
E·XFL

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Details	
Product Status	Active
Core Processor	ARM® Cortex®-A9
Number of Cores/Bus Width	2 Core, 32-Bit
Speed	1.0GHz
Co-Processors/DSP	Multimedia; NEON [™] SIMD
RAM Controllers	LPDDR2, LVDDR3, DDR3
Graphics Acceleration	Yes
Display & Interface Controllers	Keypad, LCD
Ethernet	10/100/1000Mbps (1)
SATA	SATA 3Gbps (1)
USB	USB 2.0 + PHY (4)
Voltage - I/O	1.8V, 2.5V, 2.8V, 3.3V
Operating Temperature	-40°C ~ 125°C (TJ)
Security Features	ARM TZ, Boot Security, Cryptography, RTIC, Secure Fusebox, Secure JTAG, Secure Memory, Secure RTC, Tamper Detection
Package / Case	624-FBGA, FCBGA
Supplier Device Package	624-FCBGA (21x21)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mcimx6d4avt10ae

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Introduction

- Graphics rendering for Human Machine Interfaces (HMI)
- High-performance speech processing with large databases
- Audio playback

The i.MX 6Dual/6Quad processors offers numerous advanced features, such as:

- Multilevel memory system—The multilevel memory system of each processor is based on the L1 instruction and data caches, L2 cache, and internal and external memory. The processors support many types of external memory devices, including DDR3, DDR3L, LPDDR2, NOR Flash, PSRAM, cellular RAM, NAND Flash (MLC and SLC), OneNAND[™], and managed NAND, including eMMC up to rev 4.4/4.41.
- Smart speed technology—The processors have power management throughout the device that enables the rich suite of multimedia features and peripherals to consume minimum power in both active and various low power modes. Smart speed technology enables the designer to deliver a feature-rich product, requiring levels of power far lower than industry expectations.
- Dynamic voltage and frequency scaling—The processors improve the power efficiency of devices by scaling the voltage and frequency to optimize performance.
- Multimedia powerhouse—The multimedia performance of each processor is enhanced by a multilevel cache system, Neon[®] MPE (Media Processor Engine) co-processor, a multi-standard hardware video codec, 2 autonomous and independent image processing units (IPU), and a programmable smart DMA (SDMA) controller.
- Powerful graphics acceleration—Each processor provides three independent, integrated graphics processing units: an OpenGL[®] ES 2.0 3D graphics accelerator with four shaders (up to 200 MTri/s and OpenCL support), 2D graphics accelerator, and dedicated OpenVGTM 1.1 accelerator.
- Interface flexibility—Each processor supports connections to a variety of interfaces: LCD controller for up to four displays (including parallel display, HDMI1.4, MIPI display, and LVDS display), dual CMOS sensor interface (parallel or through MIPI), high-speed USB on-the-go with PHY, high-speed USB host with PHY, multiple expansion card ports (high-speed MMC/SDIO host and other), 10/100/1000 Mbps Gigabit Ethernet controller, and a variety of other popular interfaces (such as UART, I²C, and I²S serial audio, SATA-II, and PCIe-II).
- Automotive environment support—Each processor includes interfaces, such as two CAN ports, an MLB150/50 port, an ESAI audio interface, and an asynchronous sample rate converter for multichannel/multisource audio.
- Advanced security—The processors deliver hardware-enabled security features that enable secure e-commerce, digital rights management (DRM), information encryption, secure boot, and secure software downloads. The security features are discussed in detail in the i.MX 6Dual/6Quad security reference manual (IMX6DQ6SDLSRM).
- Integrated power management—The processors integrate linear regulators and internally generate voltage levels for different domains. This significantly simplifies system power management structure.

- 1-bit or 4-bit transfer mode specifications for SD and SDIO cards up to UHS-I SDR-104 mode (104 MB/s max)
- 1-bit, 4-bit, or 8-bit transfer mode specifications for MMC cards up to 52 MHz in both SDR and DDR modes (104 MB/s max)
- USB:
 - One High Speed (HS) USB 2.0 OTG (Up to 480 Mbps), with integrated HS USB PHY
 - Three USB 2.0 (480 Mbps) hosts:
 - One HS host with integrated High Speed PHY
 - Two HS hosts with integrated High Speed Inter-Chip (HS-IC) USB PHY
- Expansion PCI Express port (PCIe) v2.0 one lane
 - PCI Express (Gen 2.0) dual mode complex, supporting Root complex operations and Endpoint operations. Uses x1 PHY configuration.
- Miscellaneous IPs and interfaces:
 - SSI block capable of supporting audio sample frequencies up to 192 kHz stereo inputs and outputs with I²S mode
 - ESAI is capable of supporting audio sample frequencies up to 260 kHz in I2S mode with 7.1 multi channel outputs
 - Five UARTs, up to 5.0 Mbps each:
 - Providing RS232 interface
 - Supporting 9-bit RS485 multidrop mode
 - One of the five UARTs (UART1) supports 8-wire while the other four support 4-wire. This is due to the SoC IOMUX limitation, because all UART IPs are identical.
 - Five eCSPI (Enhanced CSPI)
 - Three I2C, supporting 400 kbps
 - Gigabit Ethernet Controller (IEEE1588 compliant), $10/100/1000^1$ Mbps
 - Four Pulse Width Modulators (PWM)
 - System JTAG Controller (SJC)
 - GPIO with interrupt capabilities
 - 8x8 Key Pad Port (KPP)
 - Sony Philips Digital Interconnect Format (SPDIF), Rx and Tx
 - Two Controller Area Network (FlexCAN), 1 Mbps each
 - Two Watchdog timers (WDOG)
 - Audio MUX (AUDMUX)
 - MLB (MediaLB) provides interface to MOST Networks (150 Mbps) with the option of DTCP cipher accelerator

1. The theoretical maximum performance of 1 Gbps ENET is limited to 470 Mbps (total for Tx and Rx) due to internal bus throughput limitations. The actual measured performance in optimized environment is up to 400 Mbps. For details, see the ERR004512 erratum in the i.MX 6Dual/6Quad errata document (IMX6DQCE).

