters."

⁴ ECSPI_RDY is sampled internally by ipg_clk and is asynchronous to all other CSPI signals.

Power-up time for the HDMI 3D Tx PHY while operating with the fastest input reference clock supported (340 MHz) is 133 μ s.

4.11.7.2 Electrical Characteristics

The table below provides electrical characteristics for the HDMI 3D Tx PHY. The following three figures illustrate various definitions and measurement conditions specified in the table below.

Figure 56. Driver Measuring Conditions

Figure 57. Driver Definitions

Figure 58. Source Termination

Table 63. Electrical Characteristics

Symbol	Parameter	Condition	Min	Тур	Max	Unit
	Operating conditions for HDMI					
avddtmds	Termination supply voltage	—	3.15	3.3	3.45	V

Symbol	Parameter	Condition	Min	Тур	Мах	Unit
R _T	Termination resistance	_	45	50	55	Ω
	T	MDS drivers DC specifications				
V _{OFF}	Single-ended standby voltage	$RT = 50 \Omega$	avddt	mds ± [·]	10 mV	mV
V _{SWING}	Single-ended output swing voltage	For measurement conditions and definitions, see the first two figures above. Compliance point TP1 as defined in the HDMI specification, version 1.3a, section 4.2.4.	400	_	600	mV
V _H	Single-ended output high voltage For definition, see the second	ge If attached sink supports TMDSCLK < avddtmds ± 10 mV			mV	
	figure above.	If attached sink supports TMDSCLK > 165 MHz	avddtmds – 200 mV	—	avddtmds + 10 mV	mV
VL	Single-ended output low voltage For definition, see the second	If attached sink supports TMDSCLK < or = 165 MHz	avddtmds – 600 mV	—	avddtmds - 400mV	mV
	ngure above.	If attached sink supports TMDSCLK > 165 MHz	avddtmds – 700 mV	—	avddtmds - 400 mV	mV
R _{term}	Differential source termination load (inside HDMI 3D Tx PHY) Although the HDMI 3D Tx PHY includes differential source termination, the user-defined value is set for each single line (for illustration, see the third figure above). Note: R _{TERM} can also be configured to be open and not present on TMDS channels.		50		200	Ω
		Hot plug detect specifications				
HPD ^{VH}	Hot plug detect high range	—	2.0		5.3	V
VHPD	Hot plug detect low range	_	0		0.8	V
HPD	Hot plug detect input impedance	_	10		_	kΩ
HPD t	Hot plug detect time delay				100	μs

Table 63. Electrical Characteristics (continued)

4.11.8 Switching Characteristics

Table 64 describes switching characteristics for the HDMI 3D Tx PHY. Figure 59 to Figure 63 illustrate various parameters specified in table.

NOTE

All dynamic parameters related to the TMDS line drivers' performance imply the use of assembly guidelines.

Figure 59. TMDS Clock Signal Definitions

Figure 60. Eye Diagram Mask Definition for HDMI Driver Signal Specification at TP1

Figure 61. Intra-Pair Skew Definition

п	Parameter	Standa	ard Mode	Fast Mo	Unit	
	Falameter	Min	Мах	Min	Max	Onit
IC9	Bus free time between a STOP and START condition	4.7	—	1.3		μs
IC10	Rise time of both I2Cx_SDA and I2Cx_SCL signals	_	1000	$20 + 0.1 C_b^4$	300	ns
IC11	Fall time of both I2Cx_SDA and I2Cx_SCL signals	—	300	$20 + 0.1 C_b^4$	300	ns
IC12	Capacitive load for each bus line (C _b)	—	400	—	400	pF

Table 65. I²C Module Timing Parameters (continued)

¹ A device must internally provide a hold time of at least 300 ns for I2Cx_SDA signal to bridge the undefined region of the falling edge of I2Cx_SCL.

² The maximum hold time has only to be met if the device does not stretch the LOW period (ID no IC5) of the I2Cx_SCL signal.

