

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Active
Core Processor	ARM® Cortex®-A9
Number of Cores/Bus Width	2 Core, 32-Bit
Speed	852MHz
Co-Processors/DSP	Multimedia; NEON™ SIMD
RAM Controllers	LPDDR2, LVDDR3, DDR3
Graphics Acceleration	Yes
Display & Interface Controllers	Keypad, LCD
Ethernet	10/100/1000Mbps (1)
SATA	SATA 3Gbps (1)
USB	USB 2.0 + PHY (4)
Voltage - I/O	1.8V, 2.5V, 2.8V, 3.3V
Operating Temperature	-40°C ~ 125°C (TJ)
Security Features	ARM TZ, Boot Security, Cryptography, RTIC, Secure Fusebox, Secure JTAG, Secure Memory, Secure RTC, Tamper Detection
Package / Case	624-FBGA, FCBGA
Supplier Device Package	624-FCBGA (21x21)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mcimx6d4avt08ae

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Introduction

1. See the nxp.com\imx6series Web page for latest information on the available silicon revision.

2. If a 24 MHz input clock is used (required for USB), the maximum SoC speed is limited to 792 MHz.

3. If a 24 MHz input clock is used (required for USB), the maximum SoC speed is limited to 996 MHz.

1.2 Features

The i.MX 6Dual/6Quad processors are based on ARM Cortex-A9 MPCore platform, which has the following features:

- ARM Cortex-A9 MPCore 4xCPU processor (with TrustZone[®])
- The core configuration is symmetric, where each core includes:
 - 32 KByte L1 Instruction Cache
 - 32 KByte L1 Data Cache
 - Private Timer and Watchdog
 - Cortex-A9 NEON MPE (Media Processing Engine) Co-processor

The ARM Cortex-A9 MPCore complex includes:

- General Interrupt Controller (GIC) with 128 interrupt support
- Global Timer
- Snoop Control Unit (SCU)
- 1 MB unified I/D L2 cache, shared by two/four cores

Parameter Description	Symbol	Min	Мах	Unit
Core supply input voltage (LDO enabled)	VDD_ARM_IN VDD_ARM23_IN VDD_SOC_IN	-0.3	1.6	V
Core supply input voltage (LDO bypass)	VDD_ARM_IN VDD_ARM23_IN VDD_SOC_IN	-0.3	1.4	V
Core supply output voltage (LDO enabled)	VDD_ARM_CAP VDD_SOC_CAP VDD_PU_CAP NVCC_PLL_OUT	-0.3	1.4	V
VDD_HIGH_IN supply voltage	VDD_HIGH_IN	-0.3	3.7	V
DDR I/O supply voltage	NVCC_DRAM	-0.4	1.975 (See note 1)	V
GPIO I/O supply voltage	NVCC_CSI NVCC_EIM NVCC_ENET NVCC_GPIO NVCC_LCD NVCC_NAND NVCC_SD NVCC_JTAG	-0.5	3.7	v
HDMI, PCIe, and SATA PHY high (VPH) supply voltage	HDMI_VPH PCIE_VPH SATA_VPH	-0.3	2.85	V
HDMI, PCIe, and SATA PHY low (VP) supply voltage	HDMI_VP PCIE_VP SATA_VP	-0.3	1.4	V
LVDS, MLB, and MIPI I/O supply voltage (2.5V supply)	NVCC_LVDS_2P5 NVCC_MIPI	-0.3	2.85	V
PCIe PHY supply voltage	PCIE_VPTX	-0.3	1.4	V
RGMII I/O supply voltage	NVCC_RGMII	-0.5	2.725	V
SNVS IN supply voltage (Secure Non-Volatile Storage and Real Time Clock)	VDD_SNVS_IN	-0.3	3.4	V
USB I/O supply voltage	USB_H1_DN USB_H1_DP USB_OTG_DN USB_OTG_DP USB_OTG_CHD_B	-0.3	3.73	V
USB VBUS supply voltage	USB_H1_VBUS USB_OTG_VBUS	_	5.35	V
V _{in} /V _{out} input/output voltage range (non-DDR pins)	V _{in} /V _{out}	-0.5	OVDD+0.3 (See note 2)	V
V _{in} /V _{out} input/output voltage range (DDR pins)	V _{in} /V _{out}	-0.5	OVDD+0.4 (See notes1&2)	V
ESD immunity (HBM)	V _{esd_HBM}	—	2000	V
ESD immunity (CDM)	V _{esd_CDM}	-	500	V
Storage temperature range	T _{storage}	-40	150	°C

Table 4. Absolute Maximum Ratings

¹ The absolute maximum voltage includes an allowance for 400 mV of overshoot on the IO pins. Per JEDEC standards, the allowed signal overshoot must be derated if NVCC_DRAM exceeds 1.575V.

² OVDD is the I/O supply voltage.

