
STMicroelectronics - ST72F521AR9TC Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor ST7

Core Size 8-Bit

Speed 8MHz

Connectivity CANbus, I²C, SCI, SPI

Peripherals LVD, POR, PWM, WDT

Number of I/O 48

Program Memory Size 60KB (60K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 2K x 8

Voltage - Supply (Vcc/Vdd) 3.8V ~ 5.5V

Data Converters A/D 16x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 125°C (TA)

Mounting Type Surface Mount

Package / Case 64-LQFP

Supplier Device Package -

Purchase URL https://www.e-xfl.com/product-detail/stmicroelectronics/st72f521ar9tc

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/st72f521ar9tc-4431126
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

ST72521xx-Auto Contents

Doc ID 17660 Rev 1 11/276

22.1.1 Flash configuration . 257

22.1.2 Flash ordering information . 260

22.2 ROM device ordering information and transfer of customer code 261

22.3 Development tools . 265

22.3.1 Introduction . 265

22.3.2 Evaluation tools and starter kits . 265

22.3.3 Development and debugging tools . 265

22.3.4 Programming tools . 265

22.3.5 Socket and emulator adapter information . 266

23 Known limitations . 267

23.1 All Flash and ROM devices . 267

23.1.1 External RC option . 267

23.1.2 Safe connection of OSC1/OSC2 pins . 267

23.1.3 Reset pin protection with LVD enabled . 267

23.1.4 Unexpected reset fetch . 267

23.1.5 External interrupt missed . 267

23.1.6 Clearing active interrupts outside interrupt routine 271

23.1.7 SCI wrong break duration . 272

23.1.8 16-bit timer PWM mode . 272

23.1.9 TIMD set simultaneously with OC interrupt . 273

23.1.10 CAN cell limitations . 273

23.1.11 I2C multimaster . 273

23.2 All Flash devices . 274

23.2.1 Internal RC oscillator with LVD . 274

23.2.2 I/O behavior during ICC mode entry sequence 274

23.2.3 Readout protection with LVD . 274

24 Revision history . 275

ST72521xx-Auto Central processing unit (CPU)

Doc ID 17660 Rev 1 39/276

The stack pointer is a 16-bit register which is always pointing to the next free location in the
stack. It is then decremented after data has been pushed onto the stack and incremented
before data is popped from the stack (see Figure 8).

Since the stack is 256 bytes deep, the 8 most significant bits are forced by hardware.
Following an MCU Reset, or after a reset stack pointer instruction (RSP), the stack pointer
contains its reset value (the SP7 to SP0 bits are set) which is the stack higher address.

The least significant byte of the stack pointer (called S) can be directly accessed by an LD
instruction.

Note: When the lower limit is exceeded, the stack pointer wraps around to the stack upper limit,
without indicating the stack overflow. The previously stored information is then overwritten
and therefore lost. The stack also wraps in case of an underflow.

The stack is used to save the return address during a subroutine call and the CPU context
during an interrupt. The user may also directly manipulate the stack by means of the PUSH
and POP instructions. In the case of an interrupt, the PCL is stored at the first location
pointed to by the SP. The other registers are then stored in the next locations as shown in
Figure 8.

● When an interrupt is received, the SP is decremented and the context is pushed on the
stack.

● On return from interrupt, the SP is incremented and the context is popped from the
stack.

A subroutine call occupies two locations and an interrupt five locations in the stack area.

Figure 8. Stack manipulation example

PCH

PCL

SP

PCH

PCL

SP

PCL

PCH

X

A
CC

PCH

PCL

SP

PCL

PCH

X

A
CC

PCH

PCL

SP

PCL

PCH

X

A
CC

PCH

PCL

SP

SP

Y

CALL
Subroutine

Interrupt
Event

PUSH Y POP Y IRET RET
or RSP

@ 01FFh

@ 0100h

Stack Higher Address = 01FFh
Stack Lower Address = 0100h

Serial communications interface (SCI) ST72521xx-Auto

138/276 Doc ID 17660 Rev 1

15 Serial communications interface (SCI)

15.1 Introduction
The Serial Communications Interface (SCI) offers a flexible means of full-duplex data
exchange with external equipment requiring an industry standard NRZ asynchronous serial
data format. The SCI offers a very wide range of baud rates using two baud rate generator
systems.

