
STMicroelectronics - ST72F521M9TCTR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor ST7

Core Size 8-Bit

Speed 8MHz

Connectivity CANbus, I²C, SCI, SPI

Peripherals LVD, POR, PWM, WDT

Number of I/O 64

Program Memory Size 60KB (60K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 2K x 8

Voltage - Supply (Vcc/Vdd) 3.8V ~ 5.5V

Data Converters A/D 16x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 125°C (TA)

Mounting Type Surface Mount

Package / Case 80-LQFP

Supplier Device Package -

Purchase URL https://www.e-xfl.com/product-detail/stmicroelectronics/st72f521m9tctr

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/st72f521m9tctr-4431133
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

ST72521xx-Auto Contents

Doc ID 17660 Rev 1 3/276

6.4 Multi-oscillator (MO) . 41

6.5 Reset sequence manager (RSM) . 43

6.5.1 Introduction . 43

6.5.2 Asynchronous external RESET pin . 44

6.5.3 External power-on RESET . 44

6.5.4 Internal low voltage detector (LVD) RESET . 44

6.5.5 Internal watchdog RESET . 45

6.6 System integrity management (SI) . 46

6.6.1 Low voltage detector (LVD) . 46

6.6.2 Auxiliary voltage detector (AVD) . 47

6.6.3 Low power modes . 49

6.6.4 Interrupts . 49

6.6.5 System Integrity (SI) Control/Status register (SICSR) 50

7 Interrupts . 52

7.1 Introduction . 52

7.2 Masking and processing flow . 52

7.3 Interrupts and low power modes . 55

7.4 Concurrent and nested management . 55

7.5 Interrupt register description . 56

7.5.1 CPU CC register interrupt bits . 56

7.5.2 Interrupt software priority registers (ISPRx) . 57

7.6 External interrupts . 60

7.6.1 I/O port interrupt sensitivity . 60

7.6.2 External interrupt control register (EICR) . 62

8 Power saving modes . 65

8.1 Introduction . 65

8.2 Slow mode . 65

8.3 Wait mode . 66

8.4 Active Halt and Halt modes . 68

8.4.1 Active Halt mode . 68

8.4.2 Halt mode . 70

9 I/O ports . 73

9.1 Introduction . 73

Contents ST72521xx-Auto

8/276 Doc ID 17660 Rev 1

16.7.2 I2C status register 1 (SR1) . 168

16.7.3 I2C status register 2 (SR2) . 170

16.7.4 I2C clock control register (CCR) . 171

16.7.5 I2C data register (DR) . 172

16.7.6 I2C own address register (OAR1) . 172

16.7.7 I2C own address register (OAR2) . 173

17 Controller area network (CAN) . 175

17.1 Introduction . 175

17.2 Main features . 176

17.3 Functional description . 176

17.3.1 Frame formats . 176

17.3.2 Hardware blocks . 177

17.3.3 Modes of operation . 179

17.3.4 Bit timing logic . 181

17.4 Register description . 182

17.4.1 General purpose registers . 182

17.4.2 Paged registers . 187

17.5 List of CAN cell limitations . 196

17.5.1 Omitted SOF bit . 196

17.5.2 CPU write access (more than one cycle) corrupts CAN frame 196

17.5.3 Unexpected message transmission . 197

17.5.4 WKPS functionality . 202

17.5.5 Bus-off state not entered . 203

18 10-bit A/D converter (ADC) . 205

18.1 Introduction . 205

18.2 Main features . 205

18.3 Functional description . 206

18.3.1 A/D converter configuration . 206

18.3.2 Starting the conversion . 206

18.3.3 Changing the conversion channel . 207

18.4 Low power modes . 207

18.5 Interrupts . 207

18.6 ADC registers . 207

18.6.1 Control/status register (ADCCSR) . 207

ST72521xx-Auto Contents

Doc ID 17660 Rev 1 11/276

22.1.1 Flash configuration . 257

22.1.2 Flash ordering information . 260

22.2 ROM device ordering information and transfer of customer code 261

22.3 Development tools . 265

22.3.1 Introduction . 265

22.3.2 Evaluation tools and starter kits . 265

22.3.3 Development and debugging tools . 265

22.3.4 Programming tools . 265

22.3.5 Socket and emulator adapter information . 266

23 Known limitations . 267

23.1 All Flash and ROM devices . 267

23.1.1 External RC option . 267

23.1.2 Safe connection of OSC1/OSC2 pins . 267

23.1.3 Reset pin protection with LVD enabled . 267

23.1.4 Unexpected reset fetch . 267

23.1.5 External interrupt missed . 267

23.1.6 Clearing active interrupts outside interrupt routine 271

23.1.7 SCI wrong break duration . 272

23.1.8 16-bit timer PWM mode . 272

23.1.9 TIMD set simultaneously with OC interrupt . 273

23.1.10 CAN cell limitations . 273

23.1.11 I2C multimaster . 273

23.2 All Flash devices . 274

23.2.1 Internal RC oscillator with LVD . 274

23.2.2 I/O behavior during ICC mode entry sequence 274

23.2.3 Readout protection with LVD . 274

24 Revision history . 275

Supply, reset and clock management ST72521xx-Auto

48/276 Doc ID 17660 Rev 1

Figure 15. Using the AVD to monitor VDD (AVDS bit = 0)

Monitoring a voltage on the EVD pin

This mode is selected by setting the AVDS bit in the SICSR register.