³ A Fast-mode I2C-bus device can be used in a Standard-mode I2C-bus system, but the requirement of Set-up time (ID No IC7) of 250 ns must be met. This automatically is the case if the device does not stretch the LOW period of the I2Cx_SCL signal. If such a device does stretch the LOW period of the I2Cx_SCL signal, it must output the next data bit to the I2Cx_SDA line max_rise_time (IC9) + data_setup_time (IC7) = 1000 + 250 = 1250 ns (according to the Standard-mode I2C-bus specification) before the I2Cx_SCL line is released.

⁴ C_{b} = total capacitance of one bus line in pF.

4.11.10 Image Processing Unit (IPU) Module Parameters

The purpose of the IPU is to provide comprehensive support for the flow of data from an image sensor and/or to a display device. This support covers all aspects of these activities:

- Connectivity to relevant devices—cameras, displays, graphics accelerators, and TV encoders.
- Related image processing and manipulation: sensor image signal processing, display processing, image conversions, and other related functions.
- Synchronization and control capabilities, such as avoidance of tearing artifacts.

- ² The MSB bits are duplicated on LSB bits implementing color extension.
- ³ The two MSB bits are duplicated on LSB bits implementing color extension.
- ⁴ YCbCr, 8 bits—Supported within the BT.656 protocol (sync embedded within the data stream).
- ⁵ RGB, 16 bits—Supported in two ways: (1) As a "generic data" input—with no on-the-fly processing; (2) With on-the-fly processing, but only under some restrictions on the control protocol.
- ⁶ YCbCr, 16 bits—Supported as a "generic-data" input—with no on-the-fly processing.
- ⁷ YCbCr, 16 bits—Supported as a sub-case of the YCbCr, 20 bits, under the same conditions (BT.1120 protocol).
- ⁸ YCbCr, 20 bits—Supported only within the BT.1120 protocol (syncs embedded within the data stream).

4.11.10.2 Sensor Interface Timings

There are three camera timing modes supported by the IPU.

4.11.10.2.1 BT.656 and BT.1120 Video Mode

Smart camera sensors, which include imaging processing, usually support video mode transfer. They use an embedded timing syntax to replace the IPU2_CSIx_VSYNC and IPU2_CSIx_HSYNC signals. The timing syntax is defined by the BT.656/BT.1120 standards.

This operation mode follows the recommendations of ITU BT.656/ ITU BT.1120 specifications. The only control signal used is IPU2_CSIx_PIX_CLK. Start-of-frame and active-line signals are embedded in the data stream. An active line starts with a SAV code and ends with a EAV code. In some cases, digital blanking is inserted in between EAV and SAV code. The CSI decodes and filters out the timing-coding from the data stream, thus recovering IPU2_CSIx_VSYNC and IPU2_CSIx_HSYNC signals for internal use. On BT.656 one component per cycle is received over the IPU2_CSIx_DATA_EN bus. On BT.1120 two components per cycle are received over the IPU2_CSIx_DATA_EN bus.

4.11.10.2.2 Gated Clock Mode

The IPU2_CSIx_VSYNC, IPU2_CSIx_HSYNC, and IPU2_CSIx_PIX_CLK signals are used in this mode. See Figure 65.

Figure 65. Gated Clock Mode Timing Diagram

A frame starts with a rising edge on IPU2_CSIx_VSYNC (all the timings correspond to straight polarity of the corresponding signals). Then IPU2_CSIx_HSYNC goes to high and hold for the entire line. Pixel clock is valid as long as IPU2_CSIx_HSYNC is high. Data is latched at the rising edge of the valid pixel clocks. IPU2_CSIx_HSYNC goes to low at the end of line. Pixel clocks then become invalid and the CSI

i.MX 6Dual/6Quad											
	RGB,	R	GB/TV	Signal A	Allocation	Comment ^{1,2}					
Port Name (x = 0, 1)	Signal Name (General)	16-bit RGB	18-bit RGB	24 Bit RGB	8-bit YCrCb ³	16-bit YCrCb	20-bit YCrCb				
IPUx_DIx_D0_CS			•	—							
IPUx_DIx_D1_CS				Alternate mode of PWM output for contrast or brightness control							
IPUx_DIx_PIN11								—			
IPUx_DIx_PIN12				_				—			
IPUx_DIx_PIN13				_				Register select signal			
IPUx_DIx_PIN14				—				Optional RS2			
IPUx_DIx_PIN15			[ORDY/D	V			Data validation/blank, data enable			
IPUx_DIx_PIN16				_				Additional data synchronous			
IPUx_DIx_PIN17				Q				signals with programmable features/timing			

Table 68. Video Signal Cross-Reference (continued)

¹ Signal mapping (both data and control/synchronization) is flexible. The table provides examples.

