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They are called "embedded" because they are embedded
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Applications of "Embedded -
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such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade
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The stack pointer is a 16-bit register which is always pointing to the next free location in the 
stack. It is then decremented after data has been pushed onto the stack and incremented 
before data is popped from the stack (see Figure 8).

Since the stack is 256 bytes deep, the 8 most significant bits are forced by hardware. 
Following an MCU Reset, or after a reset stack pointer instruction (RSP), the stack pointer 
contains its reset value (the SP7 to SP0 bits are set) which is the stack higher address.

The least significant byte of the stack pointer (called S) can be directly accessed by an LD 
instruction.

Note: When the lower limit is exceeded, the stack pointer wraps around to the stack upper limit, 
without indicating the stack overflow. The previously stored information is then overwritten 
and therefore lost. The stack also wraps in case of an underflow.

The stack is used to save the return address during a subroutine call and the CPU context 
during an interrupt. The user may also directly manipulate the stack by means of the PUSH 
and POP instructions. In the case of an interrupt, the PCL is stored at the first location 
pointed to by the SP. The other registers are then stored in the next locations as shown in 
Figure 8.

● When an interrupt is received, the SP is decremented and the context is pushed on the 
stack.

● On return from interrupt, the SP is incremented and the context is popped from the 
stack.

A subroutine call occupies two locations and an interrupt five locations in the stack area.

Figure 8. Stack manipulation example
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15 Serial communications interface (SCI)

15.1 Introduction
The Serial Communications Interface (SCI) offers a flexible means of full-duplex data 
exchange with external equipment requiring an industry standard NRZ asynchronous serial 
data format. The SCI offers a very wide range of baud rates using two baud rate generator 
systems.

15.2 Main features
● Full duplex, asynchronous communications

● NRZ standard format (Mark/Space)

● Dual baud rate generator systems

● Independently programmable transmit and receive baud rates up to 500K baud

● Programmable data word length (8 or 9 bits)

● Receive buffer full, Transmit buffer empty and End of Transmission flags

● 2 receiver wake-up modes:

– Address bit (MSB)

– Idle line

● Muting function for multiprocessor configurations

● Separate enable bits for Transmitter and Receiver

● 4 error detection flags:

– Overrun error

– Noise error

– Frame error

– Parity error

● 5 interrupt sources with flags: 

– Transmit data register empty

– Transmission complete

– Receive data register full

– Idle line received

– Overrun error detected

● Parity control:

– Transmits parity bit

– Checks parity of received data byte

● Reduced power consumption mode
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When an overrun error occurs: 

● The OR bit is set.

● The RDR content is not lost.

● The shift register is overwritten.

● An interrupt is generated if the RIE bit is set and the I bit is cleared in the CCR register.

The OR bit is reset by an access to the SCISR register followed by a SCIDR register read 
operation.

Noise error

Oversampling techniques are used for data recovery by discriminating between valid 
incoming data and noise. Normal data bits are considered valid if three consecutive samples 
(8th, 9th, 10th) have the same bit value, otherwise the NF flag is set. In the case of start bit 
detection, the NF flag is set on the basis of an algorithm combining both valid edge 
detection and three samples (8th, 9th, 10th). Therefore, to prevent the NF flag getting set 
during start bit reception, there should be a valid edge detection as well as three valid 
samples.

When noise is detected in a frame:

● The NF flag is set at the rising edge of the RDRF bit.

● Data is transferred from the Shift register to the SCIDR register.

● No interrupt is generated. However this bit rises at the same time as the RDRF bit 
which itself generates an interrupt.

The NF flag is reset by a SCISR register read operation followed by a SCIDR register read 
operation.

During reception, if a false start bit is detected (for example, 8th, 9th, 10th samples are 011, 
101, 110), the frame is discarded and the receiving sequence is not started for this frame. 
There is no RDRF bit set for this frame and the NF flag is set internally (not accessible to the 
user). This NF flag is accessible along with the RDRF bit when a next valid frame is 
received.

Note: If the application Start Bit is not long enough to match the above requirements, then the NF 
Flag may get set due to the short Start Bit. In this case, the NF flag may be ignored by the 
application software when the first valid byte is received.

See also Noise error causes on page 148.
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16.3.3 SDA/SCL line control

Transmitter mode

The interface holds the clock line low before transmission to wait for the microcontroller to 
write the byte in the data register.

Receiver mode

The interface holds the clock line low after reception to wait for the microcontroller to read 
the byte in the data register.

The SCL frequency (fSCL) is controlled by a programmable clock divider which depends on 
the I2C bus mode.

When the I2C cell is enabled, the SDA and SCL ports must be configured as floating inputs. 
In this case, the value of the external pull-up resistor used depends on the application.

When the I2C cell is disabled, the SDA and SCL ports revert to being standard I/O port pins.

Figure 67. I2C interface block diagram
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16.4 Functional description
Refer to the CR, SR1 and SR2 registers in Section 16.7 for the bit definitions.