The AVD circuitry can generate an interrupt when the AVDIE bit of the SICSR register is set.
This interrupt is generated on the rising and falling edges of the comparator output. This
means it is generated when either one of these two events occur:

● VEVD rises up to VIT+(EVD)

● VEVD falls down to VIT-(EVD)

The EVD function is illustrated in Figure 16.

For more details, refer to Section 20: Electrical characteristics.

VDD

VIT+(AVD)

VIT-(AVD)

AVDF bit 0 0RESET VALUE

IF AVDIE bit = 1

Vhyst

AVD INTERRUPT

REQUEST

INTERRUPT PROCESS INTERRUPT PROCESS

VIT+(LVD)

VIT-(LVD)

LVD RESET

Early Warning Interrupt
(Power has dropped, MCU not
not yet in reset)

11

trv VOLTAGE RISE TIME

ST72521xx-Auto Power saving modes

Doc ID 17660 Rev 1 71/276

Figure 28. Halt mode flowchart

1. WDGHALT is an option bit. See Section 22.1.1: Flash configuration on page 257 for more details.

2. Peripheral clocked with an external clock source can still be active.

3. Only some specific interrupts can exit the MCU from Halt mode (such as external interrupt). Refer to
Table 20: Interrupt mapping for more details.

4. Before servicing an interrupt, the CC register is pushed on the stack. The I[1:0] bits of the CC register are
set to the current software priority level of the interrupt routine and recovered when the CC register is
popped.

HALT INSTRUCTION

RESET

INTERRUPT (3)

Y

N

N

Y

CPU

OSCILLATOR
PERIPHERALS (2)

I[1:0] BITS

OFF

OFF

10
OFF

FETCH RESET VECTOR

OR SERVICE INTERRUPT

CPU

OSCILLATOR
PERIPHERALS

I[1:0] BITS

ON

OFF

XX (4)
ON

CPU

OSCILLATOR
PERIPHERALS

I[1:0] BITS

ON

ON

XX (4)
ON

256 OR 4096 CPU CLOCK

DELAY

WATCHDOG
ENABLE

DISABLE
WDGHALT (1) 0

WATCHDOG

RESET

1

(MCCSR.OIE = 0)

CYCLE

ST72521xx-Auto I/O ports

Doc ID 17660 Rev 1 75/276

Figure 29. I/O port general block diagram

Table 29. I/O port mode options

Configuration mode Pull-up P-buffer
Diodes

to VDD to VSS

Input
Floating with/without Interrupt Off

Off

On
On

Pull-up with/without Interrupt On

Output

Push-pull
Off

On

Open-drain (logic level) Off

True open-drain NI NI NI(1)

1. The diode to VDD is not implemented in the true open-drain pads. A local protection between the pad and
VSS is implemented to protect the device against positive stress.

Legend:

Off - Implemented not activated

On - Implemented and activated

NI - Not implemented

DR

DDR

ORD
A

T
A

 B
U

S

PAD

VDD

ALTERNATE
ENABLE

ALTERNATE
OUTPUT

1

0

OR SEL

DDR SEL

DR SEL

PULL-UP
CONDITION

P-BUFFER
(see table below)

N-BUFFER

PULL-UP
(see table below)

1

0

ANALOG
INPUT

If implemented

ALTERNATE
INPUT

VDD

DIODES
(see table below)

EXTERNAL

SOURCE (eix)
INTERRUPT

CMOS
SCHMITT
TRIGGER

REGISTER
ACCESS

16-bit timer ST72521xx-Auto

118/276 Doc ID 17660 Rev 1

13.7.3 Control/status register (CSR)

5 OPM

One Pulse Mode

0: One Pulse Mode is not active.
1: One Pulse Mode is active, the ICAP1 pin can be used to trigger one pulse on the
OCMP1 pin; the active transition is given by the IEDG1 bit. The length of the
generated pulse depends on the contents of the OC1R register.

4 PWM

Pulse Width Modulation

0: PWM mode is not active.
1: PWM mode is active, the OCMP1 pin outputs a programmable cyclic signal; the
length of the pulse depends on the value of OC1R register; the period depends on
the value of OC2R register.

3:2 CC[1:0]
Clock Control

The timer clock mode depends on these bits (see Table 61).

1 IEDG2

Input Edge 2

This bit determines which type of level transition on the ICAP2 pin will trigger the
capture.
0: A falling edge triggers the capture.
1: A rising edge triggers the capture.