Parameter	Symbol	Test Conditions	Min	Max	Unit
High-level output voltage ¹	Voh	loh = -0.1 mA (DSE ² = 001, 010) loh = -1 mA (DSE = 011, 100, 101, 110, 111)	OVDD - 0.15	_	V
Low-level output voltage ¹	Vol	lol = 0.1 mA (DSE ² = 001, 010) lol = 1mA (DSE = 011, 100, 101, 110, 111)	_	0.15	V
High-Level DC input voltage ^{1, 3}	Vih	_	$0.7 \times \text{OVDD}$	OVDD	V
Low-Level DC input voltage ^{1, 3}	Vil	—	0	$0.3 \times \text{OVDD}$	V
Input Hysteresis	Vhys	OVDD = 1.8 V OVDD = 3.3 V	0.25	—	V
Schmitt trigger VT+ ^{3, 4}	VT+		0.5 imes OVDD	_	V
Schmitt trigger VT- ^{3, 4}	VT–		—	$0.5 \times \text{OVDD}$	V
Input current (no pull-up/down)	lin	Vin = OVDD or 0	-1	1	μA
Input current (22 k Ω pull-up)	lin	Vin = 0 V Vin = OVDD	—	212 1	μA
Input current (47 kΩ pull-up)	lin	Vin = 0 V Vin = OVDD	—	100 1	μA
Input current (100 k Ω pull-up)	lin	Vin = 0 V Vin= OVDD	—	48 1	μA
Input current (100 kΩ pull-down)	lin	Vin = 0 V Vin = OVDD	—	1 48	μA
Keeper circuit resistance	Rkeep	Vin = 0.3 x OVDD Vin = 0.7 x OVDD	105	175	kΩ

Table 22. GPIO I/O DC Parameters

¹ Overshoot and undershoot conditions (transitions above OVDD and below GND) on switching pads must be held below 0.6 V, and the duration of the overshoot/undershoot must not exceed 10% of the system clock cycle. Overshoot/ undershoot must be controlled through printed circuit board layout, transmission line impedance matching, signal line termination, or other methods. Non-compliance to this specification may affect device reliability or cause permanent damage to the device.

² DSE is the Drive Strength Field setting in the associated IOMUX control register.

³ To maintain a valid level, the transition edge of the input must sustain a constant slew rate (monotonic) from the current DC level through to the target DC level, Vil or Vih. Monotonic input transition time is from 0.1 ns to 1 s.

⁴ Hysteresis of 250 mV is guaranteed over all operating conditions when hysteresis is enabled.

4.6.3 DDR I/O DC Parameters

The DDR I/O pads support LPDDR2 and DDR3/DDR3L operational modes.

4.6.4 RGMII I/O 2.5V I/O DC Electrical Parameters

The RGMII interface complies with the RGMII standard version 1.3. The parameters in Table 23 are guaranteed per the operating ranges in Table 6, unless otherwise noted.

Parameter	Symbol	Test Conditions	Min	Мах	Unit
Output Differential Voltage	V _{OD}	Rload = 50 Ω between padP and padN	300	500	mV
Output High Voltage	V _{OH}		1.15	1.75	V
Output Low Voltage	V _{OL}		0.75	1.35	V
Common-mode Output Voltage ((Vpad_P + Vpad_N) / 2))	V _{OCM}		1	1.5	V
Differential Output Impedance	Z _O	_	1.6		kΩ

Table 27. MLB I/O DC Parameters

4.7 I/O AC Parameters

This section includes the AC parameters of the following I/O types:

- General Purpose I/O (GPIO)
- Double Data Rate I/O (DDR) for LPDDR2 and DDR3/DDR3L modes
- LVDS I/O
- MLB I/O

The GPIO and DDR I/O load circuit and output transition time waveforms are shown in Figure 4 and Figure 5.

CL includes package, probe and fixture capacitance

Figure 4. Load Circuit for Output

Figure 5. Output Transition Time Waveform

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Single output slew rate, measured between Vol(ac) and Voh(ac)	tsr	Driver impedance = 34Ω	2.5	—	5	V/ns
Skew between pad rise/fall asymmetry + skew caused by SSN	t _{SKD}	clk = 533 MHz	—	—	0.1	ns

Table 31. DDR I/O DDR3/DDR3L Mode AC Parameters¹ (continued)

¹ Note that the JEDEC JESD79_3C specification supersedes any specification in this document.

² Vid(ac) specifies the input differential voltage IVtr-Vcpl required for switching, where Vtr is the "true" input signal and Vcp is the "complementary" input signal. The Minimum value is equal to Vih(ac) – Vil(ac).

³ The typical value of Vix(ac) is expected to be about 0.5 × OVDD. and Vix(ac) is expected to track variation of OVDD. Vix(ac) indicates the voltage at which differential input signal must cross.