3 Modules List

The i.MX 6Dual/6Quad processors contain a variety of digital and analog modules. Table 2 describes these modules in alphabetical order.

Block Mnemonic	Block Name	Subsystem	Brief Description
512 x 8 Fuse Box	Electrical Fuse Array	Security	Electrical Fuse Array. Enables to setup Boot Modes, Security Levels, Security Keys, and many other system parameters. The i.MX 6Dual/6Quad processors consist of 512x8-bit fuse box accessible through OCOTP_CTRL interface.
APBH-DMA	NAND Flash and BCH ECC DMA Controller	System Control Peripherals	DMA controller used for GPMI2 operation.
ARM	ARM Platform	ARM	The ARM Cortex-A9 platform consists of 4x (four) Cortex-A9 cores version r2p10 and associated sub-blocks, including Level 2 Cache Controller, SCU (Snoop Control Unit), GIC (General Interrupt Controller), private timers, Watchdog, and CoreSight debug modules.
ASRC	Asynchronous Sample Rate Converter	Multimedia Peripherals	The Asynchronous Sample Rate Converter (ASRC) converts the sampling rate of a signal associated to an input clock into a signal associated to a different output clock. The ASRC supports concurrent sample rate conversion of up to 10 channels of about -120dB THD+N. The sample rate conversion of each channel is associated to a pair of incoming and outgoing sampling rates. The ASRC supports up to three sampling rate pairs.
AUDMUX	Digital Audio Mux	Multimedia Peripherals	The AUDMUX is a programmable interconnect for voice, audio, and synchronous data routing between host serial interfaces (for example, SSI1, SSI2, and SSI3) and peripheral serial interfaces (audio and voice codecs). The AUDMUX has seven ports with identical functionality and programming models. A desired connectivity is achieved by configuring two or more AUDMUX ports.
BCH40	Binary-BCH ECC Processor	System Control Peripherals	The BCH40 module provides up to 40-bit ECC error correction for NAND Flash controller (GPMI).
CAAM	Cryptographic Accelerator and Assurance Module	Security	CAAM is a cryptographic accelerator and assurance module. CAAM implements several encryption and hashing functions, a run-time integrity checker, and a Pseudo Random Number Generator (PRNG). The pseudo random number generator is certified by Cryptographic Algorithm Validation Program (CAVP) of National Institute of Standards and Technology (NIST). Its DRBG validation number is 94 and its SHS validation number is 1455. CAAM also implements a Secure Memory mechanism. In i.MX 6Dual/6Quad processors, the security memory provided is 16 KB.
CCM GPC SRC	Clock Control Module, General Power Controller, System Reset Controller	Clocks, Resets, and Power Control	These modules are responsible for clock and reset distribution in the system, and also for the system power management.

Table 2. i.MX 6Dual/6Quad Mod	dules List
-------------------------------	------------

Table 2. i.MX 6Dual/6Quad	Modules List	(continued)
---------------------------	--------------	-------------

Block Mnemonic	Block Name	Subsystem	Brief Description
LDB	LVDS Display Bridge	Connectivity Peripherals	 LVDS Display Bridge is used to connect the IPU (Image Processing Unit) to External LVDS Display Interface. LDB supports two channels; each channel has following signals: One clock pair Four data pairs Each signal pair contains LVDS special differential pad (PadP, PadM).
MLB150	MediaLB	Connectivity / Multimedia Peripherals	The MLB interface module provides a link to a MOST [®] data network, using the standardized MediaLB protocol (up to 150 Mbps). The module is backward compatible to MLB-50.
MMDC	Multi-Mode DDR Controller	Connectivity Peripherals	 DDR Controller has the following features: Supports 16/32/64-bit DDR3 / DDR3L or LPDDR2 Supports both dual x32 for LPDDR2 and x64 DDR3 / LPDDR2 configurations (including 2x32 interleaved mode) Supports up to 4 GByte DDR memory space
OCOTP_CTRL	OTP Controller	Security	The On-Chip OTP controller (OCOTP_CTRL) provides an interface for reading, programming, and/or overriding identification and control information stored in on-chip fuse elements. The module supports electrically-programmable poly fuses (eFUSEs). The OCOTP_CTRL also provides a set of volatile software-accessible signals that can be used for software control of hardware elements, not requiring non-volatility. The OCOTP_CTRL provides the primary user-visible mechanism for interfacing with on-chip fuse elements. Among the uses for the fuses are unique chip identifiers, mask revision numbers, cryptographic keys, JTAG secure mode, boot characteristics, and various control signals, requiring permanent non-volatility.
OCRAM	On-Chip Memory Controller	Data Path	The On-Chip Memory controller (OCRAM) module is designed as an interface between system's AXI bus and internal (on-chip) SRAM memory module. In i.MX 6Dual/6Quad processors, the OCRAM is used for controlling the 256 KB multimedia RAM through a 64-bit AXI bus.
OSC 32 kHz	OSC 32 kHz	Clocking	Generates 32.768 kHz clock from an external crystal.
PCle	PCI Express 2.0	Connectivity Peripherals	The PCIe IP provides PCI Express Gen 2.0 functionality.
PMU	Power-Management Functions	Data Path	Integrated power management unit. Used to provide power to various SoC domains.
PWM-1 PWM-2 PWM-3 PWM-4	Pulse Width Modulation	Connectivity Peripherals	The pulse-width modulator (PWM) has a 16-bit counter and is optimized to generate sound from stored sample audio images and it can also generate tones. It uses 16-bit resolution and a 4x16 data FIFO to generate sound.
RAM 16 KB	Secure/non-secure RAM	Secured Internal Memory	Secure/non-secure Internal RAM, interfaced through the CAAM.
RAM 256 KB	Internal RAM	Internal Memory	Internal RAM, which is accessed through OCRAM memory controllers.