0 EXEDG

 External Clock Edge
This bit determines which type of level transition on the external clock pin EXTCLK
will trigger the counter register.
0: A falling edge triggers the counter register.
1: A rising edge triggers the counter register.

Table 61. Timer clock selection

Timer clock CC1 CC0

fCPU / 4 0 0

fCPU / 2 0 1

fCPU / 8 1 0

External clock (where available)(1)

1. If the external clock pin is not available, programming the external clock configuration stops the counter.

1 1

Table 60. CR2 register description (continued)

Bit Name Function

CSR Reset value: xxxx x0xx (xxh)

7 6 5 4 3 2 1 0

ICF1 OCF1 TOF ICF2 OCF2 TIMD Reserved

RO RO RO RO RO RW -

ST72521xx-Auto 16-bit timer

Doc ID 17660 Rev 1 123/276

Related documentation

SCI software communications using 16-bit timer (AN 973)

Real-time Clock with ST7 Timer Output Compare (AN 974)

Driving a buzzer through the ST7 Timer PWM function (AN 976)

Using ST7 PWM signal to generate analog input (sinusoid) (AN1041)

UART emulation software (AN1046)

PWM duty cycle switch implementing true 0 or 100 per cent duty cycle (AN1078)

Starting a PWM signal directly at high level using the ST7 16-bit timer (AN1504)

Table 63. 16-bit timer register map and reset values

Address
(Hex.)

Register
label

7 6 5 4 3 2 1 0

Timer A: 32
Timer B: 42

CR1
Reset value

ICIE
0

OCIE
0

TOIE
0

FOLV2
0

FOLV1
0

OLVL2
0

IEDG1
0

OLVL1
0

Timer A: 31
Timer B: 41

CR2
Reset value

OC1E
0

OC2E
0

OPM
0

PWM
0

CC1
0

CC0
0

IEDG2
0

EXEDG
0

Timer A: 33
Timer B: 43

CSR
Reset value

ICF1
x

OCF1
x

TOF
x

ICF2
x

OCF2
x

TIMD
0

-
x

-
x

Timer A: 34
Timer B: 44

IC1HR
Reset value

MSB
x x x x x x x

LSB
x

Timer A: 35
Timer B: 45

IC1LR
Reset value

MSB
x x x x x x x

LSB
x

Timer A: 36
Timer B: 46

OC1HR
Reset value

MSB
1 0 0 0 0 0 0

LSB
0

Timer A: 37
Timer B: 47

OC1LR
Reset value

MSB
0 0 0 0 0 0 0

LSB
0

Timer A: 3E
Timer B: 4E

OC2HR
Reset value

MSB
1 0 0 0 0 0 0

LSB
0

Timer A: 3F
Timer B: 4F

OC2LR
Reset value

MSB
0 0 0 0 0 0 0

LSB
0

Timer A: 38
Timer B: 48

CHR
Reset value

MSB
1 1 1 1 1 1 1

LSB
1

Timer A: 39
Timer B: 49

CLR
Reset value

MSB
1 1 1 1 1 1 0

LSB
0

Timer A: 3A
Timer B: 4A

ACHR
Reset value

MSB
1 1 1 1 1 1 1

LSB
1

Timer A: 3B
Timer B: 4B

ACLR
Reset value

MSB
1 1 1 1 1 1 0

LSB
0

Timer A: 3C
Timer B: 4C

IC2HR
Reset value

MSB
x x x x x x x

LSB
x

Timer A: 3D
Timer B: 4D

IC2LR
Reset value

MSB
x x x x x x x

LSB
x

Serial peripheral interface (SPI) ST72521xx-Auto

128/276 Doc ID 17660 Rev 1

14.3.4 Master mode transmit sequence

When software writes to the SPIDR register, the data byte is loaded into the 8-bit shift
register and then shifted out serially to the MOSI pin most significant bit first.

When data transfer is complete:

– The SPIF bit is set by hardware

– An interrupt request is generated if the SPIE bit is set and the interrupt mask in the
CCR register is cleared.

Clearing the SPIF bit is performed by the following software sequence:

1. An access to the SPICSR register while the SPIF bit is set

2. A read to the SPIDR register.

Note: While the SPIF bit is set, all writes to the SPIDR register are inhibited until the SPICSR
register is read.

14.3.5 Slave mode operation

In slave mode, the serial clock is received on the SCK pin from the master device.

To operate the SPI in slave mode:

1. Write to the SPICSR register to perform the following actions:

a) Select the clock polarity and clock phase by configuring the CPOL and CPHA bits
(see Figure 59).

Note: The slave must have the same CPOL and CPHA settings as the master.

b) Manage the SS pin as described in Slave select management on page 126 and
Figure 57. If CPHA = 1, SS must be held low continuously. If CPHA = 0, SS must
be held low during byte transmission and pulled up between each byte to let the
slave write in the shift register.