4.7.3 LVDS I/O AC Parameters

The differential output transition time waveform is shown in Figure 6.

Figure 6. Differential LVDS Driver Transition Time Waveform

Table 32 shows the AC parameters for LVDS I/O.

 Table 32. I/O AC Parameters of LVDS Pad

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Differential pulse skew ¹	t _{SKD}		_	_	0.25	
Transition Low to High Time ²	t _{TLH}	Rload = 100 Ω, Cload = 2 pF	_	_	0.5	ns
Transition High to Low Time ²	t _{THL}		_	_	0.5	
Operating Frequency	f	—	_	600	800	MHz
Offset voltage imbalance	Vos	—	_	_	150	mV

 $t_{SKD} = |t_{PHLD} - t_{PLHD}|$, is the magnitude difference in differential propagation delay time between the positive going edge and the negative going edge of the same channel.

² Measurement levels are 20–80% from output voltage.

4.7.4 MLB 6-Pin I/O AC Parameters

The differential output transition time waveform is shown in Figure 7.

Electrical Characteristics

Figure 9. Impedance Matching Load for Measurement

4.8.1 GPIO Output Buffer Impedance

Table 34 shows the GPIO output buffer impedance (OVDD 1.8 V).

Table 34. GPIO Output Buffer Average Impedance (OVDD 1.8 V)

Parameter	Symbol	Drive Strength (DSE)	Typ Value	Unit
Output Driver Impedance		001	260	
	Rdrv	010	130	
		011	90	
		100	60	Ω
		101	50	
		110	40	
		111	33	

Table 35 shows the GPIO output buffer impedance (OVDD 3.3 V).

Table 35. GPIO Output Buffer Average Impedance (OVDD 3.3 V)

Parameter	Symbol	Drive Strength (DSE)	Typ Value	Unit
Output Driver Impedance		001	150	
	Rdrv	010	75	
		011	50	
		100	37	Ω
		101	30	
		110	25	
		111	20	

4.9.3.2 General EIM Timing-Synchronous Mode

Figure 12, Figure 13, and Table 41 specify the timings related to the EIM module. All EIM output control signals may be asserted and deasserted by an internal clock synchronized to the EIM_BCLK rising edge according to corresponding assertion/negation control fields.

Figure 12. EIM Output Timing Diagram

Figure 13. EIM Input Timing Diagram

4.9.3.3 Examples of EIM Synchronous Accesses

Table 41. EIM Bus Timing Parameters

ID	Parameter	Min ¹	Max ¹	Unit
WE1	EIM_BCLK cycle time ²	t × (k+1)	—	ns
WE2	EIM_BCLK high level width	$0.4 \times t \times (k+1)$	—	ns
WE3	EIM_BCLK low level width	$0.4 \times t \times (k+1)$	—	ns

Figure 28. Read Data Latch Cycle Timing Diagram (EDO Mode)

ID	ID Parameter		Timing T = GPMI Clock Cycle		Unit
			Min	Мах	
NF1	NAND_CLE setup time	tCLS	$(AS + DS) \times T$	0.12 [see ^{2,3}]	ns
NF2	NAND_CLE hold time	tCLH	DH × T - 0.	72 [see ²]	ns
NF3	NAND_CEx_B setup time	tCS	(AS + DS + 1)	×T [see ^{3,2}]	ns
NF4	NAND_CEx_B hold time	tCH	(DH+1) × T	- 1 [see ²]	ns
NF5	NAND_WE_B pulse width	tWP	$DS \times T$ [see ²]		ns
NF6	NAND_ALE setup time	tALS	(AS + DS) × T - 0.49 [see ^{3,2}]		ns
NF7	NAND_ALE hold time	tALH	(DH × T - 0.42 [see ²]		ns
NF8	Data setup time	tDS	DS × T - 0.26 [see ²]		ns
NF9	Data hold time	tDH	DH×T-1.	37 [see ²]	ns
NF10	Write cycle time	tWC	(DS + DH)	× T [see ²]	ns
NF11	NAND_WE_B hold time	tWH	DH×T	[see ²]	ns
NF12	Ready to NAND_RE_B low	tRR ⁴	(AS + 2) × T [see ^{3,2}] —		ns
NF13	NAND_RE_B pulse width	tRP	DS × T [see ²]		ns
NF14	READ cycle time	tRC	(DS + DH) × T [see ²]		ns
NF15	NAND_RE_B high hold time	tREH	$DH \times T$ [see ²]		ns

4.11.3 Samsung Toggle Mode AC Timing

4.11.3.1 Command and Address Timing

Samsung Toggle mode command and address timing is the same as ONFI 1.0 compatible Async mode AC timing. See Section 4.11.1, "Asynchronous Mode AC Timing (ONFI 1.0 Compatible)" for details.

