
STMicroelectronics - ST72F521R9TCTR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor ST7

Core Size 8-Bit

Speed 8MHz

Connectivity CANbus, I²C, SCI, SPI

Peripherals LVD, POR, PWM, WDT

Number of I/O 48

Program Memory Size 60KB (60K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 2K x 8

Voltage - Supply (Vcc/Vdd) 3.8V ~ 5.5V

Data Converters A/D 16x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 125°C (TA)

Mounting Type Surface Mount

Package / Case 64-LQFP

Supplier Device Package -

Purchase URL https://www.e-xfl.com/product-detail/stmicroelectronics/st72f521r9tctr

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/st72f521r9tctr-4431144
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

Contents ST72521xx-Auto

2/276 Doc ID 17660 Rev 1

Contents

1 Description . 19

2 Package pinout and pin description . 21

2.1 Package pinout . 21

2.2 Pin description . 23

3 Register and memory map . 28

4 Flash program memory . 32

4.1 Introduction . 32

4.2 Main features . 32

4.3 Structure . 32

4.3.1 Readout protection . 33

4.4 ICC interface . 33

4.5 ICP (in-circuit programming) . 34

4.6 IAP (in-application programming) . 35

4.7 Related documentation . 35

4.8 Flash control/status register (FCSR) . 35

5 Central processing unit (CPU) . 36

5.1 Introduction . 36

5.2 Main features . 36

5.3 CPU registers . 36

5.3.1 Accumulator (A) . 37

5.3.2 Index registers (X and Y) . 37

5.3.3 Program counter (PC) . 37

5.3.4 Condition code (CC) register . 37

5.3.5 Stack pointer (SP) register . 38

6 Supply, reset and clock management . 40

6.1 Introduction . 40

6.2 Main features . 40

6.3 Phase locked loop . 41

ST72521xx-Auto Register and memory map

Doc ID 17660 Rev 1 29/276

000Ch
000Dh
000Eh

Port E
PEDR
PEDDR
PEOR

Port E Data Register
Port E Data Direction Register
Port E Option Register

00h(1)

00h
00h

R/W
R/W(2)

R/W(2)

000Fh
0010h
0011h

Port F
PFDR
PFDDR
PFOR

Port F Data Register
Port F Data Direction Register
Port F Option Register

00h(1)

00h
00h

R/W
R/W
R/W

0012h
0013h
0014h

Port G 2)
PGDR
PGDDR
PGOR

Port G Data Register
Port G Data Direction Register
Port G Option Register

00h1)

00h
00h

R/W
R/W
R/W

0015h
0016h
0017h

Port H 2)
PHDR
PHDDR
PHOR

Port H Data Register
Port H Data Direction Register
Port H Option Register

00h1)

00h
00h

R/W
R/W
R/W

0018h
0019h
001Ah
001Bh
001Ch
001Dh
001Eh

I2C

I2CCR
I2CSR1
I2CSR2
I2CCCR
I2COAR1
I2COAR2
I2CDR

I2C Control Register
I2C Status Register 1
I2C Status Register 2
I2C Clock Control Register
I2C Own Address Register 1
I2C Own Address Register2
I2C Data Register

00h
00h
00h
00h
00h
00h
00h

R/W
Read Only
Read Only
R/W
R/W
R/W
R/W

001Fh
0020h

Reserved Area (2 bytes)

0021h
0022h
0023h

SPI
SPIDR
SPICR
SPICSR

SPI Data I/O Register
SPI Control Register
SPI Control/Status Register

xxh
0xh
00h

R/W
R/W
R/W

0024h
0025h
0026h
0027h

ITC

ISPR0
ISPR1
ISPR2
ISPR3

Interrupt Software Priority Register 0
Interrupt Software Priority Register 1
Interrupt Software Priority Register 2
Interrupt Software Priority Register 3