2. Write to the SPICR register to clear the MSTR bit and set the SPE bit to enable the SPI
I/O functions.

14.3.6 Slave mode transmit sequence

When software writes to the SPIDR register, the data byte is loaded into the 8-bit shift
register and then shifted out serially to the MISO pin most significant bit first.

The transmit sequence begins when the slave device receives the clock signal and the most
significant bit of the data on its MOSI pin.

When data transfer is complete:

– The SPIF bit is set by hardware.

– An interrupt request is generated if SPIE bit is set and interrupt mask in the CCR
register is cleared.

Clearing the SPIF bit is performed by the following software sequence:

1. An access to the SPICSR register while the SPIF bit is set

2. A write or a read to the SPIDR register

Note: While the SPIF bit is set, all writes to the SPIDR register are inhibited until the SPICSR
register is read.

Serial communications interface (SCI) ST72521xx-Auto

142/276 Doc ID 17660 Rev 1

15.4.2 Transmitter

The transmitter can send data words of either 8 or 9 bits depending on the M bit status.
When the M bit is set, word length is 9 bits and the 9th bit (the MSB) has to be stored in the
T8 bit in the SCICR1 register.

Character transmission

During an SCI transmission, data shifts out least significant bit first on the TDO pin. In this
mode, the SCIDR register consists of a buffer (TDR) between the internal bus and the
transmit shift register (see Figure 62).

Procedure

1. Select the M bit to define the word length.

2. Select the desired baud rate using the SCIBRR and the SCIETPR registers.

3. Set the TE bit to assign the TDO pin to the alternate function and to send an idle frame
as first transmission.

4. Access the SCISR register and write the data to send in the SCIDR register (this
sequence clears the TDRE bit). Repeat this sequence for each data to be transmitted.

Clearing the TDRE bit is always performed by the following software sequence:

1. An access to the SCISR register

2. A write to the SCIDR register

The TDRE bit is set by hardware and it indicates:

● The TDR register is empty.

● The data transfer is beginning.

● The next data can be written in the SCIDR register without overwriting the previous
data.

This flag generates an interrupt if the TIE bit is set and the I bit is cleared in the CCR
register.

When a transmission is taking place, a write instruction to the SCIDR register stores the
data in the TDR register and which is copied in the shift register at the end of the current
transmission.

When no transmission is taking place, a write instruction to the SCIDR register places the
data directly in the shift register, the data transmission starts, and the TDRE bit is
immediately set.

When a frame transmission is complete (after the stop bit) the TC bit is set and an interrupt
is generated if the TCIE is set and the I bit is cleared in the CCR register.

Clearing the TC bit is performed by the following software sequence:

1. An access to the SCISR register

2. A write to the SCIDR register

Note: The TDRE and TC bits are cleared by the same software sequence.

Break characters

Setting the SBK bit loads the shift register with a break character. The break frame length
depends on the M bit (see Figure 63).

As long as the SBK bit is set, the SCI send break frames to the TDO pin. After clearing this

ST72521xx-Auto Serial communications interface (SCI)

Doc ID 17660 Rev 1 143/276

bit by software the SCI insert a logic 1 bit at the end of the last break frame to guarantee the
recognition of the start bit of the next frame.

Idle characters

Setting the TE bit drives the SCI to send an idle frame before the first data frame.

Clearing and then setting the TE bit during a transmission sends an idle frame after the
current word.

Note: Resetting and setting the TE bit causes the data in the TDR register to be lost. Therefore the
best time to toggle the TE bit is when the TDRE bit is set, that is, before writing the next byte
in the SCIDR.

15.4.3 Receiver

The SCI can receive data words of either 8 or 9 bits. When the M bit is set, word length is 9
bits and the MSB is stored in the R8 bit in the SCICR1 register.

Character reception

During a SCI reception, data shifts in least significant bit first through the RDI pin. In this
mode, the SCIDR register consists or a buffer (RDR) between the internal bus and the
received shift register (see Figure 62).

Procedure

1. Select the M bit to define the word length.

2. Select the desired baud rate using the SCIBRR and the SCIERPR registers.

3. Set the RE bit, this enables the receiver which begins searching for a start bit.

When a character is received:

● The RDRF bit is set. It indicates that the content of the shift register is transferred to the
RDR.

● An interrupt is generated if the RIE bit is set and the I bit is cleared in the CCR register.

● The error flags can be set if a frame error, noise or an overrun error has been detected
during reception.

Clearing the RDRF bit is performed by the following software sequence done by:

1. An access to the SCISR register

2. A read to the SCIDR register.

The RDRF bit must be cleared before the end of the reception of the next character to avoid
an overrun error.

Break character

When a break character is received, the SCI handles it as a framing error.

Idle character

When an idle frame is detected, there is the same procedure as a data received character
plus an interrupt if the ILIE bit is set and the I bit is cleared in the CCR register.

Overrun error

An overrun error occurs when a character is received when RDRF has not been reset. Data
cannot be transferred from the shift register to the RDR register as long as the RDRF bit is
not cleared.

