

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Details	
Product Status	Active
Core Processor	ARM® Cortex®-A9
Number of Cores/Bus Width	4 Core, 32-Bit
Speed	1.0GHz
Co-Processors/DSP	Multimedia; NEON™ SIMD
RAM Controllers	LPDDR2, LVDDR3, DDR3
Graphics Acceleration	Yes
Display & Interface Controllers	Keypad, LCD
Ethernet	10/100/1000Mbps (1)
SATA	SATA 3Gbps (1)
USB	USB 2.0 + PHY (4)
Voltage - I/O	1.8V, 2.5V, 2.8V, 3.3V
Operating Temperature	-40°C ~ 125°C (TJ)
Security Features	ARM TZ, Boot Security, Cryptography, RTIC, Secure Fusebox, Secure JTAG, Secure Memory, Secure RTC, Tamper Detection
Package / Case	624-FBGA, FCBGA
Supplier Device Package	624-FCBGA (21x21)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mcimx6q6avt10adr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3 Modules List

The i.MX 6Dual/6Quad processors contain a variety of digital and analog modules. Table 2 describes these modules in alphabetical order.

Block Mnemonic	Block Name	Subsystem	Brief Description
512x8 Fuse Box	Electrical Fuse Array	Security	Electrical Fuse Array. Enables to setup Boot Modes, Security Levels, Security Keys, and many other system parameters. The i.MX 6Dual/6Quad processors consist of 512x8-bit fuse box accessible through OCOTP_CTRL interface.
APBH-DMA	NAND Flash and BCH ECC DMA Controller	System Control Peripherals	DMA controller used for GPMI2 operation
ARM	ARM Platform	ARM	The ARM Cortex-A9 platform consists of 4x (four) Cortex-A9 cores version r2p10 and associated sub-blocks, including Level 2 Cache Controller, SCU (Snoop Control Unit), GIC (General Interrupt Controller), private timers, Watchdog, and CoreSight debug modules.
ASRC	Asynchronous Sample Rate Converter	Multimedia Peripherals	The Asynchronous Sample Rate Converter (ASRC) converts the sampling rate of a signal associated to an input clock into a signal associated to a different output clock. The ASRC supports concurrent sample rate conversion of up to 10 channels of about -120dB THD+N. The sample rate conversion of each channel is associated to a pair of incoming and outgoing sampling rates. The ASRC supports up to three sampling rate pairs.
AUDMUX	Digital Audio Mux	Multimedia Peripherals	The AUDMUX is a programmable interconnect for voice, audio, and synchronous data routing between host serial interfaces (for example, SSI1, SSI2, and SSI3) and peripheral serial interfaces (audio and voice codecs). The AUDMUX has seven ports with identical functionality and programming models. A desired connectivity is achieved by configuring two or more AUDMUX ports.
BCH40	Binary-BCH ECC Processor	System Control Peripherals	The BCH40 module provides up to 40-bit ECC encryption/decryption for NAND Flash controller (GPMI)
CAAM	Cryptographic Accelerator and Assurance Module	Security	CAAM is a cryptographic accelerator and assurance module. CAAM implements several encryption and hashing functions, a run-time integrity checker, and a Pseudo Random Number Generator (PRNG). The pseudo random number generator is certified by Cryptographic Algorithm Validation Program (CAVP) of National Institute of Standards and Technology (NIST). Its DRBG validation number is 94 and its SHS validation number is 1455. CAAM also implements a Secure Memory mechanism. In i.MX 6Dual/6Quad processors, the security memory provided is 16 KB.
CCM GPC SRC	Clock Control Module, General Power Controller, System Reset Controller	Clocks, Resets, and Power Control	These modules are responsible for clock and reset distribution in the system, and also for the system power management.

Table 2.	i.MX	6Dual/6Quad	Modules List
----------	------	-------------	---------------------

Block Mnemonic	Block Name	Subsystem	Brief Description			
GPU2Dv2	Graphics Processing Unit-2D, ver. 2	Multimedia Peripherals	The GPU2Dv2 provides hardware acceleration for 2D graphics algorithms, such as Bit BLT, stretch BLT, and many other 2D functions.			
GPU2Dv4	Graphics Processing Unit, ver. 4	Multimedia Peripherals	The GPU2Dv4 provides hardware acceleration for 3D graphics algorithm with sufficient processor power to run desktop quality interactive graphic applications on displays up to HD1080 resolution. The GPU3D provide OpenGL ES 2.0, including extensions, OpenGL ES 1.1, and OpenVG 1			
GPUVGv2	Vector Graphics Processing Unit, ver. 2	Multimedia Peripherals	OpenVG graphics accelerator provides OpenVG 1.1 support as well as other accelerations, including Real-time hardware curve tesselation of lines, quadratic and cubic Bezier curves, 16x Line Anti-aliasing, and various Vector Drawing functions.			
HDMI Tx	HDMI Tx interface	Multimedia Peripherals	The HDMI module provides HDMI standard interface port to an HDMI 1.4 compliant display.			
HSI	MIPI HSI interface	Connectivity Peripherals	The MIPI HSI provides a standard MIPI interface to the applications processor.			
l ² C-1 l ² C-2 l ² C-3	I ² C Interface	Connectivity Peripherals	I ² C provide serial interface for external devices. Data rates of up to 400 kbps are supported.			
IOMUXC	IOMUX Control	System Control Peripherals	This module enables flexible IO multiplexing. Each IO pad has default and several alternate functions. The alternate functions are software configurable.			
IPUv3H-1 IPUv3H-2	Image Processing Unit, ver. 3H	Multimedia Peripherals	 IPUv3H enables connectivity to displays and video sources, relevant processing and synchronization and control capabilities, allowing autonomous operation. The IPUv3H supports concurrent output to two display ports and concurrent input from two camera ports, through the following interfaces: Parallel Interfaces for both display and camera Single/dual channel LVDS display interface HDMI transmitter MIPI/DSI transmitter MIPI/CSI-2 receiver The processing includes: Image conversions: resizing, rotation, inversion, and color space conversion A high-quality de-interlacing filter Video/graphics combining Image enhancement: color adjustment and gamut mapping, gamma correction, and contrast enhancement Support for display backlight reduction 			
KPP	Key Pad Port	Connectivity Peripherals	 KPP Supports 8 x 8 external key pad matrix. KPP features are: Open drain design Glitch suppression circuit design Multiple keys detection Standby key press detection 			

