E·XFL

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Details	
Product Status	Not For New Designs
Core Processor	ARM® Cortex®-A9
Number of Cores/Bus Width	4 Core, 32-Bit
Speed	1.0GHz
Co-Processors/DSP	Multimedia; NEON™ SIMD
RAM Controllers	LPDDR2, LVDDR3, DDR3
Graphics Acceleration	Yes
Display & Interface Controllers	Keypad, LCD
Ethernet	10/100/1000Mbps (1)
SATA	SATA 3Gbps (1)
USB	USB 2.0 + PHY (4)
Voltage - I/O	1.8V, 2.5V, 2.8V, 3.3V
Operating Temperature	-40°C ~ 125°C (TJ)
Security Features	ARM TZ, Boot Security, Cryptography, RTIC, Secure Fusebox, Secure JTAG, Secure Memory, Secure RTC, Tamper Detection
Package / Case	624-FBGA, FCBGA
Supplier Device Package	624-FCBGA (21x21)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mcimx6q6avt10acr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.1 Ordering Information

Table 1 shows examples of orderable part numbers covered by this data sheet. This table does not include all possible orderable part numbers. The latest part numbers are available on freescale.com/imx6series. If your desired part number is not listed in the table, or you have questions about available parts, see freescale.com/imx6series or contact your Freescale representative.

Part Number	Quad/Dual CPU	Options	Speed ¹ Grade	Temperature Grade	Package
MCIMX6Q6AVT10AC	i.MX 6Quad	With VPU, GPU	1 GHz	Automotive	21 mm x 21 mm, 0.8 mm pitch, FCPBGA (lidded)
MCIMX6Q6AVT10AD	i.MX 6Quad	With VPU, GPU	1 GHz	Automotive	21 mm x 21 mm, 0.8 mm pitch, FCPBGA (lidded)
MCIMX6Q4AVT10AC	i.MX 6Quad	With GPU, no VPU	1 GHz	Automotive	21 mm x 21 mm, 0.8 mm pitch, FCPBGA (lidded)
MCIMX6Q4AVT10AD	i.MX 6Quad	With GPU, no VPU	1 GHz	Automotive	21 mm x 21 mm, 0.8 mm pitch, FCPBGA (lidded)
MCIMX6Q6AVT08AC	i.MX 6Quad	With VPU, GPU	852 MHz	Automotive	21 mm x 21 mm, 0.8 mm pitch, FCPBGA (lidded)
MCIMX6Q6AVT08AD	i.MX 6Quad	With VPU, GPU	852 MHz	Automotive	21 mm x 21 mm, 0.8 mm pitch, FCPBGA (lidded)
MCIMX6Q4AVT08AC	i.MX 6Quad	With GPU, no VPU	852 MHz	Automotive	21 mm x 21 mm, 0.8 mm pitch, FCPBGA (lidded)
MCIMX6Q4AVT08AD	i.MX 6Quad	With GPU, no VPU	852 MHz	Automotive	21 mm x 21 mm, 0.8 mm pitch, FCPBGA (lidded)
MCIMX6D6AVT10AC	i.MX 6Dual	With VPU, GPU	1 GHz	Automotive	21 mm x 21 mm, 0.8 mm pitch, FCPBGA (lidded)
MCIMX6D6AVT10AD	i.MX 6Dual	With VPU, GPU	1 GHz	Automotive	21 mm x 21 mm, 0.8 mm pitch, FCPBGA (lidded)
MCIMX6D4AVT10AC	i.MX 6Dual	With GPU, no VPU	1 GHz	Automotive	21 mm x 21 mm, 0.8 mm pitch, FCPBGA (lidded)
MCIMX6D4AVT10AD	i.MX 6Dual	With GPU, no VPU	1 GHz	Automotive	21 mm x 21 mm, 0.8 mm pitch, FCPBGA (lidded)
MCIMX6D6AVT08AC	i.MX 6Dual	With VPU, GPU	852 MHz	Automotive	21 mm x 21 mm, 0.8 mm pitch, FCPBGA (lidded)
MCIMX6D6AVT08AD	i.MX 6Dual	With VPU, GPU	852 MHz	Automotive	21 mm x 21 mm, 0.8 mm pitch, FCPBGA (lidded)
MCIMX6D4AVT08AC	i.MX 6Dual	With GPU, no VPU	852 MHz	Automotive1	21 mm x 21 mm, 0.8 mm pitch, FCPBGA (lidded)
MCIMX6D4AVT08AD	i.MX 6Dual	With GPU, no VPU	852 MHz	Automotive	21 mm x 21 mm, 0.8 mm pitch, FCPBGA (lidded)

Table 1. E	Example	Orderable	Part	Numbers
------------	---------	-----------	------	---------

¹ If a 24 MHz input clock is used (required for USB), the maximum SoC speed is limited to 996 MHz.

1.2 Features

The i.MX 6Dual/6Quad processors are based on ARM Cortex-A9 MPCore platform, which has the following features:

- ARM Cortex-A9 MPCore 4xCPU processor (with TrustZone[®])
- The core configuration is symmetric, where each core includes:
 - 32 KByte L1 Instruction Cache
 - 32 KByte L1 Data Cache
 - Private Timer and Watchdog
 - Cortex-A9 NEON MPE (Media Processing Engine) Co-processor

The ARM Cortex-A9 MPCore complex includes:

- General Interrupt Controller (GIC) with 128 interrupt support
- Global Timer
- Snoop Control Unit (SCU)
- 1 MB unified I/D L2 cache, shared by two/four cores
- Two Master AXI (64-bit) bus interfaces output of L2 cache
- Frequency of the core (including Neon and L1 cache) as per Table 6.
- NEON MPE coprocessor
 - SIMD Media Processing Architecture
 - NEON register file with 32x64-bit general-purpose registers
 - NEON Integer execute pipeline (ALU, Shift, MAC)
 - NEON dual, single-precision floating point execute pipeline (FADD, FMUL)
 - NEON load/store and permute pipeline