ST72521xx-Auto I2C bus interface (I2C)

Doc ID 17660 Rev 1 163/276

Slave address transmission

Then the slave address is sent to the SDA line via the internal shift register.

● In 7-bit addressing mode, one address byte is sent.

● In 10-bit addressing mode, sending the first byte including the header sequence
causes the following event:

– The EVF bit is set by hardware with interrupt generation if the ITE bit is set.

Then the master waits for a read of the SR1 register followed by a write in the DR register,
holding the SCL line low (see Figure 68: Transfer sequencing EV9).

Then the second address byte is sent by the interface.

After completion of this transfer (and acknowledge from the slave if the ACK bit is set):

● The EVF bit is set by hardware with interrupt generation if the ITE bit is set.

Then the master waits for a read of the SR1 register followed by a write in the CR register
(for example set PE bit), holding the SCL line low (see Figure 68: Transfer sequencing
EV6).

Next, the master must enter Receiver or Transmitter mode.

Note: In 10-bit addressing mode, to switch the master to Receiver mode, software must generate
a repeated Start condition and resend the header sequence with the least significant bit set
(11110xx1).

Master receiver

Following the address transmission and after SR1 and CR registers have been accessed,
the master receives bytes from the SDA line into the DR register via the internal shift
register. After each byte the interface generates in sequence:

● Acknowledge pulse if the ACK bit is set

● EVF and BTF bits are set by hardware with an interrupt if the ITE bit is set.

Then the interface waits for a read of the SR1 register followed by a read of the DR register,
holding the SCL line low (see Figure 68: Transfer sequencing EV7).

To close the communication: Before reading the last byte from the DR register, set the STOP
bit to generate the Stop condition. The interface goes automatically back to slave mode
(M/SL bit cleared).

Note: In order to generate the non-acknowledge pulse after the last received data byte, the ACK
bit must be cleared just before reading the second last data byte.

Master transmitter

Following the address transmission and after SR1 register has been read, the master sends
bytes from the DR register to the SDA line via the internal shift register.

The master waits for a read of the SR1 register followed by a write in the DR register,
holding the SCL line low (see Figure 68: Transfer sequencing EV8).

When the acknowledge bit is received, the interface sets:

● EVF and BTF bits with an interrupt if the ITE bit is set.

To close the communication: After writing the last byte to the DR register, set the STOP bit to
generate the Stop condition. The interface goes automatically back to slave mode (M/SL bit
cleared).

ST72521xx-Auto I2C bus interface (I2C)

Doc ID 17660 Rev 1 165/276

Figure 68. Transfer sequencing

7-bit Slave receiver:

7-bit Slave transmitter:

7-bit Master receiver:

7-bit Master transmitter:

10-bit Slave receiver:

10-bit Slave transmitter:

10-bit Master transmitter:

10-bit Master receiver:

S Address A Data1 A Data2 A
.....

DataN A P

EV1 EV2 EV2 EV2 EV4

S Address A Data1 A Data2 A
.....

DataN NA P

EV1 EV3 EV3 EV3 EV3-1 EV4

S Address A Data1 A Data2 A
.....

DataN NA P

EV5 EV6 EV7 EV7 EV7

S Address A Data1 A Data2 A
.....

DataN A P

EV5 EV6 EV8 EV8 EV8 EV8

S Header A Address A Data1 A
.....

DataN A P

EV1 EV2 EV2 EV4

Sr Header A Data1 A
.

DataN A P

EV1 EV3 EV3 EV3-1 EV4

S Header A Address A Data1 A
.....

DataN A P

EV5 EV9 EV6 EV8 EV8 EV8

Sr Header A Data1 A
.....

DataN A P

EV5 EV6 EV7 EV7

Legend:
S = Start, Sr = Repeated Start, P = Stop, A = Acknowledge, NA = Non-acknowledge, EVx = Event (with interrupt if ITE = 1)
EV1: EVF = 1, ADSL = 1, cleared by reading SR1 register.
EV2: EVF = 1, BTF = 1, cleared by reading SR1 register followed by reading DR register.
EV3: EVF = 1, BTF = 1, cleared by reading SR1 register followed by writing DR register.
EV3-1: EVF = 1, AF = 1, BTF = 1; AF is cleared by reading SR1 register. BTF is cleared by releasing the lines (STOP = 1, STOP = 0) or
by writing DR register (DR = FFh). Note: If lines are released by STOP = 1, STOP = 0, the subsequent EV4 is not seen.
EV4: EVF = 1, STOPF = 1, cleared by reading SR2 register.
EV5: EVF = 1, SB = 1, cleared by reading SR1 register followed by writing DR register.
EV6: EVF = 1, cleared by reading SR1 register followed by writing CR register (for example PE = 1).
EV7: EVF = 1, BTF = 1, cleared by reading SR1 register followed by reading DR register.
EV8: EVF = 1, BTF = 1, cleared by reading SR1 register followed by writing DR register.
EV9: EVF = 1, ADD10 = 1, cleared by reading SR1 register followed by writing DR register.