FFh
FFh
FFh
FFh

R/W
R/W
R/W
R/W

0028h EICR External Interrupt Control Register 00h R/W

0029h FLASH FCSR Flash Control/Status Register 00h R/W

002Ah WATCHDOG WDGCR Watchdog Control Register 7Fh R/W

002Bh SICSR System Integrity Control/Status Register 000x 000x b R/W

002Ch
002Dh

MCC
MCCSR
MCCBCR

Main Clock Control / Status Register
Main Clock Controller: Beep Control Register

00h
00h

R/W
R/W

002Eh
to

0030h
Reserved Area (3 bytes)

Table 4. Hardware register map (continued)

Address Block Register label Register name Reset status Remarks

Flash program memory ST72521xx-Auto

32/276 Doc ID 17660 Rev 1

4 Flash program memory

4.1 Introduction
The ST7 dual voltage High Density Flash (HDFlash) is a non-volatile memory that can be
electrically erased as a single block or by individual sectors and programmed on a byte-by-
byte basis using an external VPP supply.

The HDFlash devices can be programmed and erased off-board (plugged in a programming
tool) or on-board using ICP (in-circuit programming) or IAP (in-application programming).

The array matrix organization allows each sector to be erased and reprogrammed without
affecting other sectors.

4.2 Main features
● 3 Flash programming modes:

– Insertion in a programming tool. In this mode, all sectors including option bytes
can be programmed or erased.

– ICP (in-circuit programming). In this mode, all sectors including option bytes can
be programmed or erased without removing the device from the application board.

– IAP (in-application programming). In this mode, all sectors except Sector 0 can be
programmed or erased without removing the device from the application board
and while the application is running.

● ICT (in-circuit testing) for downloading and executing user application test patterns in
RAM

● Readout protection

● Register Access Security System (RASS) to prevent accidental programming or
erasing

4.3 Structure
The Flash memory is organized in sectors and can be used for both code and data storage.

Depending on the overall Flash memory size in the microcontroller device, there are up to
three user sectors (see Table 5). Each of these sectors can be erased independently to
avoid unnecessary erasing of the whole Flash memory when only a partial erasing is
required.

The first two sectors have a fixed size of 4 Kbytes (see Figure 5). They are mapped in the
upper part of the ST7 addressing space so the reset and interrupt vectors are located in
Sector 0 (F000h-FFFFh).

Table 5. Sectors available in Flash devices

Flash size (bytes) Available sectors

4K Sector 0

8K Sectors 0, 1

> 8K Sectors 0, 1, 2

ST72521xx-Auto Supply, reset and clock management

Doc ID 17660 Rev 1 43/276

6.5 Reset sequence manager (RSM)

6.5.1 Introduction

The reset sequence manager includes three RESET sources as shown in Figure 11:

● External RESET source pulse

● Internal LVD RESET (low voltage detection)

● Internal WATCHDOG RESET

These sources act on the RESET pin and it is always kept low during the delay phase.

The RESET service routine vector is fixed at addresses FFFEh-FFFFh in the ST7 memory
map.

The basic RESET sequence consists of three phases as shown in Figure 12:

● Active phase depending on the RESET source

● 256 or 4096 CPU clock cycle delay (selected by option byte)

● RESET vector fetch

Caution: When the ST7 is unprogrammed or fully erased, the Flash is blank and the RESET vector is
not programmed. For this reason, it is recommended to keep the RESET pin in low state
until programming mode is entered, in order to avoid unwanted behavior.

The 256 or 4096 CPU clock cycle delay allows the oscillator to stabilize and ensures that
recovery has taken place from the Reset state. The shorter or longer clock cycle delay
should be selected by option byte to correspond to the stabilization time of the external
oscillator used in the application (see Section 22.1.1: Flash configuration on page 257).

The RESET vector fetch phase duration is 2 clock cycles.

Figure 11. Reset block diagram

RESET

RON

VDD

WATCHDOG RESET

LVD RESET

INTERNAL
RESET

PULSE
GENERATOR

Filter

ST72521xx-Auto Supply, reset and clock management

Doc ID 17660 Rev 1 45/276

6.5.5 Internal watchdog RESET

The RESET sequence generated by an internal Watchdog counter overflow is shown in
Figure 13.