Block Mnemonic	Block Name	Subsystem	Brief Description
ROM 96KB	Boot ROM	Internal Memory	Supports secure and regular Boot Modes. Includes read protection on 4K region for content protection
ROMCP	ROM Controller with Patch	Data Path	ROM Controller with ROM Patch support
SATA	Serial ATA	Connectivity Peripherals	The SATA controller and PHY is a complete mixed-signal IP solution designed to implement SATA II, 3.0 Gbps HDD connectivity.
SDMA	Smart Direct Memory Access	System Control Peripherals	 The SDMA is multi-channel flexible DMA engine. It helps in maximizing system performance by off-loading the various cores in dynamic data routing. It has the following features: Powered by a 16-bit Instruction-Set micro-RISC engine Multi-channel DMA supporting up to 32 time-division multiplexed DMA channels 48 events with total flexibility to trigger any combination of channels Memory accesses including linear, FIFO, and 2D addressing Shared peripherals between ARM and SDMA Very fast context-switching with 2-level priority based preemptive multi-tasking DMA units with auto-flush and prefetch capability Flexible address management for DMA transfers (increment, decrement, and no address changes on source and destination address) DMA ports can handle unit-directional and bi-directional flows (copy mode) Up to 8-word buffer for configurable burst transfers Support of byte-swapping and CRC calculations Library of Scripts and API is available
SJC	System JTAG Controller	System Control Peripherals	The SJC provides JTAG interface, which complies with JTAG TAP standards, to internal logic. The i.MX 6Dual/6Quad processors use JTAG port for production, testing, and system debugging. In addition, the SJC provides BSR (Boundary Scan Register) standard support, which complies with IEEE1149.1 and IEEE1149.6 standards. The JTAG port must be accessible during platform initial laboratory bring-up, for manufacturing tests and troubleshooting, as well as for software debugging by authorized entities. The i.MX 6Dual/6Quad SJC incorporates three security modes for protecting against unauthorized accesses. Modes are selected through eFUSE configuration.
SNVS	Secure Non-Volatile Storage	Security	Secure Non-Volatile Storage, including Secure Real Time Clock, Security State Machine, Master Key Control, and Violation/Tamper Detection and reporting.
SPDIF	Sony Philips Digital Interconnect Format	Multimedia Peripherals	A standard audio file transfer format, developed jointly by the Sony and Phillips corporations. It supports Transmitter and Receiver functionality.

Table 2. i.MX 6Dual/6Quad Modules List (continued)

_	_				
		$\mathbf{\nabla}$			
			7		
				_	
		\mathbf{A}			

Table 2. i.MX 6Dual/6Quad Modules List (continued)
--

Block Mnemonic	Block Name	Subsystem	Brief Description	
uSDHC-1 uSDHC-2 uSDHC-4	SD/MMC and SDXC Enhanced Multi-Media Card / Secure Digital Host Controller	Connectivity Peripherals	 i.MX 6Dual/6Quad specific SoC characteristics: All four MMC/SD/SDIO controller IPs are identical and are based on the uSDHC IP. They are: Conforms to the SD Host Controller Standard Specification version 3.0 Fully compliant with MMC command/response sets and Physical Layer as defined in the Multimedia Card System Specification, v4.2/4.3/4.4/.4.1 including high-capacity (size > 2 GB) cards HC MMC. Hardware reset as specified for eMMC cards is supported at ports #3 and #4 only. Fully compliant with SD command/response sets and Physical Layer as defined in the SD Memory Card Specifications, v3.0 including high-capacity SDHC cards up to 32 GB and SDXC cards up to 2TB. Fully compliant with SDI command/response sets and interrupt/read-wait mode as defined in the SDIO Card Specification, Part E1, v1.10 Fully compliant with SD Card Specification, Part A2, SD Host Controller Standard Specification, v2.00 All four ports support: 1-bit or 4-bit transfer mode specifications for SD and SDIO cards up to UHS-I SDR104 mode (104 MB/s max) 1-bit, 4-bit, or 8-bit transfer mode specifications for MMC cards up to 52 MHz in both SDR and DDR modes (104 MB/s max) However, the SoC-level integration and I/O muxing logic restrict the functionality to the following: Instances #1 and #2 are primarily intended to serve as external slots or interfaces to on-board SDIO devices. These ports are equipped with "Card Detection" and "Write Protection" pads and do not support hardware reset. Instances #3 and #4 are primarily intended to serve interfaces to embedded MMC memory or interfaces to on-board SDIO devices. These ports do not have "Card detection" and "Write Protection" pads and do support hardware reset. All ports can work with 1.8 V and 3.3 V cards. There are two completely independent I/O power domains for Ports #1 and #2 in four bit configuration (SD interface). Port #3 is placed in his own independent power doma	
VDOA	VDOA	Multimedia Peripherals	The Video Data Order Adapter (VDOA) is used to re-order video data from the "tiled" order used by the VPU to the conventional raster-scan order needed by the IPU.	
VPU	Video Processing Unit	Multimedia Peripherals	A high-performing video processing unit (VPU), which covers many SD-level and HD-level video decoders and SD-level encoders as a multi-standard video codec engine as well as several important video processing, such as rotation and mirroring. See the i.MX 6Dual/6Quad reference manual (IMX6DQRM) for comple- list of VPU's decoding/encoding capabilities.	
WDOG-1	Watchdog	Timer Peripherals	The Watchdog Timer supports two comparison points during each counting period. Each of the comparison points is configurable to evoke an interrupt to the ARM core, and a second point evokes an external event on the WDOG line.	