² Restrictions for ports IPUx_DISPx_DAT00 through IPUx_DISPx_DAT23 are as follows:

• A maximum of three continuous groups of bits can be independently mapped to the external bus. Groups must not overlap.

• The bit order is expressed in each of the bit groups, for example, B[0] = least significant blue pixel bit.

³ This mode works in compliance with recommendation ITU-R BT.656. The timing reference signals (frame start, frame end, line start, and line end) are embedded in the 8-bit data bus. Only video data is supported, transmission of non-video related data during blanking intervals is not supported.

NOTE

Table 68 provides information for both the DISP0 and DISP1 ports. However, DISP1 port has reduced pinout depending on IOMUXC configuration and therefore may not support all configurations. See the IOMUXC table for details.

4.11.10.5 IPU Display Interface Timing

The IPU Display Interface supports two kinds of display accesses: synchronous and asynchronous. There are two groups of external interface pins to provide synchronous and asynchronous controls.

4.11.10.5.1 Synchronous Controls

The synchronous control changes its value as a function of a system or of an external clock. This control has a permanent period and a permanent waveform.

There are special physical outputs to provide synchronous controls:

• The ipp_disp_clk is a dedicated base synchronous signal that is used to generate a base display (component, pixel) clock for a display.

4.11.12.4 Possible \triangle VCMTX and \triangle VOD Distortions of the Single-ended HS Signals

Figure 74. Possible \triangle VCMTX and \triangle VOD Distortions of the Single-ended HS Signals

4.11.12.5 D-PHY Switching Characteristics

Symbol	Parameters	Test Conditions	Min	Тур	Max	Unit
	HS Line Driv				•	
_	Maximum serial data rate (forward direction)	On DATAP/N outputs. 80 $\Omega \leq RL \leq 125 \Omega$	80	_	1000	Mbps
F _{DDRCLK}	DDR CLK frequency	On DATAP/N outputs.	40		500	MHz
P _{DDRCLK}	DDR CLK period	80 Ω <= RL< = 125 Ω	2	_	25	ns
t _{CDC}	DDR CLK duty cycle	$t_{CDC} = t_{CPH} / P_{DDRCLK}$	_	50	—	%
t _{CPH}	DDR CLK high time	—	_	1	—	UI
t _{CPL}	DDR CLK low time	—	_	1	—	UI
_	DDR CLK / DATA Jitter	—	_	75	—	ps pk-pk
t _{SKEW[PN]}	Intra-Pair (Pulse) skew	—	_	0.075	—	UI
t _{SKEW[TX]}	Data to Clock Skew	—	0.350	_	0.650	UI
t _r	Differential output signal rise time	20% to 80%, RL = 50 Ω	150	_	0.3UI	ps
t _f	Differential output signal fall time	20% to 80%, RL = 50 Ω	150	_	0.3UI	ps
ΔV _{CMTX(HF)}	Common level variation above 450 MHz	80 Ω<= RL< = 125 Ω	_	_	15	mV _{rms}
ΔV _{CMTX(LF)}	Common level variation between 50 MHz and 450 MHz	80 Ω<= RL< = 125 Ω	_	_	25	mV _p