4.11.3.2 Read and Write Timing

dev_clk	
NAND_CEx_F	3 0
NAND_CLE	0
NAND_ALE	0
NAND_WE_B	. 1
NAND_RE_B	1 NF23 NF24
NAND_DQS	
NAND_DATA[

Figure 33. Samsung Toggle Mode Data Write Timing

ID	Parameter	Symbols	Min	Мах	Unit			
eSDHC Input/Card Outputs SD_CMD, SD_DATAx (Reference to SDx_CLK)								
SD7	eSDHC Input Setup Time	t _{ISU}	2.5	—	ns			
SD8	eSDHC Input Hold Time ⁴	t _{IH}	1.5	—	ns			

Table 50. SD/eMMC4.3 Interface Timing Specification (continued)

¹ In low speed mode, card clock must be lower than 400 kHz, voltage ranges from 2.7 to 3.6 V.

² In normal (full) speed mode for SD/SDIO card, clock frequency can be any value between 0–25 MHz. In high-speed mode, clock frequency can be any value between 0–50 MHz.

³ In normal (full) speed mode for MMC card, clock frequency can be any value between 0-20 MHz. In high-speed mode, clock frequency can be any value between 0-52 MHz.

⁴To satisfy hold timing, the delay difference between clock input and cmd/data input must not exceed 2 ns.

4.12.4.2 eMMC4.4/4.41 (Dual Data Rate) eSDHCv3 AC Timing

Figure 40 depicts the timing of eMMC4.4/4.41. Table 51 lists the eMMC4.4/4.41 timing characteristics. Be aware that only SDx DATAx is sampled on both edges of the clock (not applicable to SD CMD).

Figure 40. eMMC4.4/4.41 Timing

Table 51. eMMC4.4/4.4	1 Interface	Timing	Specification
-----------------------	-------------	--------	---------------

ID	Parameter	Symbols	Min	Max	Unit				
	Card Input Clock ¹								
SD1	Clock Frequency (EMMC4.4 DDR)	f _{PP}	0	52	MHz				
SD1	Clock Frequency (SD3.0 DDR)	f _{PP}	0	50	MHz				
	uSDHC Output / Card Inputs SD_CMD, SD_DATAx (Reference to SD_CLK)								
SD2	uSDHC Output Delay	t _{OD}	2.5	7.1	ns				
uSDHC Input / Card Outputs SD_CMD, SD_DATAx (Reference to SD_CLK)									
SD3	uSDHC Input Setup Time	t _{ISU}	1.7	_	ns				
SD4	uSDHC Input Hold Time	t _{IH}	1.5	_	ns				

¹ Clock duty cycle will be in the range of 47% to 53%.

stops receiving data from the stream. For the next line, the IPU2_CSIx_HSYNC timing repeats. For the next frame, the IPU2_CSIx_VSYNC timing repeats.

4.12.10.2.3 Non-Gated Clock Mode

The timing is the same as the gated-clock mode (described in Section 4.12.10.2.2, "Gated Clock Mode,") except for the IPU2_CSIx_HSYNC signal, which is not used (see Figure 60). All incoming pixel clocks are valid and cause data to be latched into the input FIFO. The IPU2_CSIx_PIX_CLK signal is inactive (states low) until valid data is going to be transmitted over the bus.

Figure 60. Non-Gated Clock Mode Timing Diagram

The timing described in Figure 60 is that of a typical sensor. Some other sensors may have a slightly different timing. The CSI can be programmed to support rising/falling-edge triggered IPU2_CSIx_VSYNC; active-high/low IPU2_CSIx_HSYNC; and rising/falling-edge triggered IPU2_CSIx_PIX_CLK.