The SoC-level memory system consists of the following additional components:

- Boot ROM, including HAB (96 KB)
- Internal multimedia / shared, fast access RAM (OCRAM, 256 KB)
- Secure/non-secure RAM (16 KB)
- External memory interfaces:
 - 16-bit, 32-bit, and 64-bit DDR3-1066, LVDDR3-1066, and 1/2 LPDDR2-1066 channels, supporting DDR interleaving mode, for 2x32 LPDDR2-1066
 - 8-bit NAND-Flash, including support for Raw MLC/SLC, 2 KB, 4 KB, and 8 KB page size, BA-NAND, PBA-NAND, LBA-NAND, OneNANDTM and others. BCH ECC up to 40 bit.
 - 16/32-bit NOR Flash. All EIMv2 pins are muxed on other interfaces.
 - 16/32-bit PSRAM, Cellular RAM

Each i.MX 6Dual/6Quad processor enables the following interfaces to external devices (some of them are muxed and not available simultaneously):

• Hard Disk Drives—SATA II, 3.0 Gbps

Modules List

Block Mnemonic	Block Name	Subsystem	Brief Description				
EPIT-1 EPIT-2	Enhanced Periodic Interrupt Timer	Timer Peripherals	Each EPIT is a 32-bit "set and forget" timer that starts counting after the EPIT is enabled by software. It is capable of providing precise interrupts at regular intervals with minimal processor intervention. It has a 12-bit prescaler for division of input clock frequency to get the required time setting for the interrupts to occur, and counter value can be programmed on the fly.				
ESAI	Enhanced Serial Audio Interface	Connectivity Peripherals	The Enhanced Serial Audio Interface (ESAI) provides a full-duplex serial port for serial communication with a variety of serial devices, including industry-standard codecs, SPDIF transceivers, and other processors. The ESAI consists of independent transmitter and receiver sections, each section with its own clock generator. All serial transfers are synchronized to a clock. Additional synchronization signals are used to delineate the word frames. The normal mode of operation is used to transfer data at a periodic rate, one word per period. The network mode is also intended for periodic transfers; however, it supports up to 32 words (time slots) per period. This mode can be used to build time division multiplexed (TDM) networks. In contrast, the on-demand mode is intended for non-periodic transfers of data and to transfer data serially at high speed when the data becomes available. The ESAI has 12 pins for data and clocking connection to external devices.				
FlexCAN-1 FlexCAN-2	Flexible Controller Area Network	Connectivity Peripherals	The CAN protocol was primarily, but not only, designed to be used as a vehicle serial data bus, meeting the specific requirements of this field: real-time processing, reliable operation in the Electromagnetic interference (EMI) environment of a vehicle, cost-effectiveness and required bandwidth. The FlexCAN module is a full implementation of the CAN protocol specification, Version 2.0 B, which supports both standard and extended message frames.				
GPIO-1 GPIO-2 GPIO-3 GPIO-4 GPIO-5 GPIO-6 GPIO-7	General Purpose I/O Modules	System Control Peripherals	Used for general purpose input/output to external devices. Each GPIO module supports 32 bits of I/O.				
GPMI	General Purpose Media Interface	Connectivity Peripherals	The GPMI module supports up to 8x NAND devices. 40-bit ECC encryption/decryption for NAND Flash controller (GPMI2). The GPMI supports separate DMA channels per NAND device.				
GPT	General Purpose Timer	Timer Peripherals	Each GPT is a 32-bit "free-running" or "set and forget" mode timer with programmable prescaler and compare and capture register. A timer counter value can be captured using an external event and can be configured to trigger a capture event on either the leading or trailing edges of an input pulse. When the timer is configured to operate in "set and forget" mode, it is capable of providing precise interrupts at regular intervals with minimal processor intervention. The counter has output compare logic to provide the status and interrupt at comparison. This timer can be configured to run either on an external clock or on an internal clock.				

4.1.3 Operating Ranges

Table 6 provides the operating ranges of the i.MX 6Dual/6Quad processors.

Parameter Description	Symbol	Min	Тур	Max ¹	Unit	Comment ²
Run mode: LDO enabled	VDD_ARM_IN VDD_ARM23_IN ³	1.35 ⁴	_	— 1.5		LDO Output Set Point (VDD_ARM_CAP ⁵) of 1.225 V minimum for operation up to 852 MHz or 996 MHz (depending on the device speed grade).
		1.275 ⁴	—	1.5	V	LDO Output Set Point (VDD_ARM_CAP ⁵) of 1.150 V minimum for operation up to 792 MHz.
		1.05 ⁴	—	1.5	V	LDO Output Set Point (VDD_ARM_CAP ⁵) of 0.925 V minimum for operation up to 396 MHz.
	VDD_SOC_IN ⁶	1.350 ⁴	_	1.5	V	264 MHz < VPU \leq 352 MHz; VDDSOC and VDDPU LDO outputs (VDD_SOC_CAP and VDD_PU_CAP) require 1.225 V minimum.
		1.275 ^{4,7}	—	1.5	V	VPU \leq 264 MHz; VDDSOC and VDDPU LDO outputs (VDD_SOC_CAP and VDD_PU_CAP) require 1.15 V minimum.
Run mode: LDO bypassed ⁸	VDD_ARM_IN VDD_ARM23_IN ³	1.225	—	1.3	V	LDO bypassed for operation up to 852 MHz or 996 MHz (depending on the device speed grade).
		1.150	-	1.3	V	LDO bypassed for operation up to 792 MHz.
		0.925	_	1.3	V	LDO bypassed for operation up to 396 MHz.
	VDD_SOC_IN ⁶	1.225	—	1.3	V	264 MHz < VPU ≤ 352 MHz
		1.15	_	1.3	V	VPU ≤ 264 MHz
Standby/DSM mode	VDD_ARM_IN VDD_ARM23_IN ³	0.9	-	1.3	V	See Table 9, "Stop Mode Current and Power Consumption," on page 26.
	VDD_SOC_IN	0.9	_	1.3	V	
VDD_HIGH internal regulator	VDD_HIGH_IN ⁹	2.7	—	3.3	V	Must match the range of voltages that the rechargeable backup battery supports.
Backup battery supply range	VDD_SNVS_IN ⁹	2.8	—	3.3	V	Should be supplied from the same supply as VDD_HIGH_IN, if the system does not require keeping real time and other data on OFF state.
USB supply voltages	USB_OTG_VBUS	4.4	—	5.25	V	—
	USB_H1_VBUS	4.4	_	5.25	V	-
DDR I/O supply	NVCC_DRAM	1.14	1.2	1.3	V	LPDDR2
		1.425	1.5	1.575	V	DDR3
		1.283	1.35	1.45	V	DDR3_L
Supply for RGMII I/O power group ¹⁰	NVCC_RGMII	1.15	_	2.625	V	 1.15 V – 1.30 V in HSIC 1.2 V mode 1.43 V – 1.58 V in RGMII 1.5 V mode 1.70 V – 1.90 V in RGMII 1.8 V mode 2.25 V – 2.625 V in RGMII 2.5 V mode