Controller area network (CAN) ST72521xx-Auto

176/276 Doc ID 17660 Rev 1

17.2 Main features
● Support of CAN specification 2.0A and 2.0B passive

● 3 prioritized 10-byte Transmit/Receive message buffers

● 2 programmable global 12-bit message acceptance filters

● Programmable baud rates up to 1 Mbit/s

● Buffer flip-flopping capability in transmission

● Maskable interrupts for transmit, receive (one per buffer), error and wake-up

● Automatic low-power mode after 20 recessive bits or on demand (standby mode)

● Interrupt-driven wake-up from standby mode upon reception of dominant pulse

● Optional dominant pulse transmission on leaving standby mode

● Automatic message queuing for transmission upon writing of data byte 7

● Programmable loop-back mode for self-test operation

● Advanced error detection and diagnosis functions

● Software-efficient buffer mapping at a unique address space

● Scalable architecture

17.3 Functional description

17.3.1 Frame formats

A summary of all the CAN frame formats is given in Figure 71 for reference. It covers only
the standard frame format since the extended one is only acknowledged.

A message begins with a start bit called Start Of Frame (SOF). This bit is followed by the
arbitration field which contains the 11-bit identifier (ID) and the Remote Transmission
Request bit (RTR). The RTR bit indicates whether it is a data frame or a remote request
frame. A remote request frame does not have any data byte.

The control field contains the Identifier Extension bit (IDE), which indicates standard or
extended format, a reserved bit (ro) and, in the last four bits, a count of the data bytes
(DLC). The data field ranges from zero to eight bytes and is followed by the Cyclic
Redundancy Check (CRC) used as a frame integrity check for detecting bit errors.

The acknowledgement (ACK) field comprises the ACK slot and the ACK delimiter. The bit in
the ACK slot is placed on the bus by the transmitter as a recessive bit (logical 1). It is
overwritten as a dominant bit (logical 0) by those receivers which have at this time received
the data correctly. In this way, the transmitting node can be assured that at least one
receiver has correctly received its message.

Note: Messages are acknowledged by the receivers regardless of the outcome of the acceptance
test.

The end of the message is indicated by the End Of Frame (EOF). The intermission field
defines the minimum number of bit periods separating consecutive messages. If there is no
subsequent bus access by any station, the bus remains idle.

Controller area network (CAN) ST72521xx-Auto

180/276 Doc ID 17660 Rev 1

Resync

The resynchronization mode is used to find the correct entry point for starting transmission
or reception after the node has gone asynchronous either by going into the Standby or bus-
off states.

Resynchronization is achieved when 128 sequences of 11 recessive bits have been
monitored unless the node is not bus-off and the FSYN bit in the CSR register is set in which
case a single sequence of 11 recessive bits needs to be monitored.

Idle

The CAN controller looks for one of the following events: The RUN bit is reset, a Start Of
Frame appears on the CAN bus or the DATA7 register of the currently active page is written
to.

Transmission

Once the LOCK bit of a Buffer Control/Status Register (BCSRx) has been set and read back
as such, a transmit job can be submitted by writing to the DATA7 register. The message with
the highest priority will be transmitted as soon as the CAN bus becomes idle. Among those
messages with a pending transmission request, the highest priority is given to Buffer 3, then
2 and 1. If the transmission fails due to a lost arbitration or to an error while the NRTX bit of
the CSR register is reset, then a new transmission attempt is performed. This goes on until
the transmission ends successfully or until the job is cancelled by unlocking the buffer, by
setting the NRTX bit or if the node ever enters bus-off or if a higher priority message
becomes pending. The RDY bit in the BCSRx register, which was set since the job was
submitted, gets reset. When a transmission is in progress, the BUSY bit in the BCSRx
register is set. If it ends successfully then the TXIF bit in the Interrupt Status Register (ISR)
is set, otherwise the TEIF bit is set. An interrupt is generated in either case provided the
TXIE and TEIE bits of the ICR register are set.

Note: Setting the SRTE bit of the CSR register allows transmitted messages to be simultaneously
received when they pass the acceptance filtering. This is particularly useful for checking the
integrity of the communication path.

Reception

Once the CAN controller has synchronized itself onto the bus activity, it is ready for
reception of new messages. The identifier of every incoming message is compared to the
acceptance filters. If the bitwise comparison of the selected bits ends up with a match for at
least one of the filters then that message is elected for reception and a target buffer is
searched for. This buffer will be the first one - order is 1 to 3 - that has the LOCK and RDY
bits of its BCSRx register reset.

● When no such buffer exists then an overrun interrupt is generated if the ORIE bit of the
ICR register has been set. In this case the identifier of the last message is made
available in the Last Identifier Register (LIDHR and LIDLR) at least until it is overwritten
by a new identifier picked-up from the bus.