Starting from the Watchdog counter underflow, the device RESET pin acts as an output that
is pulled low during at least tw(RSTL)out.

Figure 13. RESET sequences

VDD

RUN

RESET PIN

EXTERNAL

WATCHDOG

Active Phase

VIT+(LVD)
VIT-(LVD)

th(RSTL)in

tw(RSTL)out

RUN

th(RSTL)in

Active

WATCHDOG UNDERFLOW

tw(RSTL)out

RUN RUN RUN

RESET

RESET
SOURCE

SHORT EXT.
RESET

LVD
RESET

LONG EXT.
RESET

WATCHDOG
RESET

INTERNAL RESET (256 or 4096 TCPU)

VECTOR FETCH

tw(RSTL)out

Phase
Active
Phase

Active
Phase

DELAY

Interrupts ST72521xx-Auto

52/276 Doc ID 17660 Rev 1

7 Interrupts

7.1 Introduction
The ST7 enhanced interrupt management provides the following features:

● Hardware interrupts

● Software interrupt (TRAP)

● Nested or concurrent interrupt management with flexible interrupt priority and level
management:

– Up to 4 software programmable nesting levels

– Up to 16 interrupt vectors fixed by hardware

– 2 non-maskable events: RESET, TRAP

– 1 maskable Top Level event: TLI

This interrupt management is based on:

● Bit 5 and bit 3 of the CPU CC register (I1:0)

● Interrupt software priority registers (ISPRx)

● Fixed interrupt vector addresses located at the high addresses of the memory map
(FFE0h to FFFFh) sorted by hardware priority order

This enhanced interrupt controller guarantees full upward compatibility with the standard
(not nested) ST7 interrupt controller.

7.2 Masking and processing flow
The interrupt masking is managed by the I1 and I0 bits of the CC register and the ISPRx
registers which give the interrupt software priority level of each interrupt vector (see Table
15). The processing flow is shown in Figure 17.

When an interrupt request has to be serviced:

● Normal processing is suspended at the end of the current instruction execution.

● The PC, X, A and CC registers are saved onto the stack.

● I1 and I0 bits of CC register are set according to the corresponding values in the ISPRx
registers of the serviced interrupt vector.

● The PC is then loaded with the interrupt vector of the interrupt to service and the first
instruction of the interrupt service routine is fetched (refer to Table 20: Interrupt
mapping for vector addresses).

The interrupt service routine should end with the IRET instruction which causes the
contents of the saved registers to be recovered from the stack.

Note: As a consequence of the IRET instruction, the I1 and I0 bits will be restored from the stack
and the program in the previous level will resume.

ST72521xx-Auto Interrupts

Doc ID 17660 Rev 1 57/276

7.5.2 Interrupt software priority registers (ISPRx)

These four registers are read/write, with the exception of bits 7:4 of ISPR3, which are read
only.

These four registers contain the interrupt software priority of each interrupt vector.

● Each interrupt vector (except RESET and TRAP) has corresponding bits in these
registers where its own software priority is stored. This correspondence is shown in the
following Table 18.

● Each I1_x and I0_x bit value in the ISPRx registers has the same meaning as the I1
and I0 bits in the CC register.

● Level 0 cannot be written (I1_x = 1, I0_x = 0). In this case, the previously stored value
is kept (Example: previous = CFh, write = 64h, result = 44h).

Table 17. Interrupt software priority levels

Interrupt software priority Level I1 I0

Level 0 (main) Low

High

1 0

Level 1 0 1

Level 2 0 0

Level 3 (= interrupt disable(1))

1. TLI, TRAP and RESET events can interrupt a level 3 program.

1 1

ISPRx Reset value: 1111 1111 (FFh)

7 6 5 4 3 2 1 0

ISPR0 I1_3 I0_3 I1_2 I0_2 I1_1 I0_1 I1_0 I0_0

ISPR1 I1_7 I0_7 I1_6 I0_6 I1_5 I0_5 I1_4 I0_4

ISPR2 I1_11 I0_11 I1_10 I0_10 I1_9 I0_9 I1_8 I0_8

ISPR3 1 1 1 1 I1_13 I0_13 I1_12 I0_12

Table 18. Interrupt priority bits

Vector address ISPRx bits

FFFBh-FFFAh I1_0 and I0_0 bits(1)

1. Bits in the ISPRx registers which correspond to the TLI can be read and written but they are not significant
in the interrupt process management.