Table 6. Operating Ranges

Mode	Test Conditions	Supply	Typical ¹	Unit
STOP_ON	ARM LDO set to 0.9 V	VDD_ARM_IN (1.4 V)	7.5	mA
	 SoC and PU LDOs set to 1.225 V HIGH LDO set to 2.5 V 	VDD_SOC_IN (1.4 V)	22	mA
	 PLLs disabled DDR is in self refresh 	VDD_HIGH_IN (3.0 V)	3.7	mA
		Total	52	mW
STOP_OFF	ARM LDO set to 0.9 V	VDD_ARM_IN (1.4 V)	7.5	mA
	 SoC LDO set to 1.225 V PU LDO is power gated 	VDD_SOC_IN (1.4 V)	13.5	mA
	HIGH LDO set to 2.5 V PLLs disabled	VDD_HIGH_IN (3.0 V)	3.7	mA
	DDR is in self refresh	Total	41	mW
STANDBY	ARM and PU LDOs are power gated	VDD_ARM_IN (0.9 V)	0.1	mA
	 SoC LDO is in bypass HIGH LDO is set to 2.5 V PLLs are disabled Low voltage 	VDD_SOC_IN (0.9 V)	13	mA
		VDD_HIGH_IN (3.0 V)	3.7	mA
	Well Bias ON Crystal oscillator is enabled	Total	22	mW
Deep Sleep Mode	ARM and PU LDOs are power gated	VDD_ARM_IN (0.9 V)	0.1	mA
(DSM)	 SoC LDO is in bypass HIGH LDO is set to 2.5 V 	VDD_SOC_IN (0.9 V)	2	mA
	PLLs are disabledLow voltage	VDD_HIGH_IN (3.0 V)	0.5	mA
	 Well Bias ON Crystal oscillator and bandgap are disabled 	Total	3.4	mW
SNVS Only	VDD_SNVS_IN powered	VDD_SNVS_IN (2.8V)	41	μA
	All other supplies offSRTC running	Total	115	μW

Table 9. Stop Mode Current and Power Consumption (continued)

¹ The typical values shown here are for information only and are not guaranteed. These values are average values measured on a worst-case wafer at 25°C.

4.6 I/O DC Parameters

This section includes the DC parameters of the following I/O types:

- General Purpose I/O (GPIO)
- Double Data Rate I/O (DDR) for LPDDR2 and DDR3/DDR3L modes
- LVDS I/O
- MLB I/O

NOTE

The term 'OVDD' in this section refers to the associated supply rail of an input or output.

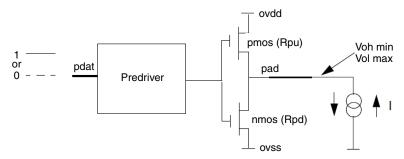


Figure 3. Circuit for Parameters Voh and Vol for I/O Cells

4.6.1 XTALI and RTC_XTALI (Clock Inputs) DC Parameters

Table 21 shows the DC parameters for the clock inputs.

Parameter	Symbol	Test Conditions	Min	Тур	Мах	Unit
XTALI high-level DC input voltage	Vih	_	0.8 x NVCC_PLL_OUT	—	NVCC_PLL_OUT	V
XTALI low-level DC input voltage	Vil	—	0	—	0.2	V
RTC_XTALI high-level DC input voltage	Vih		0.8		1.1	V
RTC_XTALI low-level DC input voltage	Vil		0		0.2	V
Input capacitance	C _{IN}	Simulated data	—	5	_	pF
Startup current		Power-on startup for 0.15msec with a driven 32KHz RTC clock @ 1.1V. This current draw is present even if an external clock source directly drives XTALI	_		600	uA
DC input current	I _{XTALI_DC}	—	—	—	2.5	uA

4.7.2 DDR I/O AC Parameters

The LPDDR2 interface mode fully complies with JESD209-2B LPDDR2 JEDEC standard release June, 2009. The DDR3/DDR3L interface mode fully complies with JESD79-3D DDR3 JEDEC standard release April, 2008.

Table 29 shows the AC parameters for DDR I/O operating in LPDDR2 mode.