Denne Ormerka	O and it is an	Maximum	Maximum Current			
Power Supply	Conditions	Power Virus	CoreMark	Unit		
i.MX 6Quad: VDD_ARM_IN + VDD_ARM23_IN	 ARM frequency = 996 MHz ARM LDOs set to 1.3V T_j = 125°C 	3920	2500	mA		
	 ARM frequency = 852 MHz ARM LDOs set to 1.3V T_j = 125°C 	3630	2260	mA		
i.MX 6Dual: VDD_ARM_IN	 ARM frequency = 996 MHz ARM LDOs set to 1.3V T_j = 125°C 	2350	1500	mA		
	 ARM frequency = 852 MHz ARM LDOs set to 1.3V T_j = 125°C 	2110	1360	mA		
i.MX 6Dual: or i.MX 6Quad: VDD_SOC_IN	• Running 3DMark • GPU frequency = 600 MHz • SOC LDO set to $1.3V$ • $T_j = 125^{\circ}C$	2500	2500			
VDD_HIGH_IN	-	125 ¹		mA		
VDD_SNVS_IN	—	275 ²	275 ²			
USB_OTG_VBUS/ USB_H1_VBUS (LDO 3P0)	-	25 ³	25 ³			
	Primary Interface (IO) Supplie	es				
NVCC_DRAM	—	(see no	(see note ⁴)			
NVCC_ENET	N=10	Use maximum I	Use maximum IO equation ⁵			
NVCC_LCD	N=29	Use maximum IO equation ⁵				
NVCC_GPIO	N=24	Use maximum I	D equation ⁵			
NVCC_CSI	N=20	Use maximum I	D equation ⁵			
NVCC_EIM0	N=19	Use maximum I				
NVCC_EIM1	N=14	Use maximum I	C equation ⁵			
NVCC_EIM2	N=20	Use maximum I	Use maximum IO equation ⁵			
NVCC_JTAG	N=6	Use maximum I	D equation ⁵			
NVCC_RGMII	N=6	Use maximum I	D equation ⁵			
NVCC_SD1	N=6	Use maximum IO equation ⁵				
NVCC_SD2	N=6	Use maximum I	D equation ⁵			
NVCC_SD3	N=11	Use maximum I	D equation ⁵			
NVCC_NANDF	N=26	Use maximum I	D equation ⁵			
NVCC_MIPI	—	25.5		mA		

Table 8. Maximum Supply Currents

4.7.1 General Purpose I/O AC Parameters

The I/O AC parameters for GPIO in slow and fast modes are presented in the Table 27 and Table 28, respectively. Note that the fast or slow I/O behavior is determined by the appropriate control bits in the IOMUXC control registers.

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Output Pad Transition Times, rise/fall (Max Drive, ipp_dse=111)	tr, tf	15 pF Cload, slow slew rate 15 pF Cload, fast slew rate	—	_	2.72/2.79 1.51/1.54	
Output Pad Transition Times, rise/fall (High Drive, ipp_dse=101)	tr, tf	15 pF Cload, slow slew rate 15 pF Cload, fast slew rate	—	_	3.20/3.36 1.96/2.07	ns
Output Pad Transition Times, rise/fall (Medium Drive, ipp_dse=100)	tr, tf	15 pF Cload, slow slew rate 15 pF Cload, fast slew rate	_	_	3.64/3.88 2.27/2.53	115
Output Pad Transition Times, rise/fall (Low Drive. ipp_dse=011)	tr, tf	15 pF Cload, slow slew rate 15 pF Cload, fast slew rate	_	_	4.32/4.50 3.16/3.17	
Input Transition Times ¹	trm	_	—	—	25	ns

Table 27. General Purpose I/O AC Parameters 1.8 V Mode

¹ Hysteresis mode is recommended for inputs with transition times greater than 25 ns.

Table 28. General Purpose I/O AC Parameters 3.3 V Mode

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Output Pad Transition Times, rise/fall (Max Drive, ipp_dse=101)	tr, tf	15 pF Cload, slow slew rate 15 pF Cload, fast slew rate	_	_	1.70/1.79 1.06/1.15	
Output Pad Transition Times, rise/fall (High Drive, ipp_dse=011)	tr, tf	15 pF Cload, slow slew rate 15 pF Cload, fast slew rate	_	_	2.35/2.43 1.74/1.77	ns
Output Pad Transition Times, rise/fall (Medium Drive, ipp_dse=010)	tr, tf	15 pF Cload, slow slew rate 15 pF Cload, fast slew rate	_	_	3.13/3.29 2.46/2.60	
Output Pad Transition Times, rise/fall (Low Drive. ipp_dse=001)	tr, tf	15 pF Cload, slow slew rate 15 pF Cload, fast slew rate	_	_	5.14/5.57 4.77/5.15	
Input Transition Times ¹	trm	_	—	—	25	ns

¹ Hysteresis mode is recommended for inputs with transition times greater than 25 ns.

4.8.2 DDR I/O Output Buffer Impedance

The LPDDR2 interface fully complies with JESD209-2B LPDDR2 JEDEC standard release June, 2009. The DDR3 interface fully complies with JESD79-3D DDR3 JEDEC standard release April, 2008.

Table 35 shows DDR I/O output buffer impedance of i.MX 6Dual/6Quad processors.

Parameter Symbol			Тур		
		Test Conditions	NVCC_DRAM=1.5 V (DDR3) DDR_SEL=11	NVCC_DRAM=1.2 V (LPDDR2) DDR_SEL=10	Unit
Output Driver Impedance	Rdrv	Drive Strength (DSE) = 000 001 010 011 100 101 110 111	Hi-Z 240 120 80 60 48 40 34	Hi-Z 240 120 80 60 48 40 34	Ω

Table 35. DDR I/O Output Buffer Impedance

Note:

1. Output driver impedance is controlled across PVTs using ZQ calibration procedure.

2. Calibration is done against 240 W external reference resistor.

3. Output driver impedance deviation (calibration accuracy) is ±5% (max/min impedance) across PVTs.

4.8.3 LVDS I/O Output Buffer Impedance

The LVDS interface complies with TIA/EIA 644-A standard. See, TIA/EIA STANDARD 644-A, "Electrical Characteristics of Low Voltage Differential Signaling (LVDS) Interface Circuits" for details.

4.8.4 MLB 6-Pin I/O Differential Output Impedance

Table 36 shows MLB 6-pin I/O differential output impedance of i.MX 6Dual/6Quad processors.