FFF9h-FFF8h I1_1 and I0_1 bits

... ...

FFE1h-FFE0h I1_13 and I0_13 bits

Main clock controller with real-time clock and beeper (MCC/RTC) ST72521xx-Auto

88/276 Doc ID 17660 Rev 1

11.8.2 MCC beep control register (MCCBCR)

The beep output signal is available in Active Halt mode but has to be disabled to reduce
consumption.

0 OIF

Oscillator interrupt flag

This bit is set by hardware and cleared by software reading the MCCSR register. It
indicates when set that the main oscillator has reached the selected elapsed time
(TB1:0).
0: Timeout not reached
1: Timeout reached
Caution: The BRES and BSET instructions must not be used on the MCCSR
register to avoid unintentionally clearing the OIF bit.

Table 41. Time base selection

Counter prescaler
Time base

TB1 TB0
fOSC2 = 4 MHz fOSC2 = 8 MHz

16000 4ms 2ms 0 0

32000 8ms 4ms 0 1

80000 20ms 10ms 1 0

200000 50ms 25ms 1 1

Table 40. MCCSR register description (continued)

Bit Name Function

MCCBCR Reset value: 0000 0000 (00h)

7 6 5 4 3 2 1 0

Reserved BC[1:0]

- RW

Table 42. MCCBCR register description

Bit Name Function

7:2 - Reserved, must be kept cleared.

1:0 BC[1:0]
Beep control

These 2 bits select the PF1 pin beep capability (see Table 43).

Table 43. Beep frequency selection

BC1 BC0 Beep mode with fOSC2 = 8 MHz

0 0 Off

0 1 ~2 kHz
Output

Beep signal
~50% duty cycle

1 0 ~1 kHz

1 1 ~500 Hz

ST72521xx-Auto PWM auto-reload timer (ART)

Doc ID 17660 Rev 1 97/276

12.3.2 Counter access register (ARTCAR)

12.3.3 Auto-reload register (ARTARR)

This register has two PWM management functions:

– Adjusting the PWM frequency

– Setting the PWM duty cycle resolution

fINPUT / 8 1 MHz 0 1 1

fINPUT / 16 500 kHz 1 0 0

fINPUT / 32 250 kHz 1 0 1

fINPUT / 64 125 kHz 1 1 0

fINPUT / 128 62.5 kHz 1 1 1

Table 46. Prescaler selection for ART (continued)

fCOUNTER With fINPUT = 8 MHz CC2 CC1 CC0

ARTCAR Reset value: 0000 0000 (00h)

7 6 5 4 3 2 1 0

CA[7:0]

RW

Table 47. ARTCAR register description

Bit Name Function

7:0 CA[7:0]

Counter Access Data

These bits can be set and cleared either by hardware or by software. The
ARTCAR register is used to read or write the auto-reload counter “on the fly”
(while it is counting).

ARTARR Reset value: 0000 0000 (00h)

7 6 5 4 3 2 1 0

AR[7:0]

RW

Table 48. ARTAAR register description

Bit Name Function

7:0 AR[7:0]

Counter Auto-Reload Data

These bits are set and cleared by software. They are used to hold the auto-reload
value which is automatically loaded in the counter when an overflow occurs. At the
same time, the PWM output levels are changed according to the corresponding
OPx bit in the PWMCR register.

ST72521xx-Auto 16-bit timer

Doc ID 17660 Rev 1 111/276

13.3.6 One Pulse mode

One Pulse mode enables the generation of a pulse when an external event occurs. This
mode is selected via the OPM bit in the CR2 register.