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
AC input logic high	Vih(ac)	—	Vref + 0.22	_	OVDD	V
AC input logic low	Vil(ac)	_	0	_	Vref – 0.22	V
AC differential input high voltage ²	Vidh(ac)	_	0.44	_	—	V
AC differential input low voltage	Vidl(ac)	_	_		0.44	V
Input AC differential cross point voltage ³	Vix(ac)	Relative to Vref	-0.12		0.12	V
Over/undershoot peak	Vpeak	_	_	_	0.35	V
Over/undershoot area (above OVDD or below OVSS)	Varea	533 MHz	_		0.3	V-ns
Single output slew rate, measured between Vol(ac) and Voh(ac)	tsr	50 Ω to Vref. 5 pF load. Drive impedance = 4 0 $\Omega \pm 30\%$	1.5	_	3.5	V/ns
		50 Ω to Vref. 5pF load. Drive impedance = 60 $\Omega \pm 30\%$	1		2.5	
Skew between pad rise/fall asymmetry + skew caused by SSN	t _{SKD}	clk = 533 MHz	_	_	0.1	ns

Table 29.	DDR I/O	LPDDR2	Mode	AC Parame	eters ¹
-----------	---------	--------	------	-----------	--------------------

¹ Note that the JEDEC LPDDR2 specification (JESD209_2B) supersedes any specification in this document.

² Vid(ac) specifies the input differential voltage IVtr – Vcpl required for switching, where Vtr is the "true" input signal and Vcp is the "complementary" input signal. The Minimum value is equal to Vih(ac) – Vil(ac).

³ The typical value of Vix(ac) is expected to be about 0.5 × OVDD. and Vix(ac) is expected to track variation of OVDD. Vix(ac) indicates the voltage at which differential input signal must cross.

Table 30 shows the AC parameters for DDR I/O operating in DDR3/DDR3L mode.

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
AC input logic high	Vih(ac)	_	Vref + 0.175		OVDD	V
AC input logic low	Vil(ac)	_	0	_	Vref – 0.175	V
AC differential input voltage ²	Vid(ac)	_	0.35	_	—	V
Input AC differential cross point voltage ³	Vix(ac)	Relative to Vref	Vref – 0.15	_	Vref + 0.15	V
Over/undershoot peak	Vpeak	_	—	_	0.4	V
Over/undershoot area (above OVDD or below OVSS)	Varea	533 MHz	—		0.5	V-ns

ID	Parameter	Min ¹	Max ¹	Unit		
WE4	Clock rise to address valid	-0.5 × t × (k+1) - 1.25	-0.5 × t × (k+1) + 2.25	ns		
WE5	Clock rise to address invalid	0.5×t×(k+1) - 1.25	$0.5 \times t \times (k+1) + 2.25$	ns		
WE6	Clock rise to EIM_CSx_B valid	-0.5 × t × (k+1) - 1.25	-0.5×t×(k+1) + 2.25	ns		
WE7	Clock rise to EIM_CSx_B invalid	0.5 × t × (k+1) - 1.25	$0.5 \times t \times (k+1) + 2.25$	ns		
WE8	Clock rise to EIM_WE_B valid	-0.5 × t × (k+1) - 1.25	$-0.5 \times t \times (k+1) + 2.25$	ns		
WE9	Clock rise to EIM_WE_B invalid	0.5 × t × (k+1) - 1.25	$0.5 \times t \times (k+1) + 2.25$	ns		
WE10	Clock rise to EIM_OE_B valid	-0.5 × t × (k+1) - 1.25	$-0.5 \times t \times (k+1) + 2.25$	ns		
WE11	Clock rise to EIM_OE_B invalid	0.5 × t × (k+1) - 1.25	$0.5 \times t \times (k+1) + 2.25$	ns		
WE12	Clock rise to EIM_EBx_B valid	-0.5 × t × (k+1) - 1.25	$-0.5 \times t \times (k+1) + 2.25$	ns		
WE13	Clock rise to EIM_EBx_B invalid	0.5 × t × (k+1) - 1.25	$0.5 \times t \times (k+1) + 2.25$	ns		
WE14	Clock rise to EIM_LBA_B valid	-0.5 × t × (k+1) - 1.25	$-0.5 \times t \times (k+1) + 2.25$	ns		
WE15	Clock rise to EIM_LBA_B invalid	0.5×t×(k+1) - 1.25	$0.5 \times t \times (k+1) + 2.25$	ns		
WE16	Clock rise to output data valid	-0.5 × t × (k+1) - 1.25	$-0.5 \times t \times (k+1) + 2.25$	ns		
WE17	Clock rise to output data invalid	0.5×t×(k+1) - 1.25	$0.5 \times t \times (k+1) + 2.25$	ns		
WE18	Input data setup time to clock rise	2.3	—	ns		
WE19	Input data hold time from clock rise	2	—	ns		
WE20	EIM_WAIT_B setup time to clock rise	2	—	ns		
WE21	EIM_WAIT_B hold time from clock rise	2	—	ns		

Table 40. EIM Bus Timing Parameters (continued)

¹ k represents register setting BCD value. ² t is clock period (1/Freq). For 104 MHz, t = 9.165 ns.

- ² In this table:
 - t means clock period from axi_clk frequency.
 - CSA means register setting for WCSA when in write operations or RCSA when in read operations.
 - CSN means register setting for WCSN when in write operations or RCSN when in read operations.
 - ADVN means register setting for WADVN when in write operations or RADVN when in read operations.
 - ADVA means register setting for WADVA when in write operations or RADVA when in read operations.

4.9.4 DDR SDRAM Specific Parameters (DDR3/DDR3L and LPDDR2)

4.9.4.1 DDR3/DDR3L Parameters

Figure 24 shows the DDR3/DDR3L basic timing diagram. The timing parameters for this diagram appear in Table 42.