Table 73. Electrical and Timing Information

Symbol	Parameters	Test Conditions	Min	Тур	Max	Unit							
	LP Line Drive	ers AC Specifications				•							
t _{rlp} ,t _{flp}	Single ended output rise/fall time	15% to 85%, C _L <70 pF		—	25	ns							
t _{reo}	_	30% to 85%, C _L <70 pF			35	ns							
$\delta V/\delta t_{SR}$	Signal slew rate	15% to 85%, C _L <70 pF	_	_	120	mV/ns							
CL	Load capacitance	—	0	_	70	pF							
HS Line Receiver AC Specifications													
t _{SETUP[RX]}	Data to Clock Receiver Setup time	0.15	_	_	UI								
t _{HOLD[RX]}	Clock to Data Receiver Hold time	_	0.15			UI							
ΔV _{CMRX(HF)}	Common mode interference beyond 450 MHz	_	_	_	200	mVpp							
$\Delta V_{CMRX(LF)}$	Common mode interference between 50 MHz and 450 MHz	_	-50	_	50	mVpp							
C _{CM}	Common mode termination	_	_	—	60	pF							
	LP Line Rece	iver AC Specifications											
e _{SPIKE}	—	300	Vps										
T _{MIN}	Minimum pulse response	—	50	_		ns							
V _{INT}	Pk-to-Pk interference voltage	—	_	_	400	mV							
f _{INT}	Interference frequency	—	450	_		MHz							
	Model Parameters used for Drive	r Load switching perform	ance eval	uation		•							
C _{PAD}	Equivalent Single ended I/O PAD capacitance.	_	_	—	1	pF							
C _{PIN}	Equivalent Single ended Package + PCB capacitance.	_	_	—	2	pF							
L _S	Equivalent wire bond series inductance	—		—	1.5	nH							
R _S	Equivalent wire bond series resistance	—		—	0.15	Ω							
RL	Load Resistance	—	80	100	125	Ω							

Table 73. Electrical and Timing Information (continued)

4.11.12.9 Low-Power Receiver Timing

4.11.13 HSI Host Controller Timing Parameters

This section describes the timing parameters of the HSI Host Controller which are compliant with High-Speed Synchronous Serial Interface (HSI) Physical Layer specification version 1.01.

4.11.13.1 Synchronous Data Flow

Figure 79. Synchronized Data Flow READY Signal Timing (Frame and Stream Transmission)

4.11.13.2 Pipelined Data Flow

Figure 80. Pipelined Data Flow READY Signal Timing (Frame Transmission Mode)

4.11.13.3 Receiver Real-Time Data Flow

Figure 82. Synchronized Data Flow Transmission with WAKE

4.11.13.5 Stream Transmission Mode Frame Transfer

Package Information and Contact Assignments

Supply Rail Name	Ball(s) Position(s)	Remark
NVCC_NANDF	G15	Supply of the RAW NAND Flash Memories interface
NVCC_PLL_OUT	E8	_
NVCC_RGMII	G18	Supply of the ENET interface
NVCC_SD1	G16	Supply of the SD card interface
NVCC_SD2	G17	Supply of the SD card interface
NVCC_SD3	G14	Supply of the SD card interface
PCIE_VP	H7	_
PCIE_REXT	A2	_
PCIE_VPH	G7	PCI PHY supply
PCIE_VPTX	G8	PCI PHY supply
SATA_REXT	C14	_
SATA_VP	G13	_
SATA_VPH	G12	-
USB_H1_VBUS	D10	_
USB_OTG_VBUS	E9	-
VDD_CACHE_CAP	N12	Cache supply input. This input should be connected to (driven by) VDD_SOC_CAP. The external capacitor used for VDD_SOC_CAP is sufficient for this supply.
VDD_FA	B5	_
VDD_SNVS_CAP	G9	Secondary supply for the SNVS (internal regulator output—requires capacitor if internal regulator is used)
VDD_SNVS_IN	G11	Primary supply for the SNVS regulator
VDDARM_CAP	H13, J13, K13, L13, M13, N13, P13, R13	Secondary supply for the ARM0 and ARM1 cores (internal regulator output—requires capacitor if internal regulator is used)
VDDARM_IN	H14, J14, K14, L14, M14, N14, P14, R14	Primary supply for the ARM0 and ARM1 core regulator
VDDARM23_CAP	H11, J11, K11, L11, M11, N11, P11, R11	Secondary supply for the ARM2 and ARM3 cores (internal regulator output—requires capacitor if internal regulator is used)
VDDARM23_IN	K9, L9, M9, N9, P9, R9, T9, U9	Primary supply for the ARM2 and ARM3 core regulator