The one pulse mode uses the Input Capture1 function and the Output Compare1 function.

Procedure

To use one pulse mode:

1. Load the OC1R register with the value corresponding to the length of the pulse (using
the appropriate formula below according to the timer clock source used).

2. Select the following in the CR1 register:

– Using the OLVL1 bit, select the level to be applied to the OCMP1 pin after the
pulse.

– Using the OLVL2 bit, select the level to be applied to the OCMP1 pin during the
pulse.

– Select the edge of the active transition on the ICAP1 pin with the IEDG1 bit (the
ICAP1 pin must be configured as floating input).

3. Select the following in the CR2 register:

– Set the OC1E bit, the OCMP1 pin is then dedicated to the Output Compare 1
function.

– Set the OPM bit.

– Select the timer clock CC[1:0] (see Table 61: Timer clock selection).

Then, on a valid event on the ICAP1 pin, the counter is initialized to FFFCh and OLVL2 bit is
loaded on the OCMP1 pin, the ICF1 bit is set and the value FFFDh is loaded in the IC1R
register.

Figure 51. One pulse mode cycle flowchart

Because the ICF1 bit is set when an active edge occurs, an interrupt can be generated if the
ICIE bit is set.

Clearing the input capture interrupt request (that is, clearing the ICFi bit) is done in two
steps:

1. Reading the SR register while the ICFi bit is set

2. An access (read or write) to the ICiLR register

OCMP1 = OLVL1
When counter = OC1R

When event occurs OCMP1 = OLVL2

Counter is reset
to FFFCh

ICF1 bit is set

ICR1 = Counter

on ICAP1

ST72521xx-Auto Serial peripheral interface (SPI)

Doc ID 17660 Rev 1 127/276

Figure 57. Generic SS timing diagram

Figure 58. Hardware/Software slave select management

14.3.3 Master mode operation

In master mode, the serial clock is output on the SCK pin. The clock frequency, polarity and
phase are configured by software (refer to the description of the SPICSR register).

Note: The idle state of SCK must correspond to the polarity selected in the SPICSR register (by
pulling up SCK if CPOL = 1 or pulling down SCK if CPOL = 0).

How to operate the SPI in master mode

To operate the SPI in master mode, perform the following steps in order:

1. Write to the SPICR register:

a) Select the clock frequency by configuring the SPR[2:0] bits.

b) Select the clock polarity and clock phase by configuring the CPOL and CPHA bits.
Figure 59 shows the four possible configurations.

Note: The slave must have the same CPOL and CPHA settings as the master.

2. Write to the SPICSR register:

Either set the SSM bit and set the SSI bit or clear the SSM bit and tie the SS pin high
for the complete byte transmit sequence.

3. Write to the SPICR register:

Set the MSTR and SPE bits

Note: MSTR and SPE bits remain set only if SS is high).

IMPORTANT: If the SPICSR register is not written first, the SPICR register setting (MSTR
bit) may not be taken into account.

The transmit sequence begins when software writes a byte in the SPIDR register.

MOSI/MISO

Master SS

Slave SS
(if CPHA=0)

Slave SS
(if CPHA=1)

Byte 1 Byte 2 Byte 3

1

0

SS internal

SSM bit

SSI bit

SS external pin

ST72521xx-Auto Serial communications interface (SCI)

Doc ID 17660 Rev 1 141/276

15.4 Functional description
The block diagram of the Serial Control Interface, is shown in Figure 62. It contains six
dedicated registers:

● 2 control registers (SCICR1 and SCICR2)

● a status register (SCISR)

● a baud rate register (SCIBRR)

● an extended prescaler receiver register (SCIERPR)

● an extended prescaler transmitter register (SCIETPR)

Refer to the register descriptions in Section 15.7 for the definitions of each bit.

15.4.1 Serial data format

Word length may be selected as being either 8 or 9 bits by programming the M bit in the
SCICR1 register (see Figure 62).