15.2 Main features
● Full duplex, asynchronous communications

● NRZ standard format (Mark/Space)

● Dual baud rate generator systems

● Independently programmable transmit and receive baud rates up to 500K baud

● Programmable data word length (8 or 9 bits)

● Receive buffer full, Transmit buffer empty and End of Transmission flags

● 2 receiver wake-up modes:

– Address bit (MSB)

– Idle line

● Muting function for multiprocessor configurations

● Separate enable bits for Transmitter and Receiver

● 4 error detection flags:

– Overrun error

– Noise error

– Frame error

– Parity error

● 5 interrupt sources with flags:

– Transmit data register empty

– Transmission complete

– Receive data register full

– Idle line received

– Overrun error detected

● Parity control:

– Transmits parity bit

– Checks parity of received data byte

● Reduced power consumption mode

Serial communications interface (SCI) ST72521xx-Auto

144/276 Doc ID 17660 Rev 1

When an overrun error occurs:

● The OR bit is set.

● The RDR content is not lost.

● The shift register is overwritten.

● An interrupt is generated if the RIE bit is set and the I bit is cleared in the CCR register.

The OR bit is reset by an access to the SCISR register followed by a SCIDR register read
operation.

Noise error

Oversampling techniques are used for data recovery by discriminating between valid
incoming data and noise. Normal data bits are considered valid if three consecutive samples
(8th, 9th, 10th) have the same bit value, otherwise the NF flag is set. In the case of start bit
detection, the NF flag is set on the basis of an algorithm combining both valid edge
detection and three samples (8th, 9th, 10th). Therefore, to prevent the NF flag getting set
during start bit reception, there should be a valid edge detection as well as three valid
samples.

When noise is detected in a frame:

● The NF flag is set at the rising edge of the RDRF bit.

● Data is transferred from the Shift register to the SCIDR register.

● No interrupt is generated. However this bit rises at the same time as the RDRF bit
which itself generates an interrupt.

The NF flag is reset by a SCISR register read operation followed by a SCIDR register read
operation.

During reception, if a false start bit is detected (for example, 8th, 9th, 10th samples are 011,
101, 110), the frame is discarded and the receiving sequence is not started for this frame.
There is no RDRF bit set for this frame and the NF flag is set internally (not accessible to the
user). This NF flag is accessible along with the RDRF bit when a next valid frame is
received.

Note: If the application Start Bit is not long enough to match the above requirements, then the NF
Flag may get set due to the short Start Bit. In this case, the NF flag may be ignored by the
application software when the first valid byte is received.

See also Noise error causes on page 148.

I2C bus interface (I2C) ST72521xx-Auto

160/276 Doc ID 17660 Rev 1

16.3.3 SDA/SCL line control

Transmitter mode

The interface holds the clock line low before transmission to wait for the microcontroller to
write the byte in the data register.

Receiver mode

The interface holds the clock line low after reception to wait for the microcontroller to read
the byte in the data register.

The SCL frequency (fSCL) is controlled by a programmable clock divider which depends on
the I2C bus mode.

When the I2C cell is enabled, the SDA and SCL ports must be configured as floating inputs.
In this case, the value of the external pull-up resistor used depends on the application.

When the I2C cell is disabled, the SDA and SCL ports revert to being standard I/O port pins.

Figure 67. I2C interface block diagram

DATA REGISTER (DR)

DATA SHIFT REGISTER

COMPARATOR

OWN ADDRESS REGISTER 1 (OAR1)

CLOCK CONTROL REGISTER (CCR)

STATUS REGISTER 1 (SR1)

CONTROL REGISTER (CR)

CONTROL LOGIC

STATUS REGISTER 2 (SR2)

INTERRUPT

CLOCK CONTROL

DATA CONTROL

SCL or SCLI

SDA or SDAI

OWN ADDRESS REGISTER 2 (OAR2)

ST72521xx-Auto I2C bus interface (I2C)

Doc ID 17660 Rev 1 161/276

16.4 Functional description
Refer to the CR, SR1 and SR2 registers in Section 16.7 for the bit definitions.

By default the I2C interface operates in Slave mode (M/SL bit is cleared) except when it
initiates a transmit or receive sequence.