Figure 24. DDR3/DDR3L Command and Address Timing Diagram

Table 42. DDR3/DDR3L Timing Parameter

ID	Parameter ^{1,2}	Svmbol	CK = 532 MHz		Unit
	Falallet	Symbol	Min	Max	Onit
DDR1	DRAM_SDCLKx_P clock high-level width	tсн	0.47	0.53	tск
DDR2	DRAM_SDCLKx_P clock low-level width	tCL	0.47	0.53	tск

ID	Parameter ^{1,2}	Symbol	CK = 53	32 MHz	Unit
		Symbol	Min	Мах	Unit
DDR4	DRAM_CSx_B, DRAM_RAS_B, DRAM_CAS_B, DRAM_SDCKEx, DRAM_SDWE_B, DRAM_ODTx setup time	tis	500	_	ps
DDR5	DRAM_CSx_B, DRAM_RAS_B, DRAM_CAS_B, DRAM_SDCKEx, DRAM_SDWE_B, DRAM_ODTx hold time	tıH	400	_	ps
DDR6	Address output setup time	tis	500	_	ps
DDR7	Address output hold time	tıн	400		ps

Table 42. DDR3/DDR3L Timing Parameter (continued)

¹ All measurements are in reference to Vref level.

² Measurements were done using balanced load and 25 Ω resistor from outputs to DRAM_VREF.

Figure 25 shows the DDR3/DDR3L write timing diagram. The timing parameters for this diagram appear in Table 43.

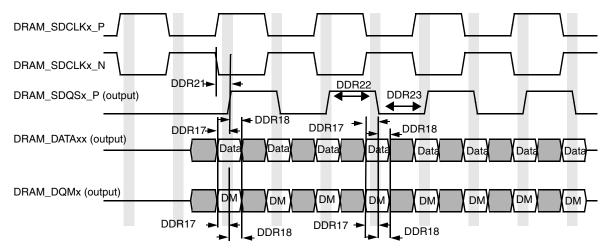


Figure 25. DDR3/DDR3L Write Cycle

Table 43. DDR3/DDR3L Write Cycle

ID	Parameter ^{1,2,3}		CK = 532 MHz		Unit
	Falameter	Symbol	Min	Max	Offic
DDR17	DRAM_DATAxx and DRAM_DQMx setup time to DRAM_SDQSx_P (differential strobe)	tDS	125 ⁴	_	ps
DDR18	DRAM_DATAxx and DRAM_DQMx hold time to DRAM_SDQSx_P (differential strobe)	tDH	150 ⁴	_	ps
DDR21	DRAM_SDQSx_P latching rising transitions to associated clock edges	tDQSS	-0.25	+0.25	tCK
DDR22	DRAM_SDQSx_P high level width	t DQSH	0.45	0.55	tCK
DDR23	DRAM_SDQSx_P low level width	tDQSL	0.45	0.55	tCK

¹ To receive the reported setup and hold values, write calibration should be performed to locate the DRAM_SDQSx_P in the middle of DRAM_DATAxx window.

² All measurements are in reference to Vref level.

 3 Measurements were taken using balanced load and 25 Ω resistor from outputs to DRAM_VREF

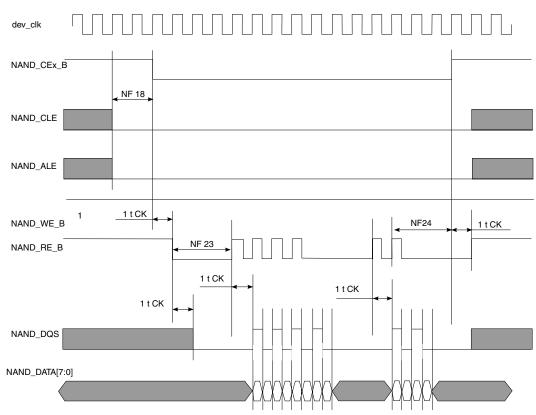


Figure 40. Samsung Toggle Mode Data Read Timing

Table 50. Samsung Toggle Mode Timing Parameters ¹								
ID	Parameter	Symbol	Timing T = GPMI Clock C	Cycle	Unit			
			Min	Max				
NF1	NAND_CLE setup time	tCLS	(AS + DS) × T - 0.12	[see ^{2,3}]	—			
NF2	NAND_CLE hold time	tCLH	DH × T - 0.72 [se	e ²]	—			
NF3	NAND_CEx_B setup time	tCS	(AS + DS) × T - 0.58	[see ^{3,2}]	—			
NF4	NAND_CEx_B hold time	tCH	DH × T - 1 [see ²]		—			
NF5	NAND_WE_B pulse width	tWP	DS × T [see ²]		—			
NF6	NAND_ALE setup time	tALS	(AS + DS) × T - 0.49	[see ^{3,2}]	—			
NF7	NAND_ALE hold time	tALH	DH × T - 0.42 [se	e ²]	—			
NF8	Command/address NAND_DATAxx setup time	tCAS	DS × T - 0.26 [se	e ²]	—			
NF9	Command/address NAND_DATAxx hold time	tCAH	DH × T - 1.37 [se	e ²]	—			
NF18	NAND_CEx_B access time	tCE	CE_DELAY × T [see ^{4,2}]	_	ns			
NF22	clock period	tCK	—	—	ns			
NF23	preamble delay	tPRE	PRE_DELAY × T [see ^{5,2}] —		ns			
NF24	postamble delay	tPOST	POST_DELAY × T +0.43 [see ²]		ns			

Fable 50. Samsung Toggle Mode Timing Parameters¹

ID	Parameter	Symbols	Min	Max	Unit	
	eSDHC Input/Card Outputs SD_CMD, SD_DATAx (Reference to SDx_CLK)					
SD7	eSDHC Input Setup Time	t _{ISU}	2.5	_	ns	
SD8	eSDHC Input Hold Time ⁴	t _{IH}	1.5	_	ns	

Table 54. SD/eMMC4.3 Interface Timing Specification (continued)

¹ In low speed mode, card clock must be lower than 400 kHz, voltage ranges from 2.7 to 3.6 V.

² In normal (full) speed mode for SD/SDIO card, clock frequency can be any value between 0–25 MHz. In high-speed mode, clock frequency can be any value between 0–50 MHz.

³ In normal (full) speed mode for MMC card, clock frequency can be any value between 0-20 MHz. In high-speed mode, clock frequency can be any value between 0-52 MHz.