Table 2. i.MX 6Dual/6Quad Modules List (continued)
--

Block Mnemonic	Block Name	Subsystem	Brief Description
SSI-1 SSI-2 SSI-3	I2S/SSI/AC97 Interface	Connectivity Peripherals	The SSI is a full-duplex synchronous interface, which is used on the processor to provide connectivity with off-chip audio peripherals. The SSI supports a wide variety of protocols (SSI normal, SSI network, I2S, and AC-97), bit depths (up to 24 bits per word), and clock / frame sync options. The SSI has two pairs of 8x24 FIFOs and hardware support for an external DMA controller to minimize its impact on system performance. The second pair of FIFOs provides hardware interleaving of a second audio stream that reduces CPU overhead in use cases where two time slots are being used simultaneously.
TEMPMON	Temperature Monitor	System Control Peripherals	The temperature monitor/sensor IP module for detecting high temperature conditions. The temperature read out does not reflect case or ambient temperature. It reflects the temperature in proximity of the sensor location on the die. Temperature distribution may not be uniformly distributed; therefore, the read out value may not be the reflection of the temperature value for the entire die.
TZASC	Trust-Zone Address Space Controller	Security	The TZASC (TZC-380 by ARM) provides security address region control functions required for intended application. It is used on the path to the DRAM controller.
UART-1 UART-2 UART-3 UART-4 UART-5	UART Interface	Connectivity Peripherals	 Each of the UARTv2 modules support the following serial data transmit/receive protocols and configurations: 7- or 8-bit data words, 1 or 2 stop bits, programmable parity (even, odd or none) Programmable baud rates up to 5 MHz 32-byte FIFO on Tx and 32 half-word FIFO on Rx supporting auto-baud IrDA 1.0 support (up to SIR speed of 115200 bps) Option to operate as 8-pins full UART, DCE, or DTE
USBOH3A	USB 2.0 High Speed OTG and 3x HS Hosts	Connectivity Peripherals	 USBOH3 contains: One high-speed OTG module with integrated HS USB PHY One high-speed Host module with integrated HS USB PHY Two identical high-speed Host modules connected to HSIC USB ports.

Modules List

Block Mnemonic	Block Name	Subsystem	Brief Description
uSDHC-1 uSDHC-2 uSDHC-4	SD/MMC and SDXC Enhanced Multi-Media Card / Secure Digital Host Controller	Connectivity Peripherals	 i.MX 6Dual/6Quad specific SoC characteristics: All four MMC/SD/SDIO controller IPs are identical and are based on the uSDHC IP. They are: Conforms to the SD Host Controller Standard Specification version 3.0 Fully compliant with MMC command/response sets and Physical Layer as defined in the Multimedia Card System Specification, v4.2/4.3/4.4/4.41 including high-capacity (size > 2 GB) cards HC MMC. Hardware reset as specified for eMMC cards is supported at ports #3 and #4 only. Fully compliant with SD command/response sets and Physical Layer as defined in the SD Memory Card Specifications, v3.0 including high-capacity SDHC cards up to 32 GB and SDXC cards up to 2TB. Fully compliant with SDIO command/response sets and interrupt/read-wait mode as defined in the SDIO Card Specification, Part E1, v1.10 Fully compliant with SD Card Specification, Part A2, SD Host Controller Standard Specification, v2.00 All four ports support: 1-bit or 4-bit transfer mode specifications for SD and SDIO cards up to UHS-I SDR104 mode (104 MB/s max) 1-bit, 4-bit, or 8-bit transfer mode specifications for MMC cards up to 52 MHz in both SDR and DDR modes (104 MB/s max) However, the SoC-level integration and I/O muxing logic restrict the functionality to the following: Instances #1 and #2 are primarily intended to serve as external slots or interfaces to on-board SDIO devices. These ports are equipped with "Card Detection" and "Write Protection" pads and do support hardware reset. Instances #3 and #4 are primarily intended to serve interfaces to embedded MMC memory or interfaces to on-board SDIO devices. These ports do not have "Card detection" and "Write Protection" pads and do support hardware reset. All ports can work with 1.8 V and 3.3 V cards. There are two completely independent I/O power domains for Ports #1 and #2 in four bit configuration (SD interface). Port #3 is placed in his own independent power domain
VDOA	VDOA	Multimedia Peripherals	The Video Data Order Adapter (VDOA) is used to re-order video data from the "tiled" order used by the VPU to the conventional raster-scan order needed by the IPU.
VPU	Video Processing Unit	Multimedia Peripherals	A high-performing video processing unit (VPU), which covers many SD-level and HD-level video decoders and SD-level encoders as a multi-standard video codec engine as well as several important video processing, such as rotation and mirroring. See the i.MX 6Dual/6Quad reference manual (IMX6DQRM) for complete list of VPU's decoding/encoding capabilities.
WDOG-1	Watchdog	Timer Peripherals	The Watchdog Timer supports two comparison points during each counting period. Each of the comparison points is configurable to evoke an interrupt to the ARM core, and a second point evokes an external event on the WDOG line.

4.1.2 Thermal Resistance

NOTE

Per JEDEC JESD51-2, the intent of thermal resistance measurements is solely for a thermal performance comparison of one package to another in a standardized environment. This methodology is not meant to and will not predict the performance of a package in an application-specific environment.

4.1.2.1 FCPBGA Package Thermal Resistance

Table 5 provides the FCPBGA package thermal resistance data for the *lidded* package type.

Thermal Parameter	Test Conditions	Symbol	Value	Unit
Junction to Ambient ¹	Single-layer board (1s); natural convection ²	R _{θJA}	24	°C/W
	Four-layer board (2s2p); natural convection ²	R _{θJA}	15	°C/W
Junction to Ambient ¹	Single-layer board (1s); air flow 200 ft/min ³	R _{0JMA}	17	°C/W
	Four-layer board (2s2p); air flow 200 ft/min ⁴	R _{0JMA}	12	°C/W
Junction to Board ^{1,4}	_	R _{θJB}	5	°C/W
Junction to Case (top) ^{1,5}	_	R _{0JCtop}	1	°C/W

 Table 5. FCPBGA Package Thermal Resistance Data (Lidded)

¹ Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.