First the interface frequency must be configured using the FRi bits in the OAR2 register.

16.4.1 Slave mode

As soon as a start condition is detected, the address is received from the SDA line and sent
to the shift register; then it is compared with the address of the interface or the General Call
address (if selected by software).

Note: In 10-bit addressing mode, the comparison includes the header sequence (11110xx0) and
the two most significant bits of the address.

Header matched (10-bit mode only): The interface generates an acknowledge pulse if the
ACK bit is set.

Address not matched: The interface ignores it and waits for another Start condition.

Address matched: The interface generates in sequence:

● an acknowledge pulse if the ACK bit is set

● EVF and ADSL bits are set with an interrupt if the ITE bit is set.

Then the interface waits for a read of the SR1 register, holding the SCL line low (see
Figure 68: Transfer sequencing EV1).

Next, in 7-bit mode read the DR register to determine from the least significant bit (Data
Direction Bit) if the slave must enter Receiver or Transmitter mode.

In 10-bit mode, after receiving the address sequence the slave is always in receive mode. It
will enter transmit mode on receiving a repeated Start condition followed by the header
sequence with matching address bits and the least significant bit set (11110xx1).

Slave receiver

Following the address reception and after the SR1 register has been read, the slave
receives bytes from the SDA line into the DR register via the internal shift register. After
each byte the interface generates in sequence:

● an acknowledge pulse if the ACK bit is set

● EVF and BTF bits are set with an interrupt if the ITE bit is set.

Then the interface waits for a read of the SR1 register followed by a read of the DR register,
holding the SCL line low (see Figure 68: Transfer sequencing EV2).

Slave transmitter

Following the address reception and after SR1 register has been read, the slave sends
bytes from the DR register to the SDA line via the internal shift register.

The slave waits for a read of the SR1 register followed by a write in the DR register, holding
the SCL line low (see Figure 68: Transfer sequencing EV3).

When the acknowledge pulse is received:

● The EVF and BTF bits are set by hardware with an interrupt if the ITE bit is set.

Controller area network (CAN) ST72521xx-Auto

198/276 Doc ID 17660 Rev 1

Software workaround - devices with hardware fix (ST72F521 rev “R”)

To implement a transmission abort under safe conditions, the LOCK bit must not be reset
during the critical window (2 bit times). A new function has been implemented in the MCU
allowing the application to synchronize the reset of the LOCK bit (abort request) with the
reset of the TXRQST bit (internal signal) in the pCAN core.

The synchronization is done using the WKPS bit in the CANCSR register, the function of this
bit has been modified and no more Wake-up Pulse (dominant bit) is sent on the CAN_TX
signal when the WKPS bit is set. This means the functionality described in the datasheet is
no longer applicable (see Section 17.5.4: WKPS functionality).

To abort the transmission, the application first sets the WKPS bit and polls it until it is set.
The maximum time needed to set this bit is two CAN bit times. Once the application has
read the WKPS bit as one, it can reset the LOCK bit to stop the current transmission.

The abort is completed when the LOCK bit is read back as zero by the application. Once the
abort has been completed, the application must reset the WKPS bit to be able to transmit
again. Of course the transmit buffer must be in LOCK state as usual before any transmission
attempt.

The “C” code sequence below shows the software workaround using the WKPS bit.

CANCSR |= WKPS;// Set WKPS bit
while(!(CANCSR & WKPS));// Wait until WKPS bit is set
while(CANBCSR & LOCK)// Wait until abort has been confirmed
{

CANBCSR &= ~LOCK;
}
CANCSR &= ~WKPS; // Allow transmission again
CANBCSR |= LOCK; //Alloc buffer for next transmission

Software workaround - devices without hardware fix

To implement a transmission abort under safe conditions, any reset of the LOCK bit during
the critical window (2 bit times) must be avoided. Two different cases have to be considered,
either the pCAN enters standby mode after the abort, or the abort is performed and pCAN
keeps running.