i.MX 6Dual/6Quad	LCD								
	RGB,	R	GB/TV	Comment ^{1,2}					
Port Name (x = 0, 1)	Signal Name (General)	16-bit RGB	18-bit RGB	24 Bit RGB	8-bit YCrCb ³	16-bit YCrCb	20-bit YCrCb		
IPUx_DISPx_DAT05	DAT[5]	G[0]	B[5]	B[5]	Y/C[5]	C[5]	C[5]	_	
IPUx_DISPx_DAT06	DAT[6]	G[1]	G[0]	B[6]	Y/C[6]	C[6]	C[6]		
IPUx_DISPx_DAT07	DAT[7]	G[2]	G[1]	B[7]	Y/C[7]	C[7]	C[7]	_	
IPUx_DISPx_DAT08	DAT[8]	G[3]	G[2]	G[0]	—	Y[0]	C[8]	_	
IPUx_DISPx_DAT09	DAT[9]	G[4]	G[3]	G[1]	_	Y[1]	C[9]	_	
IPUx_DISPx_DAT10	DAT[10]	G[5]	G[4]	G[2]	—	Y[2]	Y[0]		
IPUx_DISPx_DAT11	DAT[11]	R[0]	G[5]	G[3]	—	Y[3]	Y[1]		
IPUx_DISPx_DAT12	DAT[12]	R[1]	R[0]	G[4]	—	Y[4]	Y[2]		
IPUx_DISPx_DAT13	DAT[13]	R[2]	R[1]	G[5]	—	Y[5]	Y[3]	_	
IPUx_DISPx_DAT14	DAT[14]	R[3]	R[2]	G[6]		Y[6]	Y[4]		
IPUx_DISPx_DAT15	DAT[15]	R[4]	R[3]	G[7]	—	Y[7]	Y[5]	_	
IPUx_DISPx_DAT16	DAT[16]		R[4]	R[0]	—	—	Y[6]	_	
IPUx_DISPx_DAT17	DAT[17]	—	R[5]	R[1]		_	Y[7]	_	
IPUx_DISPx_DAT18	DAT[18]		_	R[2]	—	—	Y[8]	_	
IPUx_DISPx_DAT19	DAT[19]	—	—	R[3]	—	—	Y[9]	_	
IPUx_DISPx_DAT20	DAT[20]	—	—	R[4]	—	—	—		
IPUx_DISPx_DAT21	DAT[21]			R[5]	—	—	—		
IPUx_DISPx_DAT22	DAT[22]			R[6]	—	—	—		
IPUx_DISPx_DAT23	DAT[23]	—	—	R[7]	—				
IPUx_DIx_DISP_CLK	PixCLK						I	—	
IPUx_DIx_PIN01				_				May be required for anti-tearing	
IPUx_DIx_PIN02				HSYNC	;			_	
IPUx_DIx_PIN03	VSYNC						VSYNC out		

Table 64. Video Signal Cross-Reference (continued)

Table 73. MLB	256/512 Fs	Timing	Parameters	(continued)
---------------	------------	--------	------------	-------------

Parameter	Symbol	Min	Мах	Unit	Comment
Bus Hold from MLB_CLK low	t _{mdzh}	4		ns	
Transmitter MLBSIG (MLBDAT) output valid from transition of MLBCLK (low-to-high)	Tdelay		10.75	_	ns

¹ The controller can shut off MLB_CLK to place MediaLB in a low-power state. Depending on the time the clock is shut off, a runt pulse can occur on MLB_CLK.

² MLB_CLK low/high time includes the pulse width variation.

³ The MediaLB driver can release the MLB_DATA/MLB_SIG line as soon as MLB_CLK is low; however, the logic state of the final driven bit on the line must remain on the bus for t_{mdzh}. Therefore, coupling must be minimized while meeting the maximum load capacitance listed.

Ground = 0.0 V; load capacitance = 40 pF; MediaLB speed = 1024 Fs; Fs = 48 kHz; all timing parameters specified from the valid voltage threshold as listed in Table 74; unless otherwise noted.

Parameter	Symbol	Min	Max	Unit	Comment
MLB_CLK Operating Frequency ¹	f _{mck}	45.056	51.2	MHz	1024xfs at 44.0 kHz 1024xfs at 50.0 kHz
MLB_CLK rise time	t _{mckr}	_	1	ns	V _{IL} TO V _{IH}
MLB_CLK fall time	t _{mckf}		1	ns	V _{IH} TO V _{IL}
MLB_CLK low time	t _{mckl}	6.1	_	ns	(see ²)
MLB_CLK high time	t _{mckh}	9.3	_	ns	—
MLB_SIG/MLB_DATA receiver input valid to MLB_CLK falling	t _{dsmcf}	1	_	ns	_
MLB_SIG/MLB_DATA receiver input hold from MLB_CLK low	t _{dhmcf}	t _{mdzh}	—	ns	_
MLB_SIG/MLB_DATA output high impedance from MLB_CLK low	t _{mcfdz}	0	t _{mckl}	ns	(see ³)
Bus Hold from MLB_CLK low	t _{mdzh}	2	—	ns	—
Transmitter MLBSIG (MLBDAT) output valid from transition of MLBCLK (low-to-high)	Tdelay	_	6	ns	_

Table 74. MLB 1024 Fs Timing Parameters

¹ The controller can shut off MLB_CLK to place MediaLB in a low-power state. Depending on the time the clock is shut off, a runt pulse can occur on MLB_CLK.

² MLB_CLK low/high time includes the pulse width variation.

³ The MediaLB driver can release the MLB_DATA/MLB_SIG line as soon as MLB_CLK is low; however, the logic state of the final driven bit on the line must remain on the bus for t_{mdzh}. Therefore, coupling must be minimized while meeting the maximum load capacitance listed.

Table 75 lists the MediaLB 6-pin interface timing characteristics, and Figure 82 shows the MLB 6-pin delay, setup, and hold times.

i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 5, 09/2017

4.12.17.1.1 SATA PHY Transmitter Characteristics

Table 77 provides specifications for SATA PHY transmitter characteristics.