Table 36. MLB 6-Pin I/O Differential Output Impedance

Parameter	Symbol	Test Conditions	Min	Тур	Мах	Unit
Differential Output Impedance	ZO	_	1.6			kΩ

Figure 14 to Figure 17 provide few examples of basic EIM accesses to external memory devices with the timing parameters mentioned previously for specific control parameters settings.

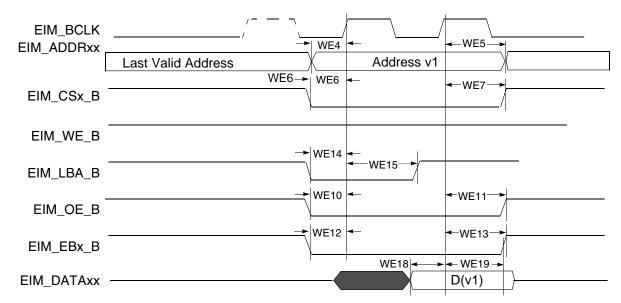


Figure 14. Synchronous Memory Read Access, WSC=1

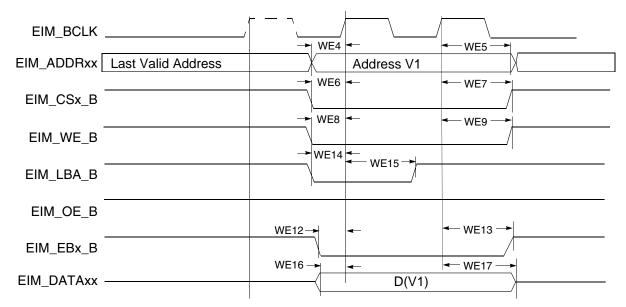
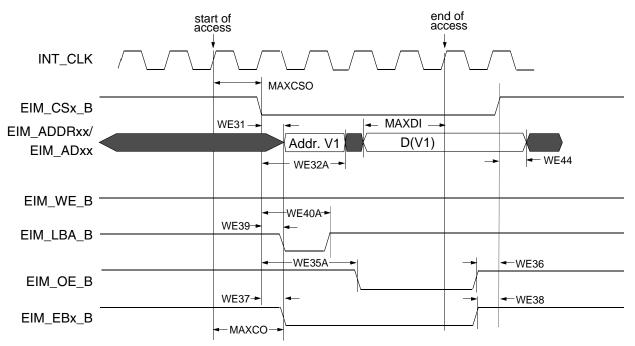



Figure 15. Synchronous Memory, Write Access, WSC=1, WBEA=0 and WADVN=0

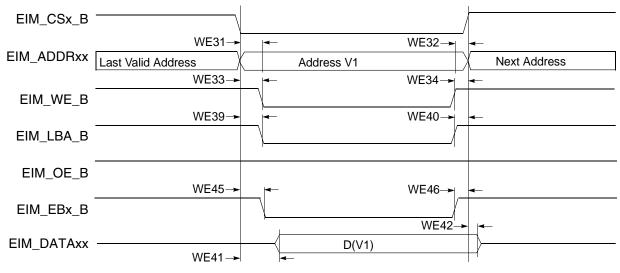


Figure 20. Asynchronous Memory Write Access

1

Electrical Characteristics

Table 48. Asynchronous Mode Timing Parameters¹ (continued)

ID	Parameter	Symbol	Timing T = GPMI Clock Cycle		Unit
			Min	Мах	
NF16	Data setup on read	tDSR	_	(DS \times T $$ -0.67)/18.38 [see $^{5,6}]$	ns
NF17	Data hold on read	tDHR	0.82/11.83 [see ^{5,6}]	—	ns

The GPMI asynchronous mode output timing can be controlled by the module's internal registers HW_GPMI_TIMING0_ADDRESS_SETUP, HW_GPMI_TIMING0_DATA_SETUP, and HW_GPMI_TIMING0_DATA_HOLD. This AC timing depends on these registers settings. In the table, AS/DS/DH represents each of these settings.

² AS minimum value can be 0, while DS/DH minimum value is 1.

³ T = GPMI clock period -0.075ns (half of maximum p-p jitter).

⁴ NF12 is met automatically by the design.

⁵ Non-EDO mode.

⁶ EDO mode, GPMI clock ≈ 100 MHz (AS=DS=DH=1, GPMI_CTL1 [RDN_DELAY] = 8, GPMI_CTL1 [HALF_PERIOD] = 0).

In EDO mode (Figure 34), NF16/NF17 are different from the definition in non-EDO mode (Figure 33). They are called tREA/tRHOH (NAND_RE_B access time/NAND_RE_B HIGH to output hold). The typical value for them are 16 ns (max for tREA)/15 ns (min for tRHOH) at 50 MB/s EDO mode. In EDO mode, GPMI will sample NAND_DATAxx at rising edge of delayed NAND_RE_B provided by an internal DPLL. The delay value can be controlled by GPMI_CTRL1.RDN_DELAY (see the GPMI chapter of the i.MX 6Dual/6Quad reference manual (IMX6DQRM)). The typical value of this control register is 0x8 at 50 MT/s EDO mode. However, if the board delay is large enough and cannot be ignored, the delay value should be made larger to compensate the board delay.

4.11.3 Enhanced Serial Audio Interface (ESAI) Timing Parameters

The ESAI consists of independent transmitter and receiver sections, each section with its own clock generator. Table 53 shows the interface timing values. The number field in the table refers to timing signals found in Figure 43 and Figure 44.