The TDO pin is in low state during the start bit.

The TDO pin is in high state during the stop bit.

An Idle character is interpreted as an entire frame of ‘1’s followed by the start bit of the next
frame which contains data.

A Break character is interpreted on receiving ‘0’s for some multiple of the frame period. At
the end of the last break frame the transmitter inserts an extra ‘1’ bit to acknowledge the
start bit.

Transmission and reception are driven by their own baud rate generator.

Figure 63. Word length programming

Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7 Bit8
Start
Bit

Stop
Bit

Next
Start
Bit

Idle Frame

Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7
Start
Bit

Stop
Bit

Next
Start
Bit

Start
Bit

Idle Frame
Start
Bit

9-bit Word length (M bit is set)

8-bit Word length (M bit is reset)

Possible
Parity

Bit

Possible
Parity

Bit

Break Frame Start
Bit

Extra
‘1’

Data Frame

Break Frame Start
Bit

Extra
‘1’

Data Frame

Next Data Frame

Next Data Frame

I2C bus interface (I2C) ST72521xx-Auto

160/276 Doc ID 17660 Rev 1

16.3.3 SDA/SCL line control

Transmitter mode

The interface holds the clock line low before transmission to wait for the microcontroller to
write the byte in the data register.

Receiver mode

The interface holds the clock line low after reception to wait for the microcontroller to read
the byte in the data register.

The SCL frequency (fSCL) is controlled by a programmable clock divider which depends on
the I2C bus mode.

When the I2C cell is enabled, the SDA and SCL ports must be configured as floating inputs.
In this case, the value of the external pull-up resistor used depends on the application.

When the I2C cell is disabled, the SDA and SCL ports revert to being standard I/O port pins.

Figure 67. I2C interface block diagram

DATA REGISTER (DR)

DATA SHIFT REGISTER

COMPARATOR

OWN ADDRESS REGISTER 1 (OAR1)

CLOCK CONTROL REGISTER (CCR)

STATUS REGISTER 1 (SR1)

CONTROL REGISTER (CR)

CONTROL LOGIC

STATUS REGISTER 2 (SR2)

INTERRUPT

CLOCK CONTROL

DATA CONTROL

SCL or SCLI

SDA or SDAI

OWN ADDRESS REGISTER 2 (OAR2)

ST72521xx-Auto I2C bus interface (I2C)

Doc ID 17660 Rev 1 161/276

16.4 Functional description
Refer to the CR, SR1 and SR2 registers in Section 16.7 for the bit definitions.

By default the I2C interface operates in Slave mode (M/SL bit is cleared) except when it
initiates a transmit or receive sequence.

First the interface frequency must be configured using the FRi bits in the OAR2 register.

16.4.1 Slave mode

As soon as a start condition is detected, the address is received from the SDA line and sent
to the shift register; then it is compared with the address of the interface or the General Call
address (if selected by software).

Note: In 10-bit addressing mode, the comparison includes the header sequence (11110xx0) and
the two most significant bits of the address.

Header matched (10-bit mode only): The interface generates an acknowledge pulse if the
ACK bit is set.

Address not matched: The interface ignores it and waits for another Start condition.

Address matched: The interface generates in sequence:

● an acknowledge pulse if the ACK bit is set

● EVF and ADSL bits are set with an interrupt if the ITE bit is set.

Then the interface waits for a read of the SR1 register, holding the SCL line low (see
Figure 68: Transfer sequencing EV1).

Next, in 7-bit mode read the DR register to determine from the least significant bit (Data
Direction Bit) if the slave must enter Receiver or Transmitter mode.

In 10-bit mode, after receiving the address sequence the slave is always in receive mode. It
will enter transmit mode on receiving a repeated Start condition followed by the header
sequence with matching address bits and the least significant bit set (11110xx1).

Slave receiver

Following the address reception and after the SR1 register has been read, the slave
receives bytes from the SDA line into the DR register via the internal shift register. After
each byte the interface generates in sequence:

● an acknowledge pulse if the ACK bit is set

● EVF and BTF bits are set with an interrupt if the ITE bit is set.