Table 77. SATA PHY Transmitter Characteristics	Table	9 77. SATA F	PHY Transmitt	er Characteristics
--	-------	--------------	---------------	--------------------

Parameters	Symbol	Min	Тур	Мах	Unit
Transmit common mode voltage	V _{CTM}	0.4	—	0.6	V
Transmitter pre-emphasis accuracy (measured change in de-emphasized bit)	—	-0.5	_	0.5	dB

4.12.17.1.2 SATA PHY Receiver Characteristics

Table 78 provides specifications for SATA PHY receiver characteristics.

Table 78. SAT	A PHY Receiver	Characteristics
---------------	----------------	-----------------

Parameters	Symbol	Min	Тур	Max	Unit
Minimum Rx eye height (differential peak-to-peak)	V _{MIN_RX_EYE_HEIGHT}	175	_	_	mV
Tolerance	PPM	-400	_	400	ppm

4.12.17.2 SATA_REXT Reference Resistor Connection

The impedance calibration process requires connection of reference resistor 191 Ω 1% precision resistor on SATA_REXT pad to ground.

Resistor calibration consists of learning which state of the internal Resistor Calibration register causes an internal, digitally trimmed calibration resistor to best match the impedance applied to the SATA_REXT pin. The calibration register value is then supplied to all Tx and Rx termination resistors.

During the calibration process (for a few tens of microseconds), up to 0.3 mW can be dissipated in the external SATA_REXT resistor. At other times, no power is dissipated by the SATA_REXT resistor.

4.12.18 SCAN JTAG Controller (SJC) Timing Parameters

Figure 84 depicts the SJC test clock input timing. Figure 85 depicts the SJC boundary scan timing. Figure 86 depicts the SJC test access port. Figure 87 depicts the JTAG_TRST_B timing. Signal parameters are listed in Table 79.

Figure 84. Test Clock Input Timing Diagram

Figure 87. JTAG_TRST_B Timing Diagram

ID	Baramatar ^{1,2}	All Freq	Unit	
		Min	Max	Onit
SJ0	JTAG_TCK frequency of operation 1/(3xT _{DC}) ¹	0.001	22	MHz
SJ1	JTAG_TCK cycle time in crystal mode	45	_	ns
SJ2	JTAG_TCK clock pulse width measured at V_M^2	22.5	_	ns
SJ3	JTAG_TCK rise and fall times	_	3	ns
SJ4	Boundary scan input data set-up time	5	_	ns
SJ5	Boundary scan input data hold time	24	-	ns
SJ6	JTAG_TCK low to output data valid	_	40	ns
SJ7	JTAG_TCK low to output high impedance	_	40	ns
SJ8	JTAG_TMS, JTAG_TDI data set-up time	5	_	ns
SJ9	JTAG_TMS, JTAG_TDI data hold time	25	_	ns
SJ10	JTAG_TCK low to JTAG_TDO data valid	_	44	ns
SJ11	JTAG_TCK low to JTAG_TDO high impedance	_	44	ns
SJ12	JTAG_TRST_B assert time	100	_	ns
SJ13	JTAG_TRST_B set-up time to JTAG_TCK low	40	_	ns

Table 79. JTAG Timir	ŋd
----------------------	----

¹ T_{DC} = target frequency of SJC

² V_{M} = mid-point voltage

4.12.19 SPDIF Timing Parameters

The Sony/Philips Digital Interconnect Format (SPDIF) data is sent using the bi-phase marking code. When encoding, the SPDIF data signal is modulated by a clock that is twice the bit rate of the data signal.

Table 80 and Figure 88 and Figure 89 show SPDIF timing parameters for the Sony/Philips Digital Interconnect Format (SPDIF), including the timing of the modulating Rx clock (SPDIF_SR_CLK) for SPDIF in Rx mode and the timing of the modulating Tx clock (SPDIF_ST_CLK) for SPDIF in Tx mode.

4.12.20.3 SSI Transmitter Timing with External Clock

Figure 92 depicts the SSI transmitter external clock timing and Table 84 lists the timing parameters for the transmitter timing with the external clock.