ID	Parameter ^{1,2}	Symbol	Expression ²	Min	Мах	Condition ³	Unit
62	Clock cycle ⁴	t _{SSICC}	$\begin{array}{c} 4\times T_{C} \\ 4\times T_{C} \end{array}$	30.0 30.0	—	i ck i ck	ns
63	Clock high period: • For internal clock • For external clock		$2 \times T_{c} - 9.0$ $2 \times T_{c}$	6 15	_	_	ns
64	Clock low period: • For internal clock • For external clock		$2 \times T_{c} - 9.0$ $2 \times T_{c}$	6 15			ns
65	ESAI_RX_CLK rising edge to ESAI_RX_FS out (bl) high	—	—		19.0 7.0	x ck i ck a	ns
66	ESAI_RX_CLK rising edge to ESAI_RX_FS out (bl) low	—	—		19.0 7.0	x ck i ck a	ns
67	ESAI_RX_CLK rising edge to ESAI_RX_FS out (wr) high ⁵	—	—		19.0 9.0	x ck i ck a	ns
68	ESAI_RX_CLK rising edge to ESAI_RX_FS out (wr) low ⁵	—	—		19.0 9.0	x ck i ck a	ns
69	ESAI_RX_CLK rising edge to ESAI_RX_FS out (wI) high				19.0 6.0	x ck i ck a	ns
70	ESAI_RX_CLK rising edge to ESAI_RX_FSout (wl) low	—	—		17.0 7.0	x ck i ck a	ns
71	Data in setup time before ESAI_RX_CLK (serial clock in synchronous mode) falling edge			12.0 19.0	_	x ck i ck	ns
72	Data in hold time after ESAI_RX_CLK falling edge			3.5 9.0	_	x ck i ck	ns
73	ESAI_RX_FS input (bl, wr) high before ESAI_RX_CLK falling edge ⁵	—	—	2.0 19.0	—	x ck i ck a	ns
74	ESAI_RX_FS input (wl) high before ESAI_RX_CLK falling edge	—	—	2.0 19.0	—	x ck i ck a	ns
75	ESAI_RX_FS input hold time after ESAI_RX_CLK falling edge			2.5 8.5	_	x ck i ck a	ns
78	ESAI_TX_CLK rising edge to ESAI_TX_FS out (bl) high	—	—	_	19.0 8.0	x ck i ck	ns
79	ESAI_TX_CLK rising edge to ESAI_TX_FS out (bl) low		—		20.0 10.0	x ck i ck	ns
80	ESAI_TX_CLK rising edge to ESAI_TX_FS out (wr) high ⁵		—		20.0 10.0	x ck i ck	ns

Table 53. Enhanced Serial Audio Interface (ESAI) Timing

4.11.5.2 RMII Mode Timing

In RMII mode, ENET_CLK is used as the REF_CLK, which is a 50 MHz \pm 50 ppm continuous reference clock. ENET_RX_EN is used as the ENET_RX_EN in RMII. Other signals under RMII mode include ENET_TX_EN, ENET0_TXD[1:0], ENET_RXD[1:0] and ENET_RX_ER.

Figure 52 shows RMII mode timings. Table 61 describes the timing parameters (M16–M21) shown in the figure.

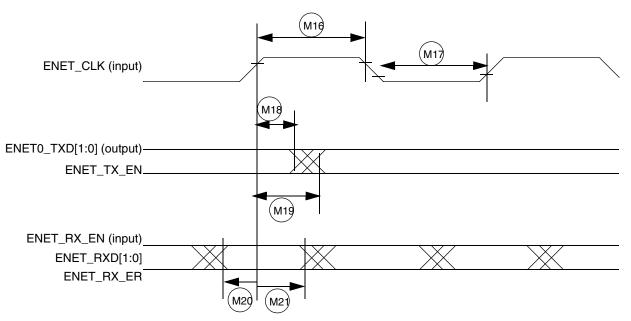
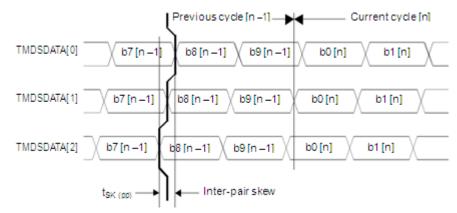
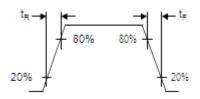



Figure 52. RMII Mode Signal Timing Diagram


Table	61	RMII	Signal	Timing
Table	U 1.	1 1 1 1 1 1 1	Jighai	rinnig

ID	Characteristic	Min	Max	Unit
M16	ENET_CLK pulse width high	35%	65%	ENET_CLK period
M17	ENET_CLK pulse width low	35%	65%	ENET_CLK period
M18	ENET_CLK to ENET0_TXD[1:0], ENET_TX_EN invalid	4	—	ns
M19	ENET_CLK to ENET0_TXD[1:0], ENET_TX_EN valid	—	13.5	ns
M20	ENET_RXD[1:0], ENET_RX_EN(ENET_RX_EN), ENET_RX_ER to ENET_CLK setup	4	_	ns
M21	ENET_CLK to ENET_RXD[1:0], ENET_RX_EN, ENET_RX_ER hold	2	—	ns

Figure 63. TMDS Output Signals Rise and Fall Time Definition

Symbol	Parameter	Min	Тур	Max	Unit	
	т					
—	— Maximum serial data rate —		_	—	3.4	Gbps
F TMDSCLK	TMDSCLK frequency	On TMDSCLKP/N outputs	25	—	340	MHz
P TMDSCLK	TMDSCLK period	RL = 50 Ω See Figure 59.	2.94	—	40	ns
t CDC	TMDSCLK duty cycle	$t_{CDC} = t_{CPH} / P_{TMDSCLK}$ RL = 50 Ω See Figure 59.	40	50	60	%
t CPH	TMDSCLK high time	RL = 50 Ω See Figure 59.	4	5	6	UI
t CPL	TMDSCLK low time	RL = 50 Ω See Figure 59.	4	5	6	UI
_	TMDSCLK jitter ¹	RL = 50 Ω	_	—	0.25	UI
t SK(p)	Intra-pair (pulse) skew	RL = 50 Ω See Figure 61.	-	_	0.15	UI
t SK(pp)	Inter-pair skew	RL = 50 Ω See Figure 62.	-	-	1	UI
t _R	Differential output signal rise time	20-80% RL = 50 Ω See Figure 63.	75	—	0.4 UI	ps

Table 64. Switching Characteristics

4.11.10.1 IPU Sensor Interface Signal Mapping

The IPU supports a number of sensor input formats. Table 66 defines the mapping of the Sensor Interface Pins used for various supported interface formats.