Abort followed by Standby mode (RUN = 0)

In this case, aborting the pending transmissions can safely be done by first entering
Standby mode and then releasing the transmit buffers. Standby mode is entered by resetting
the RUN bit in the CSR register and once the current transmission attempt, even if it fails
due to error or lost arbitration, has been performed, pCAN enters Standby mode (RUN = 0).
Once in Standby mode the application can abort all pending transmissions by resetting the
corresponding LOCK bit.

Abort while staying in RUN mode (RUN = 1)

Contrary to the STANDBY case described previously, in the RUN case the application has to
handle the error or arbitration lost conditions. In case of transmission errors, causing the
frame to be transmitted again and again, the application must set the NRTX bit in the CSR
register. This will cause pCAN to abort the transmission at the end of the current attempt.

In case of arbitration lost, setting the NRTX bit does not abort the transmission, therefore the
application must reset the LOCK bit to abort the transmission. To avoid resetting the LOCK
bit during the critical time window, leading to the problem described at the start of this

16-bit timer ST72521xx-Auto

104/276 Doc ID 17660 Rev 1

16-bit read sequence

The 16-bit read sequence (from either the Counter Register or the Alternate Counter
Register) is illustrated in Figure 42.

Figure 42. 16-bit read sequence

The user must read the MS Byte first; the LS Byte value is then buffered automatically.

This buffered value remains unchanged until the 16-bit read sequence is completed, even if
the user reads the MS Byte several times.

After a complete reading sequence, if only the CLR register or ACLR register are read, they
return the LS Byte of the count value at the time of the read.

Whatever timer mode is used (input capture, output compare, one pulse mode or PWM
mode) an overflow occurs when the counter rolls over from FFFFh to 0000h, after which

� the TOF bit of the SR register is set

� a timer interrupt is generated if

– the TOIE bit of the CR1 register is set and

– the I bit of the CC register is cleared

If one of these conditions is false, the interrupt remains pending to be issued as soon as
they are both true.

Clearing the overflow interrupt request is done in two steps:

1. Reading the SR register while the TOF bit is set

2. An access (read or write) to the CLR register

Note: The TOF bit is not cleared by accesses to ACLR register. The advantage of accessing the
ACLR register rather than the CLR register is that it allows simultaneous use of the overflow
function and reading the free running counter at random times (for example, to measure
elapsed time) without the risk of clearing the TOF bit erroneously.

The timer is not affected by Wait mode.

In Halt mode, the counter stops counting until the mode is exited. Counting then resumes
from the previous count (MCU awakened by an interrupt) or from the reset count (MCU
awakened by a Reset).

is buffered
Read

At t0

Read Returns the buffered
LS Byte value at t0At t0 +Dt

Other
instructions

Beginning of the sequence

Sequence completed

LS Byte

LS Byte

MS Byte

ST72521xx-Auto Electrical characteristics

Doc ID 17660 Rev 1 223/276

20.3.4 External voltage detector (EVD) thresholds

Subject to general operating conditions for VDD, fCPU, and TA.

Table 130. External voltage detector (EVD) thresholds

Symbol Parameter Conditions Min Typ Max Unit

VIT+(EVD) 10 AVDF flag toggle threshold (VDD rise(1) 1.15 1.26 1.35
V

VIT-(EVD) 01 AVDF flag toggle threshold (VDD fall)(1) 1.1 1.2 1.3

Vhys(EVD) EVD voltage threshold hysteresis VIT+(EVD)-VIT-(EVD) 200 mV

1. Data based on characterization results, not tested in production

ST72521xx-Auto Electrical characteristics

Doc ID 17660 Rev 1 245/276

Figure 108. SPI slave timing diagram with CPHA = 0(1)

1. Measurement points are done at CMOS levels: 0.3xVDD and 0.7xVDD.

2. When no communication is on-going the data output line of the SPI (MOSI in master mode, MISO in slave mode) has its
alternate function capability released. In this case, the pin status depends on the I/O port configuration.