Figure 92. SSI Transmitter External Clock Timing Diagram

ID	Parameter	Min	Мах	Unit					
External Clock Operation									
SS22	AUDx_TXC/AUDx_RXC clock period	81.4	_	ns					
SS23	AUDx_TXC/AUDx_RXC clock high period	36.0	_	ns					
SS24	AUDx_TXC/AUDx_RXC clock rise time	—	6.0	ns					
SS25	AUDx_TXC/AUDx_RXC clock low period	36.0	_	ns					
SS26	AUDx_TXC/AUDx_RXC clock fall time	—	6.0	ns					
SS27	AUDx_TXC high to AUDx_TXFS (bl) high	-10.0	15.0	ns					
SS29	AUDx_TXC high to AUDx_TXFS (bl) low	10.0	_	ns					
SS31	AUDx_TXC high to AUDx_TXFS (wl) high	-10.0	15.0	ns					
SS33	AUDx_TXC high to AUDx_TXFS (wl) low	10.0	_	ns					
SS37	AUDx_TXC high to AUDx_TXD valid from high impedance	—	15.0	ns					
SS38	AUDx_TXC high to AUDx_TXD high/low	—	15.0	ns					
SS39	AUDx_TXC high to AUDx_TXD high impedance	—	15.0	ns					

Table 84.	SSI	Transmitter	Timina	with	External	Clock
	00.	manomittoi			Extornal	01001

Package Information and Contact Assignments

				Out of Reset Condition ¹						
Ball Name	Ball	Power Group	Ball Type	Default Mode (Reset Mode)	Default Function (Signal Name)	Input/Output	Value ²			
EIM_DA6	K25	NVCC_EIM2	GPIO	ALT0	EIM_AD06	Input	PU (100K)			
EIM_DA7	L25	NVCC_EIM2	GPIO	ALT0	EIM_AD07	Input	PU (100K)			
EIM_DA8	L24	NVCC_EIM2	GPIO	ALT0	EIM_AD08	Input	PU (100K)			
EIM_DA9	M21	NVCC_EIM2	GPIO	ALT0	EIM_AD09	Input	PU (100K)			
EIM_DA10	M22	NVCC_EIM2	GPIO	ALT0	EIM_AD10	Input	PU (100K)			
EIM_DA11	M20	NVCC_EIM2	GPIO	ALT0	EIM_AD11	Input	PU (100K)			
EIM_DA12	M24	NVCC_EIM2	GPIO	ALT0	EIM_AD12	Input	PU (100K)			
EIM_DA13	M23	NVCC_EIM2	GPIO	ALT0	EIM_AD13	Input	PU (100K)			
EIM_DA14	N23	NVCC_EIM2	GPIO	ALT0	EIM_AD14	Input	PU (100K)			
EIM_DA15	N24	NVCC_EIM2	GPIO	ALT0	EIM_AD15	Input	PU (100K)			
EIM_EB0	K21	NVCC_EIM2	GPIO	ALT0	EIM_EB0_B	Output	1			
EIM_EB1	K23	NVCC_EIM2	GPIO	ALT0	EIM_EB1_B	Output	1			
EIM_EB2	E22	NVCC_EIM0	GPIO	ALT5	GPIO2_IO30	Input	PU (100K)			
EIM_EB3	F23	NVCC_EIM0	GPIO	ALT5	GPIO2_IO31	Input	PU (100K)			
EIM_LBA	K22	NVCC_EIM1	GPIO	ALT0	EIM_LBA_B	Output	1			
EIM_OE	J24	NVCC_EIM1	GPIO	ALT0	EIM_OE	Output	1			
EIM_RW	K20	NVCC_EIM1	GPIO	ALT0	EIM_RW	Output	1			
EIM_WAIT	M25	NVCC_EIM2	GPIO	ALT0	EIM_WAIT	Input	PU (100K)			
ENET_CRS_DV	U21	NVCC_ENET	GPIO	ALT5	GPIO1_IO25	Input	PU (100K)			
ENET_MDC	V20	NVCC_ENET	GPIO	ALT5	GPIO1_IO31	Input	PU (100K)			
ENET_MDIO	V23	NVCC_ENET	GPIO	ALT5	GPIO1_IO22	Input	PU (100K)			
ENET_REF_CLK ³	V22	NVCC_ENET	GPIO	ALT5	GPIO1_IO23	Input	PU (100K)			
ENET_RX_ER	W23	NVCC_ENET	GPIO	ALT5	GPIO1_IO24	Input	PU (100K)			
ENET_RXD0	W21	NVCC_ENET	GPIO	ALT5	GPIO1_IO27	Input	PU (100K)			
ENET_RXD1	W22	NVCC_ENET	GPIO	ALT5	GPIO1_IO26	Input	PU (100K)			
ENET_TX_EN	V21	NVCC_ENET	GPIO	ALT5	GPIO1_IO28	Input	PU (100K)			
ENET_TXD0	U20	NVCC_ENET	GPIO	ALT5	GPIO1_IO30	Input	PU (100K)			
ENET_TXD1	W20	NVCC_ENET	GPIO	ALT5	GPIO1_IO29	Input	PU (100K)			
GPIO_0	T5	NVCC_GPIO	GPIO	ALT5	GPIO1_IO00	Input	PD (100K)			
GPIO_1	T4	NVCC_GPIO	GPIO	ALT5	GPIO1_IO01	Input	PU (100K)			
GPIO_16	R2	NVCC_GPIO	GPIO	ALT5	GPIO7_IO11	Input	PU (100K)			
GPIO_17	R1	NVCC_GPIO	GPIO	ALT5	GPI07_I012	Input	PU (100K)			
GPIO_18	P6	NVCC_GPIO	GPIO	ALT5	GPIO7_IO13	Input	PU (100K)			
GPIO_19	P5	NVCC_GPIO	GPIO	ALT5	GPIO4_IO05	Input	PU (100K)			
GPIO_2	T1	NVCC_GPIO	GPIO	ALT5	GPIO1_IO02	Input	PU (100K)			
GPIO_3	R7	NVCC_GPIO	GPIO	ALT5	GPIO1_IO03	Input	PU (100K)			