Signal Name ¹	RGB565 8 bits 2 cycles	RGB565 ² 8 bits 3 cycles	RGB666 ³ 8 bits 3 cycles	RGB888 8 bits 3 cycles	YCbCr ⁴ 8 bits 2 cycles	RGB565 ⁵ 16 bits 2 cycles	YCbCr ⁶ 16 bits 1 cycle	YCbCr ⁷ 16 bits 1 cycle	YCbCr ⁸ 20 bits 1 cycle
IPUx_CSIx_ DATA00	—	—	—	_		—	—	0	C[0]
IPUx_CSIx_ DATA01	—	—	_		—	_	—	0	C[1]
IPUx_CSIx_ DATA02	—	—	—	_	—	-	—	C[0]	C[2]
IPUx_CSIx_ DATA03	—	—	—	_	—	—	—	C[1]	C[3]
IPUx_CSIx_ DATA04	—	—	_	_		B[0]	C[0]	C[2]	C[4]
IPU2_CSIx_ DATA_05	—	—	_	_		B[1]	C[1]	C[3]	C[5]
IPUx_CSIx_ DATA06	—	—	—	_	_	B[2]	C[2]	C[4]	C[6]
IPUx_CSIx_ DATA07		—	_	_		B[3]	C[3]	C[5]	C[7]
IPUx_CSIx_ DATA08	_	—	_			B[4]	C[4]	C[6]	C[8]
IPUx_CSIx_ DATA09	—	—	_	_		G[0]	C[5]	C[7]	C[9]
IPUx_CSIx_ DATA10	—	—	—	_		G[1]	C[6]	0	Y[0]
IPUx_CSIx_ DATA11	—	—	_	_		G[2]	C[7]	0	Y[1]
IPUx_CSIx_ DATA12	B[0], G[3]	R[2],G[4],B[2]	R/G/B[4]	R/G/B[0]	Y/C[0]	G[3]	Y[0]	Y[0]	Y[2]
IPUx_CSIx_ DATA13	B[1], G[4]	R[3],G[5],B[3]	R/G/B[5]	R/G/B[1]	Y/C[1]	G[4]	Y[1]	Y[1]	Y[3]
IPUx_CSIx_ DATA14	B[2], G[5]	R[4],G[0],B[4]	R/G/B[0]	R/G/B[2]	Y/C[2]	G[5]	Y[2]	Y[2]	Y[4]
IPUx_CSIx_ DATA15	B[3], R[0]	R[0],G[1],B[0]	R/G/B[1]	R/G/B[3]	Y/C[3]	R[0]	Y[3]	Y[3]	Y[5]
IPUx_CSIx_ DATA16	B[4], R[1]	R[1],G[2],B[1]	R/G/B[2]	R/G/B[4]	Y/C[4]	R[1]	Y[4]	Y[4]	Y[6]
IPUx_CSIx_ DATA17	G[0], R[2]	R[2],G[3],B[2]	R/G/B[3]	R/G/B[5]	Y/C[5]	R[2]	Y[5]	Y[5]	Y[7]
IPUx_CSIx_ DATA18	G[1], R[3]	R[3],G[4],B[3]	R/G/B[4]	R/G/B[6]	Y/C[6]	R[3]	Y[6]	Y[6]	Y[8]
IPUx_CSIx_ DATA19	G[2], R[4]	R[4],G[5],B[4]	R/G/B[5]	R/G/B[7]	Y/C[7]	R[4]	Y[7]	Y[7]	Y[9]

Table 66. Camera Input Signal Cross Reference, Format, and Bits Per Cycle

¹ IPU2_CSIx stands for IPU2_CSI1 or IPU2_CSI2.

i.MX 6Dual/6Quad				LCD				
	RGB,	RGB, RGB/TV Signal Allocation (Example)						Comment ^{1,2}
Port Name (x = 0, 1)	Signal Name (General)	16-bit RGB	18-bit RGB	24 Bit RGB	8-bit YCrCb ³	16-bit YCrCb	20-bit YCrCb	
IPUx_DISPx_DAT07	DAT[7]	G[2]	G[1]	B[7]	Y/C[7]	C[7]	C[7]	_
IPUx_DISPx_DAT08	DAT[8]	G[3]	G[2]	G[0]	—	Y[0]	C[8]	_
IPUx_DISPx_DAT09	DAT[9]	G[4]	G[3]	G[1]		Y[1]	C[9]	_
IPUx_DISPx_DAT10	DAT[10]	G[5]	G[4]	G[2]	_	Y[2]	Y[0]	_
IPUx_DISPx_DAT11	DAT[11]	R[0]	G[5]	G[3]		Y[3]	Y[1]	_
IPUx_DISPx_DAT12	DAT[12]	R[1]	R[0]	G[4]		Y[4]	Y[2]	—
IPUx_DISPx_DAT13	DAT[13]	R[2]	R[1]	G[5]		Y[5]	Y[3]	
IPUx_DISPx_DAT14	DAT[14]	R[3]	R[2]	G[6]		Y[6]	Y[4]	_
IPUx_DISPx_DAT15	DAT[15]	R[4]	R[3]	G[7]		Y[7]	Y[5]	_
IPUx_DISPx_DAT16	DAT[16]	—	R[4]	R[0]			Y[6]	_
IPUx_DISPx_DAT17	DAT[17]	—	R[5]	R[1]			Y[7]	_
IPUx_DISPx_DAT18	DAT[18]			R[2]			Y[8]	_
IPUx_DISPx_DAT19	DAT[19]	—	—	R[3]			Y[9]	_
IPUx_DISPx_DAT20	DAT[20]			R[4]				_
IPUx_DISPx_DAT21	DAT[21]	—	—	R[5]				_
IPUx_DISPx_DAT22	DAT[22]	—	—	R[6]		_	—	_
IPUx_DISPx_DAT23	DAT[23]	—	—	R[7]		_	—	_
IPUx_DIx_DISP_CLK				PixCLK				_
IPUx_DIx_PIN01								May be required for anti-tearing
IPUx_DIx_PIN02				HSYNC				_
IPUx_DIx_PIN03				VSYNC				VSYNC out
IPUx_DIx_PIN04				_				Additional frame/row synchronous
IPUx_DIx_PIN05				_				signals with programmable timing
IPUx_DIx_PIN06	1							1
IPUx_DIx_PIN07				_				1
IPUx_DIx_PIN08				_				1

Table 68. Video Signal Cross-Reference (continued)