² Per JEDEC JESD51-3 with the single layer board horizontal. Thermal test board meets JEDEC specification for the specified package.

- ³ Per JEDEC JESD51-6 with the board horizontal.
- ⁴ Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- ⁵ Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1). The cold plate temperature is used for the case temperature. Reported value includes the thermal resistance of the interface layer.

Table 8. Maximum Supply	Currents	(continued)
-------------------------	----------	-------------

Dower Supply	Conditions	Maximum C	Unit			
Power Supply	Conditions	Power Virus	CoreMark	Unit		
NVCC_LVDS2P5	_	NVCC_LVDS2P5 is connected to VDD_HIGH_CAP at the board level. VDD_HIGH_CAP is capable of handing the current required by NVCC_LVDS2P5.				
MISC						
DRAM_VREF	_	1		mA		

¹ The actual maximum current drawn from VDD_HIGH_IN will be as shown plus any additional current drawn from the VDD_HIGH_CAP outputs, depending upon actual application configuration (for example, NVCC_LVDS_2P5, NVCC_MIPI, or HDMI, PCIe, and SATA VPH supplies).

- ² Under normal operating conditions, the maximum current on VDD_SNVS_IN is shown Table 8. The maximum VDD_SNVS_IN current may be higher depending on specific operating configurations, such as BOOT_MODE[1:0] not equal to 00, or use of the Tamper feature. During initial power on, VDD_SNVS_IN can draw up to 1 mA if the supply is capable of sourcing that current. If less than 1 mA is available, the VDD_SNVS_CAP charge time will increase.
- ³ This is the maximum current per active USB physical interface.
- ⁴ The DRAM power consumption is dependent on several factors such as external signal termination. DRAM power calculators are typically available from memory vendors which take into account factors such as signal termination. See the *i.MX 6Dual/6Quad Power Consumption Measurement Application Note* (AN4509) for examples of DRAM power consumption during specific use case scenarios.
- ⁵ General equation for estimated, maximum power consumption of an IO power supply: Imax = N x C x V x (0.5 x F)
 - Where:

N-Number of IO pins supplied by the power line

C-Equivalent external capacitive load

V—IO voltage

(0.5 xF)—Data change rate. Up to 0.5 of the clock rate (F)

In this equation, Imax is in Amps, C in Farads, V in Volts, and F in Hertz.

4.1.6 Low Power Mode Supply Currents

Table 9 shows the current core consumption (not including I/O) of the i.MX 6Dual/6Quad processors in selected low power modes.

Mode	Test Conditions	Supply	Typical ¹	Unit
WAIT	• ARM, SoC, and PU LDOs are set to 1.225 V	VDD_ARM_IN (1.4 V)	6	mA
	HIGH LDO set to 2.5 V Clocks are gated	VDD_SOC_IN (1.4 V)	23	mA
	 DDR is in self refresh PLLs are active in bypass (24 MHz) 	VDD_HIGH_IN (3.0 V)	3.7	mA
	Supply voltages remain ON	Total	52	mW

Table 9.	Stop Mode	Current and	Power	Consumption
----------	-----------	--------------------	-------	-------------

• When the PCIE interface is not used, the PCIE_VP, PCIE_VPH, and PCIE_VPTX supplies should be grounded. The input and output supplies for rest of the ports (PCIE_REXT, PCIE_RX_N, PCIE_RX_P, PCIE_TX_N, and PCIE_TX_P) can remain unconnected. It is recommended not to turn the PCIE_VPH supply OFF while the PCIE_VP supply is ON, as it may lead to excessive power consumption. If boundary scan test is used, PCIE_VP, PCIE_VPH, and PCIE_VPTX must remain powered.

4.3 Integrated LDO Voltage Regulator Parameters

Various internal supplies can be powered ON from internal LDO voltage regulators. All the supply pins named *_CAP must be connected to external capacitors. The onboard LDOs are intended for internal use only and should not be used to power any external circuitry. See the i.MX 6Dual/6Quad reference manual (IMX6DQRM) for details on the power tree scheme recommended operation.

NOTE

The *_CAP signals should not be powered externally. These signals are intended for internal LDO or LDO bypass operation only.

4.3.1 Digital Regulators (LDO_ARM, LDO_PU, LDO_SOC)

There are three digital LDO regulators ("Digital", because of the logic loads that they drive, not because of their construction). The advantages of the regulators are to reduce the input supply variation because of their input supply ripple rejection and their on die trimming. This translates into more voltage for the die producing higher operating frequencies. These regulators have three basic modes.

- Bypass. The regulation FET is switched fully on passing the external voltage, DCDC_LOW, to the load unaltered. The analog part of the regulator is powered down in this state, removing any loss other than the IR drop through the power grid and FET.
- Power Gate. The regulation FET is switched fully off limiting the current draw from the supply. The analog part of the regulator is powered down here limiting the power consumption.
- Analog regulation mode. The regulation FET is controlled such that the output voltage of the regulator equals the programmed target voltage. The target voltage is fully programmable in 25 mV steps.

Optionally LDO_SOC/VDD_SOC_CAP can be used to power the HDMI, PCIe, and SATA PHY's through external connections.

For additional information, see the i.MX 6Dual/6Quad reference manual (IMX6DQRM).

4.3.2 Regulators for Analog Modules

4.3.2.1 LDO_1P1 / NVCC_PLL_OUT

The LDO_1P1 regulator implements a programmable linear-regulator function from VDD_HIGH_IN (see Table 6 for minimum and maximum input requirements). Typical Programming Operating Range is 1.0 V to 1.2 V with the nominal default setting as 1.1 V. The LDO_1P1 supplies the 24 MHz oscillator, PLLs, and USB PHY. A programmable brown-out detector is included in the regulator that can be used by the

4.9 System Modules Timing

This section contains the timing and electrical parameters for the modules in each i.MX 6Dual/6Quad processor.