Table 96. 21 x 21 mm Functional Contact Assignments (continued)

Package Information and Contact Assignments

	-	2	З	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
AC	DRAM_D4	DRAM_VREF	DRAM_DQM0	DRAM_D2	DRAM_D13	DRAM_DQM1	DRAM_D15	DRAM_D22	DRAM_D28	DRAM_SDQS3	DRAM_D31	DRAM_A11	DRAM_A6	DRAM_A0	DRAM_SDBA0	DRAM_SDODT0	DRAM_A13	DRAM_D34	DRAM_D39	DRAM_DQM5	DRAM_D47	DRAM_D48	DRAM_D53	DRAM_D51	DRAM_D55
AD	DRAM_D5	DRAM_D0	DRAM_SDQS0_B	GND	DRAM_D8	DRAM_SDQS1	GND	DRAM_SDQS2	DRAM_D29	GND	DRAM_D30	DRAM_A12	GND	DRAM_SDCLK_1	DRAM_SDCLK_0	GND	DRAM_CS1	DRAM_SDQS4	GND	DRAM_SDQS5	DRAM_D43	GND	DRAM_SDQS6	DRAM_DQM6	DRAM_D54
AE	GND	DRAM_D1	DRAM_SDQS0	DRAM_D7	DRAM_D9	DRAM_SDQS1_B	DRAM_D11	DRAM_SDQS2_B	DRAM_D24	DRAM_DQM3	DRAM_D26	DRAM_A9	DRAM_A5	DRAM_SDCLK_1_B	DRAM_SDCLK_0_B	DRAM_CAS	ZQPAD	DRAM_SDQS4_B	DRAM_D35	DRAM_SDQS5_B	DRAM_D46	DRAM_D49	DRAM_SDQS6_B	DRAM_D50	GND

Table 98. 21 x 21 mm, 0.8 mm Pitch Ball Map (continued)

Table 99. i.MX 6Dual/6Quad Data Sheet Document Revision History (continued)	
---	--

Rev. Number Date	Substantive Change(s)
5 09/201 (Cont.)	 Table 21, "XTALI and RTC_XTALI DC Parameters," on page 39: Added footnote to RTC_XTALI high level DC input voltage row: "This voltage specification must not be exceeded and". Section 4.6.4, "RGMII I/O 2.5V I/O DC Electrical Parameters" on page 40: Added section and table. Section 4.10, "Multi-Mode DDR Controller (MMDC)" on page 64: Replaced section with new content. Was: 4.9.4 "DDR SDRAM Specific Parameters (DDR3/DDR3L/LPDDR2)" with timing diagrams and parameter tables for DDR3/DDP3L/LPDDR2. Table 51, "eMMC4.4/4.41 Interface Timing Specification," on page 81, Corrected SD3, uSDHC Input Setup Time, minimum value from 2.6ns to 1.7ns. Added footnote to Card Input Clock regarding duty cycle range. Table 52, "SDR50/SDR104 Interface Timing Specification," on page 82: Changes to Min/Max values: SD2 min from: 0.3 x tCLK; to: 0.46 x tCLK SD2 max from: 0.7 x tCLK to: 0.54 x tCLK SD3 min from: 0.3 x tCLK; to: 0.54 x tCLK SD5 max from: 1 ns; to: 0.74 ns Table 62, "Camera Input Signal Cross Reference, Format, and Bits Per Cycle," on page 95: Changed RG8565, 16 bits column heading from 2 cycles to 1 cycle. Table 63, "Sensor Interface Timing Characteristics," on page 98, Sensor Interface Timing characteristics: Added rows to include Vsync values. Table 63, "Sensor Interface Timing Characteristics," on page 98, Sensor Interface Timing characteristics: Added rows to include Vsync values. Table 69, "21 x 21 mm Functional Contact Assignment," on page 144: Added description to ZQPAD. Table 96, "21 x 21 mm Functional Contact Assignments," on page 146: Changed rows DRAM_SDCLK_0 and DRAM_SDCLK_1, Out of Reset Conditions from "Input–Hi-Z" to "Output–0". Added description to GPANAIO row: "output for NXP use only" (Revision History table continues on next page.)