⁴To satisfy hold timing, the delay difference between clock input and cmd/data input must not exceed 2 ns.

4.11.4.2 eMMC4.4/4.41 (Dual Data Rate) eSDHCv3 AC Timing

Figure 46 depicts the timing of eMMC4.4/4.41. Table 55 lists the eMMC4.4/4.41 timing characteristics. Be aware that only SDx_DATAx is sampled on both edges of the clock (not applicable to SD_CMD).

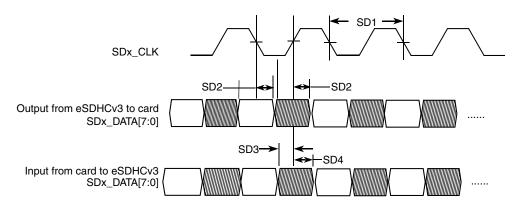


Figure 46. eMMC4.4/4.41 Timing

Table 55. eMMC4.4/4.41 Interface Timing Specification

ID	Parameter	Symbols	Min	Max	Unit					
	Card Input Clock									
SD1	Clock Frequency (EMMC4.4 DDR)	f _{PP}	0	52	MHz					
SD1	Clock Frequency (SD3.0 DDR)	f _{PP}	0	50	MHz					
	uSDHC Output / Card Inputs SD_CMD, SD_DATAx (Reference to SD_CLK)									
SD2	uSDHC Output Delay	t _{OD}	2.5	7.1	ns					
	uSDHC Input / Card Outputs SD_CMD,	SD_DATAx (Ref	erence to SI	D_CLK)						
SD3	uSDHC Input Setup Time	t _{ISU}	2.6	_	ns					
SD4	uSDHC Input Hold Time	t _{IH}	1.5	_	ns					

4.11.5.2 RMII Mode Timing

In RMII mode, ENET_CLK is used as the REF_CLK, which is a 50 MHz \pm 50 ppm continuous reference clock. ENET_RX_EN is used as the ENET_RX_EN in RMII. Other signals under RMII mode include ENET_TX_EN, ENET0_TXD[1:0], ENET_RXD[1:0] and ENET_RX_ER.

Figure 52 shows RMII mode timings. Table 61 describes the timing parameters (M16–M21) shown in the figure.

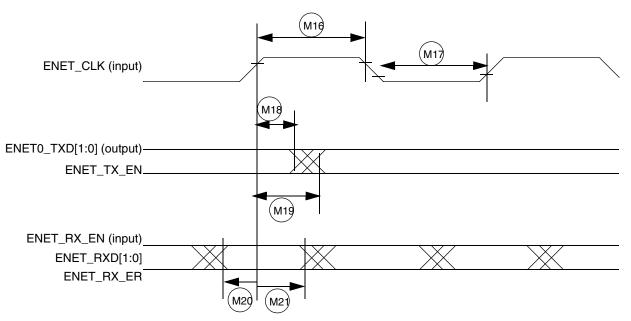


Figure 52. RMII Mode Signal Timing Diagram

Table	61	RMII	Signal	Timing
Table	U 1.	1 1 1 1 1 1 1	Jighai	rinnig

ID	Characteristic	Min	Max	Unit
M16	ENET_CLK pulse width high	35%	65%	ENET_CLK period
M17	ENET_CLK pulse width low	35%	65%	ENET_CLK period
M18	ENET_CLK to ENET0_TXD[1:0], ENET_TX_EN invalid	4	—	ns
M19	ENET_CLK to ENET0_TXD[1:0], ENET_TX_EN valid	—	13.5	ns
M20	ENET_RXD[1:0], ENET_RX_EN(ENET_RX_EN), ENET_RX_ER to ENET_CLK setup	4	_	ns
M21	ENET_CLK to ENET_RXD[1:0], ENET_RX_EN, ENET_RX_ER hold	2	—	ns

• The ipp_pin_1- ipp_pin_7 are general purpose synchronous pins, that can be used to provide HSYNC, VSYNC, DRDY or any else independent signal to a display.

The IPU has a system of internal binding counters for internal events (such as, HSYNC/VSYNC) calculation. The internal event (local start point) is synchronized with internal DI_CLK. A suitable control starts from the local start point with predefined UP and DOWN values to calculate control's changing points with half DI_CLK resolution. A full description of the counter system can be found in the IPU chapter of the i.MX 6Dual/6Quad reference manual (IMX6DQRM).

4.11.10.5.2 Asynchronous Controls

The asynchronous control is a data-oriented signal that changes its value with an output data according to additional internal flags coming with the data.

There are special physical outputs to provide asynchronous controls, as follows:

- The ipp_d0_cs and ipp_d1_cs pins are dedicated to provide chip select signals to two displays.
- The ipp_pin_11- ipp_pin_17 are general purpose asynchronous pins, that can be used to provide WR. RD, RS or any other data-oriented signal to display.

NOTE

The IPU has independent signal generators for asynchronous signals toggling. When a DI decides to put a new asynchronous data on the bus, a new internal start (local start point) is generated. The signal generators calculate predefined UP and DOWN values to change pins states with half DI_CLK resolution.

4.11.10.6 Synchronous Interfaces to Standard Active Matrix TFT LCD Panels

4.11.10.6.1 IPU Display Operating Signals

The IPU uses four control signals and data to operate a standard synchronous interface:

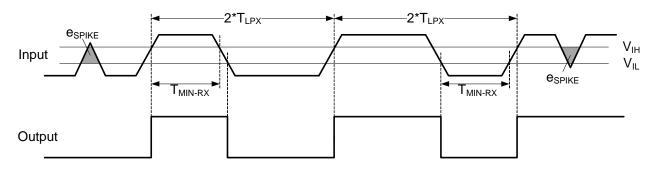
- IPP_DISP_CLK—Clock to display
- HSYNC—Horizontal synchronization
- VSYNC—Vertical synchronization
- DRDY—Active data

All synchronous display controls are generated on the base of an internally generated "local start point". The synchronous display controls can be placed on time axis with DI's offset, up and down parameters. The display access can be whole number of DI clock (Tdiclk) only. The IPP_DATA can not be moved relative to the local start point. The data bus of the synchronous interface is output direction only.