4.9.1 Reset Timing Parameters

Figure 10 shows the reset timing and Table 38 lists the timing parameters.

Figure 10. Reset Timing Diagram

Table 38. Reset Timing Parameters

ID	Parameter	Min	Мах	Unit
CC1	Duration of SRC_POR_B to be qualified as valid	1		XTALOSC_RTC_ XTALI cycle

4.9.2 WDOG Reset Timing Parameters

Figure 11 shows the WDOG reset timing and Table 39 lists the timing parameters.

WDOG1_B (Output)

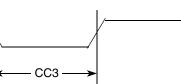


Figure 11. WDOG1_B Timing Diagram

Table 39. WDOG1_B Timing Parameters

ID	Parameter	Min	Мах	Unit
CC3	Duration of WDOG1_B Assertion	1	_	XTALOSC_RTC_ XTALI cycle

NOTE

XTALOSC_RTC_XTALI is approximately 32 kHz. XTALOSC_RTC_XTALI cycle is one period or approximately 30 µs.

NOTE

WDOG1_B output signals (for each one of the Watchdog modules) do not have dedicated pins, but are muxed out through the IOMUX. See the IOMUX manual for detailed information.

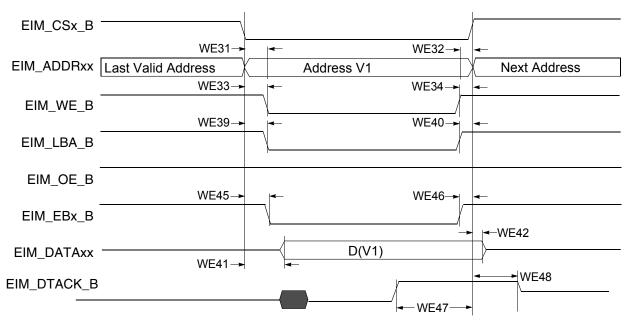
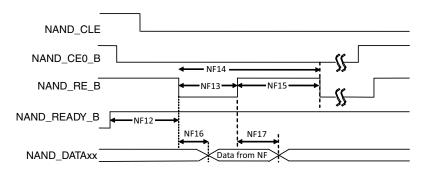



Figure 23. DTACK Mode Write Access (DAP=0)

Ref No.	Parameter	Determination by Synchronous measured parameters	Min	Мах	Unit
WE31	EIM_CSx_B valid to Address Valid	WE4-WE6-CSA×t	-3.5-CSA×t	3.5-CSA×t	ns
WE32	Address Invalid to EIM_CSx_B Invalid	WE7-WE5-CSN×t	-3.5-CSN×t	3.5-CSN×t	ns
WE32A (muxed A/D)	EIM_CSx_B valid to Address Invalid	t+WE4-WE7+ (ADVN+ADVA+1-CSA)×t	t - 3.5+(ADVN+A DVA+1-CSA)×t	t + 3.5+(ADVN+ADVA+ 1-CSA)×t	ns
WE33	EIM_CSx_B Valid to EIM_WE_B Valid	WE8-WE6+(WEA-WCSA)×t	-3.5+(WEA-WCS A)×t	3.5+(WEA-WCSA)×t	ns
WE34	EIM_WE_B Invalid to EIM_CSx_B Invalid	WE7-WE9+(WEN-WCSN)×t	-3.5+(WEN-WCS N)×t	3.5+(WEN-WCSN)×t	ns
WE35	EIM_CSx_B Valid to EIM_OE_B Valid	WE10- WE6+(OEA-RCSA)×t	-3.5+(OEA-RCS A)×t	3.5+(OEA-RCSA)×t	ns
WE35A (muxed A/D)	EIM_CSx_B Valid to EIM_OE_B Valid	WE10-WE6+(OEA+RADVN+R ADVA+ADH+1-RCSA)×t		3.5+(OEA+RADVN+RA DVA+ADH+1-RCSA)×t	ns
WE36	EIM_OE_B Invalid to EIM_CSx_B Invalid	WE7-WE11+(OEN-RCSN)×t	-3.5+(OEN-RCS N)×t	3.5+(OEN-RCSN)×t	ns
WE37	EIM_CSx_B Valid to EIM_EBx_B Valid (Read access)	WE12-WE6+(RBEA-RCSA)×t	-3.5+(RBEA- RC SA)×t	3.5+(RBEA - RCSA)×t	ns
WE38	EIM_EBx_B Invalid to EIM_CSx_B Invalid (Read access)	WE7-WE13+(RBEN-RCSN)×t	-3.5+ (RBEN-RCSN)×t	3.5+(RBEN-RCSN)×t	ns
WE39	EIM_CSx_B Valid to EIM_LBA_B Valid	WE14-WE6+(ADVA-CSA)×t	-3.5+ (ADVA-CSA)×t	3.5+(ADVA-CSA)×t	ns

	Table 42. EIM	Asynchronous	Timing Parameters	Relative to	Chip Select ^{1, 2}
--	---------------	--------------	--------------------------	--------------------	-----------------------------

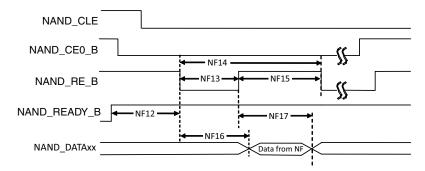


Figure 28. Read Data Latch Cycle Timing Diagram (EDO Mode)