ID	Parameter	Min	Мах	Unit
	Oversampling Clock Oper	ation		
SS47	Oversampling clock period	15.04	_	ns
SS48	Oversampling clock high period	6.0	_	ns
SS49	Oversampling clock rise time	_	3.0	ns
SS50	Oversampling clock low period	6.0		ns
SS51	Oversampling clock fall time	—	3.0	ns

Table 87. SSI Receiver Timing with Internal Clock (continued)

NOTE

- All the timings for the SSI are given for a non-inverted serial clock polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync (TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting the clock signal AUDx_TXC/AUDx_RXC and/or the frame sync AUDx_TXFS/AUDx_RXFS shown in the tables and in the figures.
- All timings are on Audiomux Pads when SSI is being used for data transfer.
- AUDx_TXC and AUDx_RXC refer to the Transmit and Receive sections of the SSI.
- The terms, WL and BL, refer to Word Length (WL) and Bit Length (BL).
- For internal Frame Sync operation using external clock, the frame sync timing is same as that of transmit data (for example, during AC97 mode of operation).

Pin	Direction at Reset	eFuse Name
	Birotion at neoct	
EIM_A18	Input	BOOT_CFG3[2]
EIM_A19	Input	BOOT_CFG3[3]
EIM_A20	Input	BOOT_CFG3[4]
EIM_A21	Input	BOOT_CFG3[5]
EIM_A22	Input	BOOT_CFG3[6]
EIM_A23	Input	BOOT_CFG3[7]
EIM_A24	Input	BOOT_CFG4[0]
EIM_WAIT	Input	BOOT_CFG4[1]
EIM_LBA	Input	BOOT_CFG4[2]
EIM_EB0	Input	BOOT_CFG4[3]
EIM_EB1	Input	BOOT_CFG4[4]
EIM_RW	Input	BOOT_CFG4[5]
EIM_EB2	Input	BOOT_CFG4[6]
EIM_EB3	Input	BOOT_CFG4[7]

Table 97. Fuses and Associated Pins Used for Boot (continued)

¹ Pin value overrides fuse settings for BT_FUSE_SEL = '0'. Signal Configuration as Fuse Override Input at Power Up. These are special I/O lines that control the boot up configuration during product development. In production, the boot configuration can be controlled by fuses.

5.2 Boot Devices Interfaces Allocation

Table 98 lists the interfaces that can be used by the boot process in accordance with the specific boot mode configuration. The table also describes the interface's specific modes and IOMUXC allocation, which are configured during boot when appropriate.

Interface	IP Instance	Allocated Pads During Boot	Comment
SPI	ECSPI-1	EIM_D17, EIM_D18, EIM_D16, EIM_EB2, EIM_D19, EIM_D24, EIM_D25	_
SPI	ECSPI-2	CSI0_DAT10, CSI0_DAT9, CSI0_DAT8, CSI0_DAT11, EIM_LBA, EIM_D24, EIM_D25	_
SPI	ECSPI-3	DISP0_DAT2, DISP0_DAT1, DISP0_DAT0, DISP0_DAT3, DISP0_DAT4, DISP0_DAT5, DISP0_DAT6	_
SPI	ECSPI-4	EIM_D22, EIM_D28, EIM_D21, EIM_D20, EIM_A25, EIM_D24, EIM_D25	_
SPI	ECSPI-5	SD1_DAT0, SD1_CMD, SD1_CLK, SD1_DAT1, SD1_DAT2, SD1_DAT3, SD2_DAT3	_
EIM	EIM	EIM_DA[15:0], EIM_D[31:16], CSI0_DAT[19:4], CSI0_DATA_EN, CSI0_VSYNC	Used for NOR, OneNAND boot Only CS0 is supported

Table 98. Interfaces Allocation During Boot

Package Information and Contact Assignments

NOTES:

- 1. ALL DIMENSIONS IN MILLIMETERS.
- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
- $^{\prime}$ 3. Maximum solder ball diameter measured parallel to datum A.

A. DATUM A, THE SEATING PLANE, IS DETERMINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS.

PARALLELISM MEASUREMENT SHALL EXCLUDE ANY EFFECT OF MARK ON TOP SURFACE OF PACKAGE.

6. 21.2MM MAXIMUM PACKAGE ASSEMBLY (LID + LAMINATE) X AND Y.

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OU	TLINE	PRINT VERSION NOT TO SCALE				
TITLE: 624 I/O FC PB(DOCUME	NT NO: 98ASA00330D REV: D					
21 X 21 X 2 Pł	STANDARD: NON-JEDEC						
0.8 MM PITCH, STAM	PED LID		08 OCT 2013				

Figure 107. 21 x 21 mm Lidded Package Top, Bottom, and Side Views (Sheet 2 of 2)