Table 99. 2	21 x 21 mm	Supplies	Contact Assig	gnment ((continued)
-------------	------------	----------	---------------	----------	-------------

Package Information and Contact Assignments

	1	2	З	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
ш	CSI_D2M	CSI_D2P	CSI_D0P	CSI_D0M	GND	GND	GND	NVCC_PLL_OUT	USB_OTG_VBUS	USB_H1_DP	TAMPER	TEST_MODE	SD3_DAT6	SD3_DAT0	NANDF_WP_B	SD4_CLK	NANDF_D6	SD4_DAT4	SD1_DAT2	SD2_DAT1	RGMII_TD2	EIM_EB2	EIM_D22	EIM_D26	EIM_D27
Ŀ	CSI_D3P	CSI_D3M	CSI_CLK0P	CSI_CLK0M	GND	GND	GND	GND	VDDUSB_CAP	USB_H1_DN	PMIC_STBY_REQ	BOOT_MODE1	SD3_DAT7	SD3_DAT1	NANDF_CS0	NANDF_D2	SD4_DAT2	SD1_DAT3	SD2_CMD	RGMII_TD1	EIM_D17	EIM_D24	EIM_EB3	EIM_A22	EIM_A24
IJ	DSI_DOP	DSI_DOM	GND	DSI_REXT	JTAG_TDI	JTAG_TDO	PCIE_VPH	PCIE_VPTX	VDD_SNVS_CAP	GND	VDD_SNVS_IN	SATA_VPH	SATA_VP	NVCC_SD3	NVCC_NANDF	NVCC_SD1	NVCC_SD2	NVCC_RGMII	GND	EIM_D20	EIM_D19	EIM_D25	EIM_D28	EIM_A17	EIM_A19
т	DSI_D1P	DSI_D1M	DSI_CLK0M	DSI_CLK0P	JTAG_TCK	JTAG_MOD	PCIE_VP	GND	VDDHIGH_IN	VDDHIGH_CAP	VDDARM23_CAP	GND	VDDARM_CAP	VDDARM_IN	GND	VDDSOC_IN	VDDPU_CAP	GND	EIM_A25	EIM_D21	EIM_D31	EIM_A20	EIM_A21	EIM_CS0	EIM_A16
ر	HDMI_REF	GND	HDMI_D1M	HDMI_D1P	HDMI_CLKM	HDMI_CLKP	NVCC_JTAG	GND	VDDHIGH_IN	VDDHIGH_CAP	VDDARM23_CAP	GND	VDDARM_CAP	VDDARM_IN	GND	VDDSOC_IN	VDDPU_CAP	GND	EIM_D29	EIM_D30	EIM_A23	EIM_A18	EIM_CS1	EIM_OE	EIM_DA1
×	HDMI_HPD	HDMI_DDCCEC	HDMI_D2M	HDMI_D2P	HDMI_DOM	HDMI_D0P	NVCC_MIPI	GND	VDDARM23_IN	GND	VDDARM23_CAP	GND	VDDARM_CAP	VDDARM_IN	GND	VDDSOC_IN	VDDPU_CAP	GND	NVCC_EIMO	EIM_RW	EIM_EBO	EIM_LBA	EIM_EB1	EIM_DA3	EIM_DA6
_	CSI0_DAT13	GND	CSI0_DAT17	CSI0_DAT16	GND	CSI0_DAT19	HDMI_VP	GND	VDDARM23_IN	GND	VDDARM23_CAP	GND	VDDARM_CAP	VDDARM_IN	GND	VDDSOC_IN	VDDPU_CAP	GND	NVCC_EIM1	EIM_DA0	EIM_DA2	EIM_DA4	EIM_DA5	EIM_DA8	EIM_DA7

Table 102. 21 x 21 mm, 0.8 mm Pitch Ball Map (continued)