4.11.10.6.2 LCD Interface Functional Description

Figure 68 depicts the LCD interface timing for a generic active matrix color TFT panel. In this figure, signals are shown with negative polarity. The sequence of events for active matrix interface timing is:

• DI_CLK internal DI clock is used for calculation of other controls.



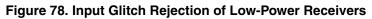

Symbol	Parameters	Test Conditions	Min	Тур	Max	Unit					
LP Line Drivers AC Specifications											
t _{rlp,} t _{flp}	Single ended output rise/fall time	15% to 85%, C _L <70 pF	—	_	25	ns					
t _{reo}	_	30% to 85%, C _L <70 pF	—	—	35	ns					
$\delta V/\delta t_{SR}$	Signal slew rate	15% to 85%, C _L <70 pF	—	—	120	mV/ns					
CL	Load capacitance	—	0	—	70	pF					
	HS Line Receiver AC Specifications										
t _{SETUP[RX]}	Data to Clock Receiver Setup time	_	0.15	_	_	UI					
t _{HOLD[RX]}	Clock to Data Receiver Hold time	—	0.15	_	—	UI					
$\Delta V_{CMRX(HF)}$	Common mode interference beyond 450 MHz	_	—	—	200	mVpp					
$\Delta V_{CMRX(LF)}$	Common mode interference between 50 MHz and 450 MHz	_	-50	—	50	mVpp					
C _{CM}	Common mode termination	—	—	—	60	pF					
	LP Line Rece	iver AC Specifications									
e _{SPIKE}	Input pulse rejection	—	_	_	300	Vps					
T _{MIN}	Minimum pulse response	—	50	—	—	ns					
V _{INT}	Pk-to-Pk interference voltage	—	—	—	400	mV					
f _{INT}	Interference frequency	—	450	—	—	MHz					
	Model Parameters used for Drive	er Load switching perform	nance eval	uation	ı	•					
C _{PAD}	Equivalent Single ended I/O PAD capacitance.	_	_	_	1	pF					
C _{PIN}	Equivalent Single ended Package + PCB capacitance.	_	—	—	2	pF					
L _S	Equivalent wire bond series inductance	—	—	—	1.5	nH					
R _S	Equivalent wire bond series resistance	—	[_	—	0.15	Ω					
RL	Load Resistance	—	80	100	125	Ω					

Table 73. Electrical and Timing Information (continued)

4.11.12.9 Low-Power Receiver Timing

4.11.13 HSI Host Controller Timing Parameters

This section describes the timing parameters of the HSI Host Controller which are compliant with High-Speed Synchronous Serial Interface (HSI) Physical Layer specification version 1.01.

4.11.13.1 Synchronous Data Flow

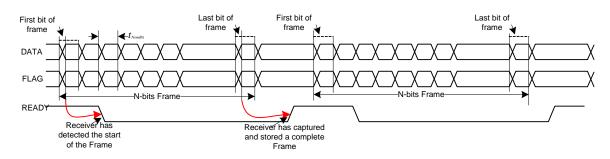


Figure 79. Synchronized Data Flow READY Signal Timing (Frame and Stream Transmission)

4.11.13.2 Pipelined Data Flow

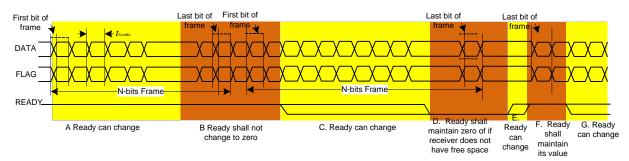
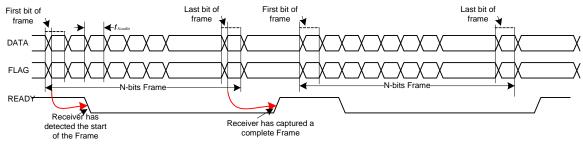



Figure 80. Pipelined Data Flow READY Signal Timing (Frame Transmission Mode)

4.11.13.3 Receiver Real-Time Data Flow

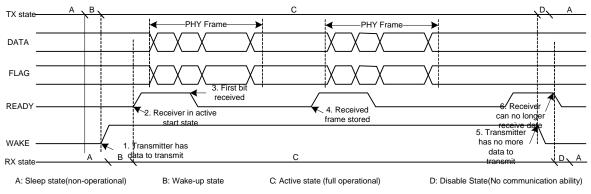
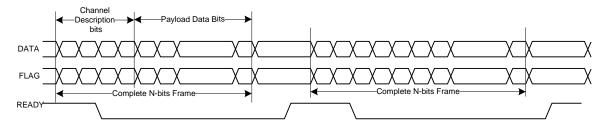



Figure 82. Synchronized Data Flow Transmission with WAKE

4.11.13.5 Stream Transmission Mode Frame Transfer

1

Parameter	Symbol	Min	Мах	Unit	Comment
Cycle-to-cycle system jitter	t _{jitter}	—	600	ps	—
Transmitter MLB_SIG_P/_N (MLB_DATA_P/_N) output valid from transition of MLB_CLK_P/_N (low-to-high) ¹	t _{delay}	0.6	1.3	ns	_
Disable turnaround time from transition of MLB_CLK_P/_N (low-to-high)	t _{phz}	0.6	3.5	ns	_
Enable turnaround time from transition of MLB_CLK_P/_N (low-to-high)	t _{plz}	0.6	5.6	ns	_
MLB_SIG_P/_N (MLB_DATA_P/_N) valid to transition of MLB_CLK_P/_N (low-to-high)	t _{su}	0.05	—	ns	_
MLB_SIG_P/_N (MLB_DATA_P/_N) hold from transition of MLB_CLK_P/_N (low-to-high) ²	t _{hd}	0.6	—	ns	_

Table 79. MLB 6-Pin Interface Timing Parameters

t_{delay}, t_{phz}, t_{plz}, t_{su}, and t_{hd} may also be referenced from a low-to-high transition of the recovered clock for 2:1 and 4:1 recovered-to-external clock ratios.