ID	Parameter	Symbol		Timing T = GPMI Clock Cycle	
			Min	Мах	
NF1	NAND_CLE setup time	tCLS	$(AS + DS) \times T$ ·	- 0.12 [see ^{2,3}]	ns
NF2	NAND_CLE hold time	tCLH	DH $ imes$ T - 0.72 [see ²]		ns
NF3	NAND_CEx_B setup time	tCS	(AS + DS + 1)) × T [see ^{3,2}]	ns
NF4	NAND_CEx_B hold time	tCH	(DH+1) × T - 1 [see ²]		ns
NF5	NAND_WE_B pulse width	tWP	$DS imes T$ [see 2]		ns
NF6	NAND_ALE setup time	tALS	(AS + DS) × T - 0.49 [see ^{3,2}]		ns
NF7	NAND_ALE hold time	tALH	(DH × T - 0.42 [see ²]		ns
NF8	Data setup time	tDS	DS × T - 0.	26 [see ²]	ns
NF9	Data hold time	tDH	DH × T - 1.	.37 [see ²]	ns
NF10	Write cycle time	tWC	(DS + DH)	× T [see ²]	ns
NF11	NAND_WE_B hold time	tWH	DH imes T	[see ²]	ns
NF12	Ready to NAND_RE_B low	tRR ⁴	(AS + 2) × T [see ^{3,2}] —		ns
NF13	NAND_RE_B pulse width	tRP	$DS imes T$ [see 2]		ns
NF14	READ cycle time	tRC	(DS + DH) $ imes$ T [see ²]		ns
NF15	NAND_RE_B high hold time	tREH	DH × T	[see ²]	ns

Table 44. As	synchronous	Mode	Timing	Parameters ¹	l
--------------	-------------	------	--------	-------------------------	---

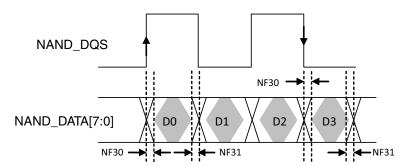


Figure 32. NAND_DQS/NAND_DQ Read Valid Window

ID	Parameter	Symbol	Timing T = GPMI Clock Cycle		Unit	
			Min	Max		
NF18	NAND_CEx_B access time	tCE	CE_DELAY × T -	0.79 [see ²]	ns	
NF19	NAND_CEx_B hold time	tCH	0.5 × tCK - 0.6	63 [see ²]	ns	
NF20	Command/address NAND_DATAxx setup time	tCAS	$0.5 imes tCK \cdot$	0.05	ns	
NF21	Command/address NAND_DATAxx hold time	tCAH	0.5 × tCK - 1.23		ns	
NF22	clock period	tCK	—		ns	
NF23	preamble delay	tPRE	PRE_DELAY × T - 0.29 [see ²]		ns	
NF24	postamble delay	tPOST	POST_DELAY × T - 0.78 [see ²]		ns	
NF25	NAND_CLE and NAND_ALE setup time	tCALS	0.5 × tCK - 0.86		ns	
NF26	NAND_CLE and NAND_ALE hold time	tCALH	0.5 × tCK - 0.37		ns	
NF27	NAND_CLK to first NAND_DQS latching transition	tDQSS	T - 0.41 [see ²]		ns	
NF28	Data write setup	tDS	0.25 × tCK - 0.35		—	
NF29	Data write hold	tDH	0.25 × tCK - 0.85		—	
NF30	NAND_DQS/NAND_DQ read setup skew	tDQSQ	— 2.06		—	
NF31	NAND_DQS/NAND_DQ read hold skew	tQHS	_	1.95	—	

Table 45. Source Synchronous Mode Timing Parameters¹

¹ The GPMI source synchronous mode output timing can be controlled by the module's internal registers GPMI_TIMING2_CE_DELAY, GPMI_TIMING_PREAMBLE_DELAY, GPMI_TIMING2_POST_DELAY. This AC timing depends on these registers settings. In the table, CE_DELAY/PRE_DELAY/POST_DELAY represents each of these settings.

² T = tCK (GPMI clock period) -0.075ns (half of maximum p-p jitter).

Figure 32 shows the timing diagram of NAND_DQS/NAND_DATAxx read valid window. For Source Synchronous mode, the typical value of tDQSQ is 0.85 ns (max) and 1 ns (max) for tQHS at 200MB/s. GPMI will sample NAND_DATA[7:0] at both rising and falling edge of a delayed NAND_DQS signal, which can be provided by an internal DPLL. The delay value can be controlled by GPMI register GPMI_READ_DDR_DLL_CTRL.SLV_DLY_TARGET (see the GPMI chapter of the i.MX 6Dual/6Quad reference manual (IMX6DQRM)). Generally, the typical delay value of this register is equal to 0x7 which means 1/4 clock cycle delay expected. However, if the board delay is large enough and cannot be ignored, the delay value should be made larger to compensate the board delay.

4.11.3 Samsung Toggle Mode AC Timing

4.11.3.1 Command and Address Timing

Samsung Toggle mode command and address timing is the same as ONFI 1.0 compatible Async mode AC timing. See Section 4.11.1, "Asynchronous Mode AC Timing (ONFI 1.0 Compatible)" for details.

4.11.3.2 Read and Write Timing

dev_clk	
NAND_CEx_F	3 0
NAND_CLE	0
NAND_ALE	0
NAND_WE_B	. 1
NAND_RE_B	1 NF23 NF24
NAND_DQS	
NAND_DATA[

Figure 33. Samsung Toggle Mode Data Write Timing

4.12.4 Ultra High Speed SD/SDIO/MMC Host Interface (uSDHC) AC Timing

This section describes the electrical information of the uSDHC, which includes SD/eMMC4.3 (Single Data Rate) timing and eMMC4.4/4.1 (Dual Date Rate) timing.

4.12.4.1 SD/eMMC4.3 (Single Data Rate) AC Timing

Figure 39 depicts the timing of SD/eMMC4.3, and Table 50 lists the SD/eMMC4.3 timing characteristics.