Then the interface waits for a read of the SR1 register followed by a read of the DR register,
holding the SCL line low (see Figure 68: Transfer sequencing EV2).

Slave transmitter

Following the address reception and after SR1 register has been read, the slave sends
bytes from the DR register to the SDA line via the internal shift register.

The slave waits for a read of the SR1 register followed by a write in the DR register, holding
the SCL line low (see Figure 68: Transfer sequencing EV3).

When the acknowledge pulse is received:

● The EVF and BTF bits are set by hardware with an interrupt if the ITE bit is set.

ST72521xx-Auto Electrical characteristics

Doc ID 17660 Rev 1 233/276

20.7 EMC (electromagnetic compatibility) characteristics
Susceptibility tests are performed on a sample basis during product characterization.

20.7.1 Functional EMS (electromagnetic susceptibility)

Based on a simple running application on the product (toggling two LEDs through I/O ports),
the product is stressed by two electromagnetic events until a failure occurs (indicated by the
LEDs).

● ESD: Electrostatic discharge (positive and negative) is applied on all pins of the device
until a functional disturbance occurs. This test conforms with the IEC 1000-4-2
standard.

● FTB: A burst of fast transient voltage (positive and negative) is applied to VDD and VSS
through a 100pF capacitor until a functional disturbance occurs. This test conforms with
the IEC 1000-4-4 standard.

A device reset allows normal operations to be resumed. The test results given in Table 142
below are based on the EMS levels and classes defined in application note AN1709.

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that good EMC
performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and
prequalification tests in relation with the EMC level requested for his application.

Software recommendations

The software flowchart must include the management of runaway conditions such as:

● Corrupted program counter

● Unexpected reset

● Critical Data corruption (control registers...)

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be
reproduced by manually forcing a low state on the RESET pin or the oscillator pins for 1
second.

To complete these trials, ESD stress can be applied directly on the device, over the range of
specification values. When unexpected behavior is detected, the software can be hardened
to prevent unrecoverable errors occurring (see application note AN1015).

Known limitations ST72521xx-Auto

270/276 Doc ID 17660 Rev 1

; check for falling edge
cp A,#$02

jrne OUT

TNZ Y

jrne OUT

LD A,#$01

LD sema,A
; set the semaphore to '1' if edge is detected
RIM
 ; reset the interrupt mask
LD A,sema
; check the semaphore status
CP A,#$01

jrne OUT

call call_routine
; call the interrupt routine
RIM

OUT:
RIM
JP while_loop

.call_routine
; entry to call_routine
PUSH A

PUSH X

PUSH CC

.ext1_rt
; entry to interrupt routine
LD A,#$00

LD sema,A

IRET

ST72521xx-Auto Known limitations

Doc ID 17660 Rev 1 271/276

23.1.6 Clearing active interrupts outside interrupt routine

When an active interrupt request occurs at the same time as the related flag is being
cleared, an unwanted reset may occur.

Note: Clearing the related interrupt mask will not generate an unwanted reset.

Concurrent interrupt context

The symptom does not occur when the interrupts are handled normally, that is, when:

● The interrupt flag is cleared within its own interrupt routine

● The interrupt flag is cleared within any interrupt routine

● The interrupt flag is cleared in any part of the code while this interrupt is disabled

If these conditions are not met, the symptom can be avoided by implementing the following
sequence:

Perform SIM and RIM operation before and after resetting an active interrupt request.

Example:

SIM

Reset interrupt flag

RIM

Nested interrupt context

The symptom does not occur when the interrupts are handled normally, that is, when:

● The interrupt flag is cleared within its own interrupt routine

● The interrupt flag is cleared within any interrupt routine with higher or identical priority
level

● The interrupt flag is cleared in any part of the code while this interrupt is disabled

If these conditions are not met, the symptom can be avoided by implementing the following
sequence:

PUSH CC

SIM

Reset interrupt flag

POP CC