● When a buffer does exist, the accepted message gets written into it, the ACC bit in the
BCSRx register gets the number of the matching filter, the RDY and RXIF bits get set
and an interrupt is generated if the RXIE bit in the ISR register is set.

Up to three messages can be automatically received without intervention from the CPU
because each buffer has its own set of status bits, greatly reducing the reactiveness
requirements in the processing of the receive interrupts.

Controller area network (CAN) ST72521xx-Auto

184/276 Doc ID 17660 Rev 1

Interrupt control register (ICR)

ICR Reset value: 00h

7 6 5 4 3 2 1 0

Reserved ESCI RXIE TXIE SCIE ORIE TEIE Reserved

- RSC RSC RSC RSC RSC RSC -

Table 92. ICR register description

Bit Name Function

7 - Reserved; must be kept at ‘0’

6 ESCI

Extended Status Change Interrupt

Set by software to specify that SCIF is to be set on receive errors also.
Cleared by software to set SCIF only on status changes and wake-up but not on all
receive errors.

5 RXIE

Receive Interrupt Enable

Set by software to enable an interrupt request whenever a message has been
received free of errors.
Cleared by software to disable receive interrupt requests.

4 TXIE

Transmit Interrupt Enable

Set by software to enable an interrupt request whenever a message has been
successfully transmitted.
Cleared by software to disable transmit interrupt requests.

3 SCIE

Status Change Interrupt Enable
Set by software to enable an interrupt request whenever the node’s status changes in
run mode or whenever a dominant pulse is received in standby mode.
Cleared by software to disable status change interrupt requests.

2 ORIE

Overrun Interrupt Enable

Set by software to enable an interrupt request whenever a message should be stored
and no receive buffer is available.
Cleared by software to disable overrun interrupt requests.

1 TEIE

Transmit Error Interrupt Enable

Set by software to enable an interrupt whenever an error has been detected during
transmission of a message.
Cleared by software to disable transmit error interrupts.

0 - Reserved; must be kept at ‘0’

ST72521xx-Auto Controller area network (CAN)

Doc ID 17660 Rev 1 189/276

Receive error counter register (RECR)

Identifier high registers (IDHRx)

RECR Reset value: 00h

7 6 5 4 3 2 1 0

REC[7:0]

RO

Table 100. RECR register description

Bit Name Function

7:0 REC[7:0]

Receive Error Counter

This is the Receive Error Counter implementing part of the fault confinement
mechanism of the CAN protocol. In case of an error during reception, this counter
is incremented by 1 or by 8 depending on the error condition as defined by the
CAN standard. After every successful reception the counter is decremented by 1
or reset to 120 if its value was higher than 128. When the counter value exceeds
127, the CAN controller enters the error passive state.

IDHRx Reset value: Undefined

7 6 5 4 3 2 1 0

ID[10:3]

R/W

Table 101. IDHRx register description

Bit Name Function

7:0 ID[10:3]

Message Identifier (MSB)

These are the most significant 8 bits of the 11-bit message identifier. The identifier
acts as the message’s name, used for bus access arbitration and acceptance
filtering.

ST72521xx-Auto Controller area network (CAN)

Doc ID 17660 Rev 1 191/276

Buffer control/status registers (BCSRx)

BCSRx Reset value: 00h

7 6 5 4 3 2 1 0

Reserved ACC RDY BUSY LOCK

- RO RC RO RSC

Table 104. BCSRx register description

Bit Name Function

7:4 - Reserved; must be kept at ‘0’

3 ACC

Acceptance Code

Set by hardware with the message identifier of the highest priority filter which
accepted the message stored in the buffer.
0: Match for Filter/Mask0. Possible match for Filter/Mask1.
1: No match for Filter/Mask0 and match for Filter/Mask1.
Reset by hardware when either RDY or RXIF is reset.

2 RDY

Message Ready

Set by hardware to signal that a new error-free message is available (LOCK = 0)
or that a transmission request is pending (LOCK = 1).
Cleared by software when LOCK = 0 to release the buffer and to clear the
corresponding RXIF bit in the Interrupt Status Register.
Cleared by hardware when LOCK = 1 to indicate that the transmission request
has been serviced or cancelled.

1 BUSY

Busy Buffer
Set by hardware when the buffer is being filled (LOCK = 0) or emptied (LOCK = 1)
and reset after the 2nd intermission bit.
Reset by hardware when the buffer is not accessed by the CAN core for
transmission nor reception purposes.

0 LOCK

Lock Buffer
Set by software to lock a buffer. No more message can be received into the buffer
thus preserving its content and making it available for transmission.
Cleared by software to make the buffer available for reception. Cancels any
pending transmission request.
Cleared by hardware once a message has been successfully transmitted provided
the early transmit interrupt mode is on. Left untouched otherwise.
Note that in order to prevent any message corruption or loss of context, LOCK
cannot be set nor reset while BUSY is set. Trying to do so will result in LOCK not
changing state.