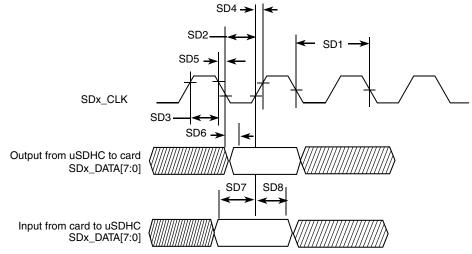


Figure 39. SD/eMMC4.3 Timing

ID	Parameter	Symbols	Min	Max	Unit		
	Card Input Cloc	ĸ					
SD1	Clock Frequency (Low Speed)	f _{PP} ¹	0	400	kHz		
	Clock Frequency (SD/SDIO Full Speed/High Speed)	f _{PP} ²	0	25/50	MHz		
	Clock Frequency (MMC Full Speed/High Speed)	f _{PP} ³	0	20/52	MHz		
	Clock Frequency (Identification Mode)	f _{OD}	100	400	kHz		
SD2	Clock Low Time	t _{WL}	7	—	ns		
SD3	Clock High Time	t _{WH}	7	—	ns		
SD4	Clock Rise Time	t _{TLH}	—	3	ns		
SD5	Clock Fall Time	t _{THL}	—	3	ns		
	eSDHC Output/Card Inputs SD_CMD, SD_DATAx (Reference to SDx_CLK)						
SD6	eSDHC Output Delay	t _{OD}	-6.6	3.6	ns		

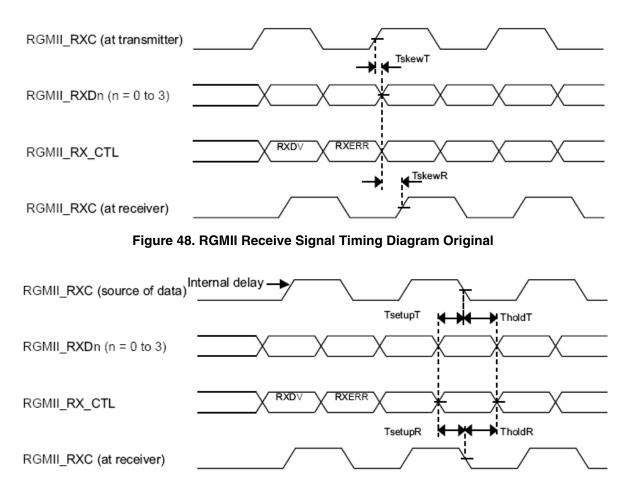


Figure 49. RGMII Receive Signal Timing Diagram with Internal Delay

4.12.6 Flexible Controller Area Network (FlexCAN) AC Electrical Specifications

The Flexible Controller Area Network (FlexCAN) module is a communication controller implementing the CAN protocol according to the CAN 2.0B protocol specification. The processor has two CAN modules available for systems design. Tx and Rx ports for both modules are multiplexed with other I/O pins. See the IOMUXC chapter of the i.MX 6Dual/6Quad reference manual (IMX6DQRM) to see which pins expose Tx and Rx pins; these ports are named FLEXCAN_TX and FLEXCAN_RX, respectively.

4.12.7 HDMI Module Timing Parameters

4.12.7.1 Latencies and Timing Information

Power-up time (time between TX_PWRON assertion and TX_READY assertion) for the HDMI 3D Tx PHY while operating with the slowest input reference clock supported (13.5 MHz) is 3.35 ms.

Figure 65 depicts the synchronous display interface timing for access level. The DISP_CLK_DOWN and DISP_CLK_UP parameters are register-controlled. Table 66 lists the synchronous display interface timing characteristics.

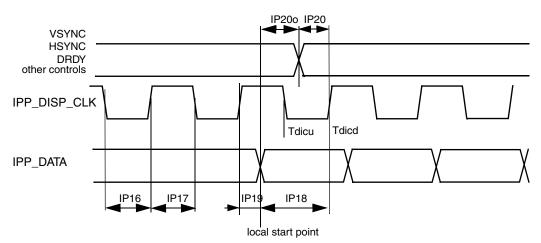


Figure 65. Synchronous Display Interface Timing Diagram—Access Level

ID	Parameter	Symbol	Min	Typ ¹	Мах	Unit
IP16	Display interface clock low time	Tckl	Tdicd-Tdicu-1.24	Tdicd ² -Tdicu ³	Tdicd-Tdicu+1.24	ns
IP17	Display interface clock high time	Tckh	Tdicp-Tdicd+Tdicu-1.24	Tdicp-Tdicd+Tdicu	Tdicp-Tdicd+Tdicu+1.2	ns
IP18	Data setup time	Tdsu	Tdicd-1.24	Tdicu	—	ns
IP19	Data holdup time	Tdhd	Tdicp-Tdicd-1.24	Tdicp-Tdicu	—	ns
IP20o	Control signals offset times (defined for each pin)	Tocsu	Tocsu-1.24	Tocsu	Tocsu+1.24	ns
IP20	Control signals setup time to display interface clock (defined for each pin)	Tcsu	Tdicd-1.24-Tocsu%Tdicp	Tdicu	_	ns

Table 66. Synchronous Display Interface	e Timing Characteristics (Access Level)
---	---

¹The exact conditions have not been finalized, but will likely match the current customer requirement for their specific display. These conditions may be chip specific.

² Display interface clock down time

$$Tdicd = \frac{1}{2} \left(T_{diclk} \times ceil \left[\frac{2 \times DISP_{CLK} DOWN}{DI_{CLK} PERIOD} \right] \right)$$

³ Display interface clock up time where CEIL(X) rounds the elements of X to the nearest integers towards infinity.

$$\Gamma \text{dicu} = \frac{1}{2} \left(T_{\text{diclk}} \times \text{ceil} \left[\frac{2 \times \text{DISP} \text{-} \text{CLK} \text{-} \text{UP}}{\text{DI} \text{-} \text{CLK} \text{-} \text{PERIOD}} \right] \right)$$

4.12.12.9 Low-Power Receiver Timing

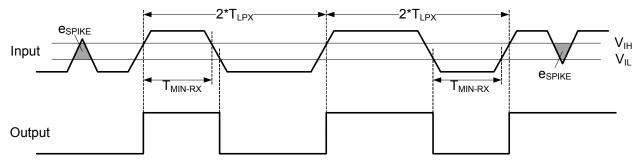


Figure 72. Input Glitch Rejection of Low-Power Receivers

4.12.13 HSI Host Controller Timing Parameters

This section describes the timing parameters of the HSI Host Controller which are compliant with High-Speed Synchronous Serial Interface (HSI) Physical Layer specification version 1.01.