Figure 109. SPI slave timing diagram with CPHA = 1(1)

1. Measurement points are done at CMOS levels: 0.3xVDD and 0.7xVDD.

2. When no communication is on-going the data output line of the SPI (MOSI in master mode, MISO in slave mode) has its
alternate function capability released. In this case, the pin status depends of the I/O port configuration.

SS INPUT

S
C

K
IN

P
U

T CPHA=0

MOSI INPUT

MISO OUTPUT

CPHA=0

tc(SCK)

tw(SCKH)
tw(SCKL) tr(SCK)

tf(SCK)

tv(SO)ta(SO)

tsu(SI) th(SI)

MSB OUT

MSB IN

BIT6 OUT

LSB IN

LSB OUTSee note 2

CPOL=0

CPOL=1

tsu(SS) th(SS)

tdis(SO)th(SO)

See
note 2

BIT1 IN

SS INPUT

S
C

K
IN

P
U

T CPHA=1

MOSI INPUT

MISO OUTPUT

CPHA=1

tw(SCKH)
tw(SCKL) tr(SCK)

tf(SCK)

ta(SO)

tsu(SI) th(SI)

MSB OUT BIT6 OUT LSB OUT
See

CPOL=0

CPOL=1

tsu(SS) th(SS)

tdis(SO)th(SO)

See
note 2note 2

tc(SCK)

HZ

tv(SO)

MSB IN LSB INBIT1 IN

Electrical characteristics ST72521xx-Auto

248/276 Doc ID 17660 Rev 1

Figure 111. Typical application with I2C BUS and timing diagram(1)

1. Measurement points are done at CMOS levels: 0.3xVDD and 0.7xVDD.

The following table provides the values to be written in the I2CCCR register to obtain the
required I2C SCL line frequency.

Legend:

RP = External pull-up resistance

fSCL = I2C speed

Note: - For speeds around 200 kHz, the achieved speed can have a ±5% tolerance.
- For other speed ranges, the achieved speed can have a ±2% tolerance.

The above variations depend on the accuracy of the external components used.

REPEATED START

START

STOP

START

tf(SDA) tr(SDA) tsu(SDA) th(SDA)

tf(SCK)tr(SCK)tw(SCKL)tw(SCKH)th(STA) tsu(STO)

tsu(STA) tw(STO:STA)

SDA

SCK

4.7k
SDAI

ST72XXX
SCLI

VDD

100

100

VDD

4.7k

I2C BUS

Table 154. SCL frequency table

fSCL

(kHz)

I2CCCR value

fCPU = 4 MHz fCPU = 8 MHz

VDD = 4.1V VDD = 5V VDD = 4.1V VDD = 5V

RP = 3.3k RP = 4.7k RP = 3.3k RP = 4.7k RP = 3.3k RP = 4.7k RP = 3.3k RP = 4.7k

400 Not achievable 83h

300 Not achievable 85h

200 83h 8Ah 89h 8Ah

100 10h 24h 23h 24h 23h

50 24h 4Ch

20 5Fh FFh

ST72521xx-Auto Known limitations

Doc ID 17660 Rev 1 269/276

; check the semaphore status if edge is detected
CP A,#01

jrne OUT

call call_routine
; call the interrupt routine
OUT:LD A,#00

LD sema,A

.call_routine
; entry to call_routine
PUSH A

PUSH X

PUSH CC

.ext1_rt
; entry to interrupt routine
LD A,#00

LD sema,A

IRET

Case 2: Writing to PxOR or PxDDR with global interrupts disabled:

SIM
; set the interrupt mask
LD A,PFDR

AND A,#$02

LD X,A
; store the level before writing to PxOR/PxDDR
LD A,#$90

LD PFDDR,A
; Write into PFDDR
LD A,#$ff

LD PFOR,A
 ; Write to PFOR
LD A,PFDR

AND A,#$02

LD Y,A
; store the level after writing to PxOR/PxDDR
LD A,X