				Out of Reset Condition ¹									
Ball Name	Ball	Power Group	Ball Type	Default Mode (Reset Mode)	Default Function (Signal Name)	Input/Output	Value ²						
DISP0_DAT18	V25	NVCC_LCD	GPIO	ALT5	GPIO5_IO12	Input	PU (100K)						
DISP0_DAT19	U23	NVCC_LCD	GPIO	ALT5	GPIO5_IO13	Input	PU (100K)						
DISP0_DAT2	P23	NVCC_LCD	GPIO	ALT5	GPIO4_IO23	Input	PU (100K)						
DISP0_DAT20	U22	NVCC_LCD	GPIO	ALT5	GPIO5_IO14	Input	PU (100K)						
DISP0_DAT21	T20	NVCC_LCD	GPIO	ALT5	GPIO5_IO15	Input	PU (100K)						
DISP0_DAT22	V24	NVCC_LCD	GPIO	ALT5	GPIO5_IO16	Input	PU (100K)						
DISP0_DAT23	W24	NVCC_LCD	GPIO	ALT5	GPIO5_IO17	Input	PU (100K)						
DISP0_DAT3	P21	NVCC_LCD	GPIO	ALT5	GPIO4_IO24	Input	PU (100K)						
DISP0_DAT4	P20	NVCC_LCD	GPIO	ALT5	GPIO4_IO25	Input	PU (100K)						
DISP0_DAT5	R25	NVCC_LCD	GPIO	ALT5	GPIO4_IO26	Input	PU (100K)						
DISP0_DAT6	R23	NVCC_LCD	GPIO	ALT5	GPIO4_IO27	Input	PU (100K)						
DISP0_DAT7	R24	NVCC_LCD	GPIO	ALT5	GPIO4_IO28	Input	PU (100K)						
DISP0_DAT8	R22	NVCC_LCD	GPIO	ALT5	GPIO4_IO29	Input	PU (100K)						
DISP0_DAT9	T25	NVCC_LCD	GPIO	ALT5	GPIO4_IO30	Input	PU (100K)						
DRAM_A0	AC14	NVCC_DRAM	DDR	ALT0	DRAM_ADDR00	Output	0						
DRAM_A1	AB14	NVCC_DRAM	DDR	ALT0	DRAM_ADDR01	Output	0						
DRAM_A10	AA15	NVCC_DRAM	DDR	ALT0	DRAM_ADDR10	Output	0						
DRAM_A11	AC12	NVCC_DRAM	DDR	ALT0	DRAM_ADDR11	Output	0						
DRAM_A12	AD12	NVCC_DRAM	DDR	ALT0	DRAM_ADDR12	Output	0						
DRAM_A13	AC17	NVCC_DRAM	DDR	ALT0	DRAM_ADDR13	Output	0						
DRAM_A14	AA12	NVCC_DRAM	DDR	ALT0	DRAM_ADDR14	Output	0						
DRAM_A15	Y12	NVCC_DRAM	DDR	ALT0	DRAM_ADDR15	Output	0						
DRAM_A2	AA14	NVCC_DRAM	DDR	ALT0	DRAM_ADDR02	Output	0						
DRAM_A3	Y14	NVCC_DRAM	DDR	ALT0	DRAM_ADDR03	Output	0						
DRAM_A4	W14	NVCC_DRAM	DDR	ALT0	DRAM_ADDR04	Output	0						
DRAM_A5	AE13	NVCC_DRAM	DDR	ALT0	DRAM_ADDR05	Output	0						
DRAM_A6	AC13	NVCC_DRAM	DDR	ALT0	DRAM_ADDR06	Output	0						
DRAM_A7	Y13	NVCC_DRAM	DDR	ALT0	DRAM_ADDR07	Output	0						
DRAM_A8	AB13	NVCC_DRAM	DDR	ALT0	DRAM_ADDR08	Output	0						
DRAM_A9	AE12	NVCC_DRAM	DDR	ALT0	DRAM_ADDR09	Output	0						
DRAM_CAS	AE16	NVCC_DRAM	DDR	ALT0	DRAM_CAS_B	Output	0						
DRAM_CS0	Y16	NVCC_DRAM	DDR	ALT0	DRAM_CS0_B	Output	0						
DRAM_CS1	AD17	NVCC_DRAM	DDR	ALT0	DRAM_CS1_B	Output	0						
DRAM_D0	AD2	NVCC_DRAM	DDR	ALT0	DRAM_DATA00	Input	PU (100K)						
DRAM_D1	AE2	NVCC_DRAM	DDR	ALT0	DRAM_DATA01	Input	PU (100K)						
DRAM_D10	AA6	NVCC_DRAM	DDR	ALT0	DRAM_DATA10	Input	PU (100K)						

Table 100. 21 x 21 mm Functional Contact Assignments (continued)

Package Information and Contact Assignments

Ball Name	Before Reset State									
Dali Nallie	Input/Output	Value								
EIM_EB0	Input	PD (100K)								
EIM_EB1	Input	PD (100K)								
EIM_EB2	Input	PD (100K)								
EIM_EB3	Input	PD (100K)								
EIM_LBA	Input	PD (100K)								
EIM_RW	Input	PD (100K)								
EIM_WAIT	Input	PD (100K)								
GPIO_17	Output	Drive state unknown (x)								
GPIO_19	Output	Drive state unknown (x)								
KEY_COL0	Output	Drive state unknown (x)								

Table 101. Signals with Differing Before Reset and After Reset States (continued)

6.2.3 21 x 21 mm, 0.8 mm Pitch Ball Map

Table 102 shows the FCPBGA 21 x 21 mm, 0.8 mm pitch ball map.

	1	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
A		PCIE_REXT	PCIE_TXM	GND	FA_ANA	USB_OTG_DP	XTALI	GND	MLB_SN	MLB_DP	MLB_CN	SATA_TXP	GND	SATA_RXM	SD3_DAT2	NANDF_ALE	NANDF_CS2	NANDF_D0	NANDF_D4	SD4_DAT3	SD1_DAT0	SD2_DAT0	SD2_DAT2	RGMII_TD3	GND
Ω	PCIE_RXM	PCIE_RXP	PCIE_TXP	GND	VDD_FA	USB_OTG_DN	XTALO	USB_OTG_CHD_B	MLB_SP	MLB_DN	MLB_CP	SATA_TXM	SD3_CMD	SATA_RXP	SD3_DAT3	NANDF_RB0	SD4_CMD	NANDF_D5	SD4_DAT1	SD4_DAT6	SD1_CMD	SD2_DAT3	RGMII_RD1	RGMII_RD2	RGMII_RXC
υ	GND	JTAG_TRSTB	JTAG_TMS	GND	CLK2_N	GND	CLK1_N	GPANAIO	RTC_XTALO	GND	POR_B	BOOT_MODE0	SD3_DAT5	SATA_REXT	NANDF_CLE	NANDF_CS1	NANDF_D1	NANDF_D7	SD4_DAT5	SD1_DAT1	SD2_CLK	RGMII_TD0	RGMII_TX_CTL	RGMII_RD0	EIM_D16
۵	CSI_D1M	CSI_D1P	GND	CSI_REXT	CLK2_P	GND	CLK1_P	GND	RTC_XTALI	USB_H1_VBUS	PMIC_ON_REQ	ONOFF	SD3_DAT4	SD3_CLK	SD3_RST	NANDF_CS3	NANDF_D3	SD4_DAT0	SD4_DAT7	SD1_CLK	RGMII_TXC	RGMII_RX_CTL	RGMII_RD3	EIM_D18	EIM_D23

Table 102. 21 x 21 mm, 0.8 mm Pitch Ball Map