By default the I2C interface operates in Slave mode (M/SL bit is cleared) except when it 
initiates a transmit or receive sequence.

First the interface frequency must be configured using the FRi bits in the OAR2 register.

16.4.1 Slave mode

As soon as a start condition is detected, the address is received from the SDA line and sent 
to the shift register; then it is compared with the address of the interface or the General Call 
address (if selected by software).

Note: In 10-bit addressing mode, the comparison includes the header sequence (11110xx0) and 
the two most significant bits of the address.

Header matched (10-bit mode only): The interface generates an acknowledge pulse if the 
ACK bit is set.

Address not matched: The interface ignores it and waits for another Start condition.

Address matched: The interface generates in sequence:

● an acknowledge pulse if the ACK bit is set

● EVF and ADSL bits are set with an interrupt if the ITE bit is set.

Then the interface waits for a read of the SR1 register, holding the SCL line low (see 
Figure 68: Transfer sequencing EV1).

Next, in 7-bit mode read the DR register to determine from the least significant bit (Data 
Direction Bit) if the slave must enter Receiver or Transmitter mode. 

In 10-bit mode, after receiving the address sequence the slave is always in receive mode. It 
will enter transmit mode on receiving a repeated Start condition followed by the header 
sequence with matching address bits and the least significant bit set (11110xx1).

Slave receiver

Following the address reception and after the SR1 register has been read, the slave 
receives bytes from the SDA line into the DR register via the internal shift register. After 
each byte the interface generates in sequence:

● an acknowledge pulse if the ACK bit is set

● EVF and BTF bits are set with an interrupt if the ITE bit is set.

Then the interface waits for a read of the SR1 register followed by a read of the DR register, 
holding the SCL line low (see Figure 68: Transfer sequencing EV2).

Slave transmitter

Following the address reception and after SR1 register has been read, the slave sends 
bytes from the DR register to the SDA line via the internal shift register.

The slave waits for a read of the SR1 register followed by a write in the DR register, holding 
the SCL line low (see Figure 68: Transfer sequencing EV3).

When the acknowledge pulse is received: 

● The EVF and BTF bits are set by hardware with an interrupt if the ITE bit is set.
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Software workaround - devices with hardware fix (ST72F521 rev “R”)

To implement a transmission abort under safe conditions, the LOCK bit must not be reset 
during the critical window (2 bit times). A new function has been implemented in the MCU 
allowing the application to synchronize the reset of the LOCK bit (abort request) with the 
reset of the TXRQST bit (internal signal) in the pCAN core.

The synchronization is done using the WKPS bit in the CANCSR register, the function of this 
bit has been modified and no more Wake-up Pulse (dominant bit) is sent on the CAN_TX 
signal when the WKPS bit is set. This means the functionality described in the datasheet is 
no longer applicable (see Section 17.5.4: WKPS functionality).

To abort the transmission, the application first sets the WKPS bit and polls it until it is set. 
The maximum time needed to set this bit is two CAN bit times. Once the application has 
read the WKPS bit as one, it can reset the LOCK bit to stop the current transmission.

The abort is completed when the LOCK bit is read back as zero by the application. Once the 
abort has been completed, the application must reset the WKPS bit to be able to transmit 
again. Of course the transmit buffer must be in LOCK state as usual before any transmission 
attempt.

The “C” code sequence below shows the software workaround using the WKPS bit.

CANCSR |= WKPS;// Set WKPS bit
while(!(CANCSR & WKPS) );// Wait until WKPS bit is set
while( CANBCSR & LOCK )// Wait until abort has been confirmed
{

CANBCSR &= ~LOCK;    
}
CANCSR &= ~WKPS;    // Allow transmission again
CANBCSR |= LOCK;        //Alloc buffer for next transmission

Software workaround - devices without hardware fix

To implement a transmission abort under safe conditions, any reset of the LOCK bit during 
the critical window (2 bit times) must be avoided. Two different cases have to be considered, 
either the pCAN enters standby mode after the abort, or the abort is performed and pCAN 
keeps running.

Abort followed by Standby mode (RUN = 0)

In this case, aborting the pending transmissions can safely be done by first entering 
Standby mode and then releasing the transmit buffers. Standby mode is entered by resetting 
the RUN bit in the CSR register and once the current transmission attempt, even if it fails 
due to error or lost arbitration, has been performed, pCAN enters Standby mode (RUN = 0). 
Once in Standby mode the application can abort all pending transmissions by resetting the 
corresponding LOCK bit.

Abort while staying in RUN mode (RUN = 1)

Contrary to the STANDBY case described previously, in the RUN case the application has to 
handle the error or arbitration lost conditions. In case of transmission errors, causing the 
frame to be transmitted again and again, the application must set the NRTX bit in the CSR 
register. This will cause pCAN to abort the transmission at the end of the current attempt.