Electrical characteristics ST72521xx-Auto

224/276 Doc ID 17660 Rev 1

20.4 Supply current characteristics
The following current consumption specified for the ST7 functional operating modes over
temperature range does not take into account the clock source current consumption. To
obtain the total device consumption, the two current values must be added (except for Halt
mode, for which the clock is stopped).

20.4.1 Current consumption

Table 131. Current consumption

Symbol Parameter Conditions

Flash
devices

 ROM
devices Unit

Typ Max(1) Typ Max(1)

IDD

Supply current in
Run mode(2)

fOSC = 2MHz, fCPU = 1 MHz
fOSC = 4 MHz, fCPU = 2 MHz
fOSC = 8 MHz, fCPU = 4 MHz
fOSC = 16 MHz, fCPU = 8 MHz

1.3
2.0
3.6
7.1

3.0
5.0
8.0
15.0

1.3
2.0
3.6
7.1

2.0
3.0
5.0
10.0

mA

Supply current in
Slow mode(2)

fOSC = 2 MHz, fCPU = 62.5 kHz
fOSC = 4 MHz, fCPU = 125 kHz
fOSC = 8 MHz, fCPU = 250 kHz
fOSC = 16 MHz, fCPU = 500 kHz

600
700
800

1100

2700
3000
3600
4000

600
700
800

1100

1800
2100
2400
3000

µA

Supply current in
Wait mode(2)

fOSC = 2 MHz, fCPU = 1 MHz
fOSC = 4 MHz, fCPU = 2 MHz
fOSC = 8 MHz, fCPU = 4 MHz
fOSC = 16 MHz, fCPU = 8 MHz

1.0
1.5
2.5
4.5

3.0
4.0
5.0
7.0

1.0
1.5
2.5
4.5

1.3
2.0
3.3
6.0

mA

Supply current in
Slow Wait mode(2)

fOSC = 2 MHz, fCPU = 62.5 kHz
fOSC = 4 MHz, fCPU = 125 kHz
fOSC = 8 MHz, fCPU = 250 kHz
fOSC = 16 MHz, fCPU = 500 kHz

580
650
770

1050

1200
1300
1800
2000

70
100
200
350

200
300
600

1200

µA

Supply current in
Halt mode(3)

-40°C < TA < +85°C <1 10 <1 10
µA

-40°C < TA < +125°C <1 50 <1 50

IDD
Supply current in
Active Halt mode(4)

fOSC = 2 MHz
fOSC = 4 MHz
fOSC = 8 MHz
fOSC = 16 MHz

80
160
325
650

No max.
guaran-

teed

15
30
60

120

25
50
100
200

µA

1. Data based on characterization results, tested in production at VDD max. and fCPU max.

2. Measurements are done in the following conditions:
- Program executed from RAM, CPU running with RAM access. The increase in consumption when executing from Flash is
50%.
- All I/O pins in input mode with a static value at VDD or VSS (no load)
- All peripherals in reset state.
- LVD disabled.
- Clock input (OSC1) driven by external square wave.
- In Slow and Slow Wait mode, fCPU is based on fOSC divided by 32.
- To obtain the total current consumption of the device, add the clock source (Section 20.4.2) and the peripheral power
consumption (Section 20.4.3).

3. All I/O pins in push-pull 0 mode (when applicable) with a static value at VDD or VSS (no load), LVD disabled. Data based on
characterization results, tested in production at VDD max. and fCPU max.

4. Data based on characterization results, not tested in production. All I/O pins in push-pull 0 mode (when applicable) with a
static value at VDD or VSS (no load); clock input (OSC1) driven by external square wave, LVD disabled. To obtain the total
current consumption of the device, add the clock source consumption (Section 20.4.2).

Known limitations ST72521xx-Auto

274/276 Doc ID 17660 Rev 1

23.2 All Flash devices

23.2.1 Internal RC oscillator with LVD

The internal RC can only be used if LVD is enabled.

23.2.2 I/O behavior during ICC mode entry sequence

Symptom

In 80-pin devices (Flash), both ports G and H are forced to output push-pull during ICC
mode entry sequence. 80-pin ROM devices are not impacted by this issue.

Details

To enable programming of all Flash sectors, the device must leave USER mode and be
configured in ICC mode. Once in ICC mode, the ICC protocol enables an ST7
microcontroller to communicate with an external controller (such as a PC). ICC mode is
entered by applying 39 pulses on the ICCDATA signal during reset. To enter ICC mode, the
device goes through other modes, some modes are critical because the I/Os PG[7:0] and
PH[7:0] are forced to output push-pull.

Impact on the application

The PG and PH I/O ports are forced to output push-pull during three pulses on ICCDATA. In
certain circumstances, this behavior can lead to a short-circuit between the I/O signals and
VDD, VSS or an output signal of another application component.

In addition, switching these I/Os to output mode can cause the application to leave reset
state, disturbing the ICC communication and preventing the user from programming the
Flash.

23.2.3 Readout protection with LVD

The LVD is not supported if readout protection is enabled.