4.12.13.1 Synchronous Data Flow

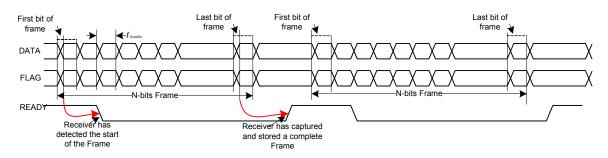


Figure 73. Synchronized Data Flow READY Signal Timing (Frame and Stream Transmission)

4.12.13.2 Pipelined Data Flow

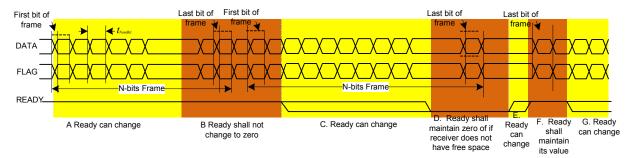


Figure 74. Pipelined Data Flow READY Signal Timing (Frame Transmission Mode)

4.12.21 UART I/O Configuration and Timing Parameters

4.12.21.1 UART RS-232 I/O Configuration in Different Modes

The i.MX 6Dual/6Quad UART interfaces can serve both as DTE or DCE device. This can be configured by the DCEDTE control bit (default 0 - DCE mode). Table 86 shows the UART I/O configuration based on the enabled mode.

Port		DTE Mode	DCE Mode						
	Direction	Description	Direction	Description					
UARTx_RTS_B	Output	RTS from DTE to DCE	Input	RTS from DTE to DCE					
UARTx_CTS_B	Input	CTS from DCE to DTE	Output	CTS from DCE to DTE					
UARTx_DTR_B	Output	DTR from DTE to DCE	Input	DTR from DTE to DCE					
UARTx_DSR_B	Input	DSR from DCE to DTE	Output	DSR from DCE to DTE					
UARTx_DCD_B	Input	DCD from DCE to DTE	Output	DCD from DCE to DTE					
UARTx_RI_B	Input	RING from DCE to DTE	Output	RING from DCE to DTE					
UARTx_TX_DATA	Input	Serial data from DCE to DTE	Output	Serial data from DCE to DTE					
UARTx_RX_DATA Output		Serial data from DTE to DCE	Input	Serial data from DTE to DCE					

Table 86. UART I/O Configuration vs. Mode

Package Information and Contact Assignments

	-	2	e	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
н	DSI_D1P	M10_ISU	DSI_CLK0M	DSI_CLK0P	JTAG_TCK	JTAG_MOD	PCIE_VP	GND		VDDHIGH_CAP	VDDARM23_CAP	GND	VDDARM_CAP	VDDARM_IN	GND	VDDSOC_IN	VDDPU_CAP	GND	EIM_A25	EIM_D21	EIM_D31	EIM_A20	EIM_A21	EIM_CS0	EIM_A16
ſ	HDMI_REF	GNÐ	HDMI_D1M	HDMI_D1P	HDMI_CLKM	HDMI_CLKP	NVCC_JTAG	GND	VDDHIGH_IN	VDDHIGH_CAP	VDDARM23_CAP VDDARM23_CAP	GND	VDDARM_CAP	VDDARM_IN	GND	VDDSOC_IN	VDDPU_CAP	GND	EIM_D29	EIM_D30	EIM_A23	EIM_A18	EIM_CS1	EIM_OE	EIM_DA1
К		HDMI_DDCCEC	HDMI_D2M	HDMI_D2P	HDMI_D0M	HDMI_D0P	NVCC_MIPI	GND	VDDARM23_IN	GND	VDDARM23_CAP	GND	VDDARM_CAP	VDDARM_IN	GND	VDDSOC_IN	VDDPU_CAP	GND	NVCC_EIMO	EIM_RW	EIM_EB0	EIM_LBA	EIM_EB1	EIM_DA3	EIM_DA6
Г	CSI0_DAT13	GNÐ	CSI0_DAT17	CSI0_DAT16	GND	CSI0_DAT19	d V_IMDH	GND	VDDARM23_IN	GND	VDDARM23_CAP	GND	VDDARM_CAP	VDDARM_IN	GND	VDDSOC_IN	VDDPU_CAP	GND		EIM_DAO	EIM_DA2	EIM_DA4	EIM_DA5	EIM_DA8	EIM_DA7
Μ	CSI0_DAT10	CSI0_DAT12	CSI0_DAT11	CSI0_DAT14	CSI0_DAT15	CSI0_DAT18	Hdv_Imdh	GND	VDDARM23_IN	GND	VDDARM23_CAP	GND	VDDARM_CAP	VDDARM_IN	GND	VDDSOC_IN	VDDPU_CAP	GND		EIM_DA11	EIM_DA9	EIM_DA10	EIM_DA13	EIM_DA12	EIM_WAIT
Z	CSI0_DAT4	CSI0_VSYNC	CSI0_DAT7	CSI0_DAT6	CSI0_DAT9	CSI0_DAT8	NVCC_CSI	GND	VDDARM23_IN	GND	VDDARM23_CAP	VDD_CACHE_CAP	VDDARM_CAP	VDDARM_IN	GND	VDDSOC_IN	VDDPU_CAP	GND	DI0_DISP_CLK	DI0_PIN3	DI0_PIN15	EIM_BCLK	EIM_DA14	EIM_DA15	DIO_PIN2
d	CSI0_PIXCLK	CSI0_DAT5	CSI0_DATA_EN	CSI0_MCLK	GPIO_19	GPIO_18	NVCC_GPIO	GND	VDDARM23_IN	GND	VDDARM23_CAP	GND	VDDARM_CAP	VDDARM_IN	GND	VDDSOC_IN	VDDPU_CAP	GND	NVCC_LCD	DISP0_DAT4	DISP0_DAT3	DISP0_DAT1	DISP0_DAT2	DISP0_DAT0	DI0_PIN4