In case of arbitration lost, setting the NRTX bit does not abort the transmission, therefore the 
application must reset the LOCK bit to abort the transmission. To avoid resetting the LOCK 
bit during the critical time window, leading to the problem described at the start of this 
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16-bit read sequence

The 16-bit read sequence (from either the Counter Register or the Alternate Counter 
Register) is illustrated in Figure 42.

Figure 42. 16-bit read sequence

The user must read the MS Byte first; the LS Byte value is then buffered automatically.

This buffered value remains unchanged until the 16-bit read sequence is completed, even if 
the user reads the MS Byte several times.

After a complete reading sequence, if only the CLR register or ACLR register are read, they 
return the LS Byte of the count value at the time of the read.

Whatever timer mode is used (input capture, output compare, one pulse mode or PWM 
mode) an overflow occurs when the counter rolls over from FFFFh to 0000h, after which

� the TOF bit of the SR register is set

� a timer interrupt is generated if

– the TOIE bit of the CR1 register is set and

– the I bit of the CC register is cleared

If one of these conditions is false, the interrupt remains pending to be issued as soon as 
they are both true.

Clearing the overflow interrupt request is done in two steps:

1. Reading the SR register while the TOF bit is set

2. An access (read or write) to the CLR register

Note: The TOF bit is not cleared by accesses to ACLR register. The advantage of accessing the 
ACLR register rather than the CLR register is that it allows simultaneous use of the overflow 
function and reading the free running counter at random times (for example, to measure 
elapsed time) without the risk of clearing the TOF bit erroneously.

The timer is not affected by Wait mode.

In Halt mode, the counter stops counting until the mode is exited. Counting then resumes 
from the previous count (MCU awakened by an interrupt) or from the reset count (MCU 
awakened by a Reset).
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20.3.4 External voltage detector (EVD) thresholds

Subject to general operating conditions for VDD, fCPU, and TA.

          

Table 130. External voltage detector (EVD) thresholds

Symbol Parameter Conditions Min Typ Max Unit

VIT+(EVD) 10 AVDF flag toggle threshold (VDD rise(1) 1.15 1.26 1.35
V

VIT-(EVD) 01 AVDF flag toggle threshold (VDD fall)(1) 1.1 1.2 1.3

Vhys(EVD) EVD voltage threshold hysteresis VIT+(EVD)-VIT-(EVD) 200 mV

1. Data based on characterization results, not tested in production



ST72521xx-Auto Electrical characteristics

Doc ID 17660 Rev 1 245/276

Figure 108. SPI slave timing diagram with CPHA = 0(1)

1. Measurement points are done at CMOS levels: 0.3xVDD and 0.7xVDD.

2. When no communication is on-going the data output line of the SPI (MOSI in master mode, MISO in slave mode) has its 
alternate function capability released. In this case, the pin status depends on the I/O port configuration.

Figure 109. SPI slave timing diagram with CPHA = 1(1)

1. Measurement points are done at CMOS levels: 0.3xVDD and 0.7xVDD.

2. When no communication is on-going the data output line of the SPI (MOSI in master mode, MISO in slave mode) has its 
alternate function capability released. In this case, the pin status depends of the I/O port configuration.
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Figure 111. Typical application with I2C BUS and timing diagram(1)

1. Measurement points are done at CMOS levels: 0.3xVDD and 0.7xVDD.

The following table provides the values to be written in the I2CCCR register to obtain the 
required I2C SCL line frequency.

         

Legend:

RP = External pull-up resistance

fSCL = I2C speed

Note: - For speeds around 200 kHz, the achieved speed can have a ±5% tolerance.
- For other speed ranges, the achieved speed can have a ±2% tolerance.

The above variations depend on the accuracy of the external components used.
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Table 154. SCL frequency table

fSCL

(kHz)

I2CCCR value

fCPU = 4 MHz fCPU = 8 MHz

VDD = 4.1V VDD = 5V VDD = 4.1V VDD = 5V

RP = 3.3k RP = 4.7k RP = 3.3k RP = 4.7k RP = 3.3k RP = 4.7k RP = 3.3k RP = 4.7k

400 Not achievable 83h

300 Not achievable 85h

200 83h 8Ah 89h 8Ah

100 10h 24h 23h 24h 23h

50 24h 4Ch

20 5Fh FFh
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; check the semaphore status if edge is detected 
CP A,#01 

jrne OUT

call call_routine
; call the interrupt routine 
OUT:LD A,#00

LD sema,A

.call_routine
; entry to call_routine
PUSH A

PUSH X

PUSH CC 

.ext1_rt
; entry to interrupt routine
LD A,#00

LD sema,A

IRET

Case 2: Writing to PxOR or PxDDR with global interrupts disabled:

SIM
; set the interrupt mask
LD A,PFDR

AND A,#$02

LD  X,A
; store the level before writing to PxOR/PxDDR
LD A,#$90

LD PFDDR,A
; Write into PFDDR
LD A,#$ff

LD PFOR,A
          ; Write to PFOR
LD A,PFDR

AND A,#$02

LD Y,A
; store the level after writing to PxOR/PxDDR
LD A,X