² The transmitting device must ensure valid data on MLB_SIG_P/_N (MLB_DATA_P/_N) for at least t_{hd(min)} following the rising edge of MLBCP/N; receivers must latch MLB_SIG_P/_N (MLB_DATA_P/_N) data within t_{hd(min)} of the rising edge of MLB_CLK_P/_N.

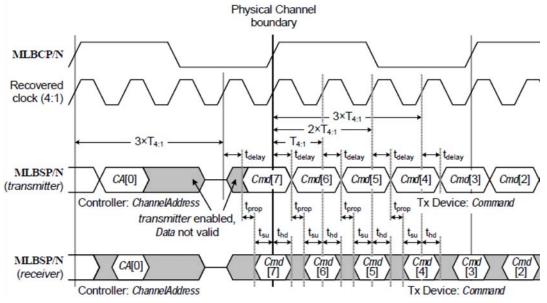


Figure 88. MLB 6-Pin Delay, Setup, and Hold Times

4.11.15 PCIe PHY Parameters

The PCIe interface complies with PCIe specification Gen2 x1 lane and supports the PCI Express 1.1/2.0 standard.

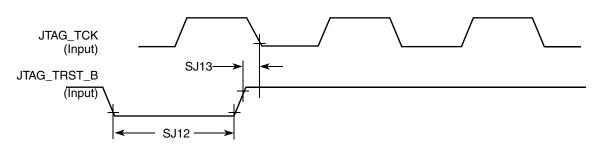


Figure 93. JTAG_TRST_B Timing Diagram

ID	Parameter ^{1,2}	All Frequencies		Unit
		Min	Мах	
SJ0	JTAG_TCK frequency of operation 1/(3xT _{DC}) ¹	0.001	22	MHz
SJ1	JTAG_TCK cycle time in crystal mode	45	_	ns
SJ2	JTAG_TCK clock pulse width measured at V_M^2	22.5	_	ns
SJ3	JTAG_TCK rise and fall times	—	3	ns
SJ4	Boundary scan input data set-up time	5	_	ns
SJ5	Boundary scan input data hold time	24	_	ns
SJ6	JTAG_TCK low to output data valid	—	40	ns
SJ7	JTAG_TCK low to output high impedance	—	40	ns
SJ8	JTAG_TMS, JTAG_TDI data set-up time	5	—	ns
SJ9	JTAG_TMS, JTAG_TDI data hold time	25	_	ns
SJ10	JTAG_TCK low to JTAG_TDO data valid	—	44	ns
SJ11	JTAG_TCK low to JTAG_TDO high impedance	—	44	ns
SJ12	JTAG_TRST_B assert time	100	—	ns
SJ13	JTAG_TRST_B set-up time to JTAG_TCK low	40	_	ns

Table 83. JTAG Timin	q
----------------------	---

T_{DC} = target frequency of SJC

² V_{M} = mid-point voltage

4.11.19 SPDIF Timing Parameters

The Sony/Philips Digital Interconnect Format (SPDIF) data is sent using the bi-phase marking code. When encoding, the SPDIF data signal is modulated by a clock that is twice the bit rate of the data signal.

Table 84 and Figure 94 and Figure 95 show SPDIF timing parameters for the Sony/Philips Digital Interconnect Format (SPDIF), including the timing of the modulating Rx clock (SPDIF_SR_CLK) for SPDIF in Rx mode and the timing of the modulating Tx clock (SPDIF_ST_CLK) for SPDIF in Tx mode.

5 Boot Mode Configuration

This section provides information on boot mode configuration pins allocation and boot devices interfaces allocation.

5.1 Boot Mode Configuration Pins

Table 97 provides boot options, functionality, fuse values, and associated pins. Several input pins are also sampled at reset and can be used to override fuse values, depending on the value of BT_FUSE_SEL fuse. The boot option pins are in effect when BT_FUSE_SEL fuse is '0' (cleared, which is the case for an unblown fuse). For detailed boot mode options configured by the boot mode pins, see the i.MX 6Dual/6Quad Fuse Map document and the System Boot chapter of the i.MX 6Dual/6Quad reference manual (IMX6DQRM).

Pin	Direction at Reset	eFuse Name				
Boot Mode Selection						
BOOT_MODE1	Input	Boot Mode Selection				
BOOT_MODE0	Input	Boot Mode Selection				
Boot Options ¹						
EIM_DA0	Input	BOOT_CFG1[0]				
EIM_DA1	Input	BOOT_CFG1[1]				
EIM_DA2	Input	BOOT_CFG1[2]				
EIM_DA3	Input	BOOT_CFG1[3]				
EIM_DA4	Input	BOOT_CFG1[4]				
EIM_DA5	Input	BOOT_CFG1[5]				
EIM_DA6	Input	BOOT_CFG1[6]				
EIM_DA7	Input	BOOT_CFG1[7]				
EIM_DA8	Input	BOOT_CFG2[0]				
EIM_DA9	Input	BOOT_CFG2[1]				
EIM_DA10	Input	BOOT_CFG2[2]				
EIM_DA11	Input	BOOT_CFG2[3]				
EIM_DA12	Input	BOOT_CFG2[4]				
EIM_DA13	Input	BOOT_CFG2[5]				
EIM_DA14	Input	BOOT_CFG2[6]				
EIM_DA15	Input	BOOT_CFG2[7]				
EIM_A16	Input	BOOT_CFG3[0]				
EIM_A17	Input	BOOT_CFG3[1]				

i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 4, 07/2015