

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Active
Core Processor	ARM® Cortex®-A9
Number of Cores/Bus Width	2 Core, 32-Bit
Speed	1.0GHz
Co-Processors/DSP	Multimedia; NEON™ SIMD
RAM Controllers	LPDDR2, LVDDR3, DDR3
Graphics Acceleration	Yes
Display & Interface Controllers	Keypad, LCD
Ethernet	10/100/1000Mbps (1)
SATA	SATA 3Gbps (1)
USB	USB 2.0 + PHY (4)
Voltage - I/O	1.8V, 2.5V, 2.8V, 3.3V
Operating Temperature	-40°C ~ 125°C (TJ)
Security Features	ARM TZ, Boot Security, Cryptography, RTIC, Secure Fusebox, Secure JTAG, Secure Memory, Secure RTC, Tamper Detection
Package / Case	624-FBGA, FCBGA
Supplier Device Package	624-FCBGA (21x21)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mcimx6d6avt10ae

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 2. i.MX 6Dual/6Quad Modules List (continued)
--

Block Mnemonic	Block Name	Subsystem	Brief Description
SSI-1 SSI-2 SSI-3	I2S/SSI/AC97 Interface	Connectivity Peripherals	The SSI is a full-duplex synchronous interface, which is used on the processor to provide connectivity with off-chip audio peripherals. The SSI supports a wide variety of protocols (SSI normal, SSI network, I2S, and AC-97), bit depths (up to 24 bits per word), and clock / frame sync options. The SSI has two pairs of 8x24 FIFOs and hardware support for an external DMA controller to minimize its impact on system performance. The second pair of FIFOs provides hardware interleaving of a second audio stream that reduces CPU overhead in use cases where two time slots are being used simultaneously.
TEMPMON	Temperature Monitor	System Control Peripherals	The temperature monitor/sensor IP module for detecting high temperature conditions. The temperature read out does not reflect case or ambient temperature. It reflects the temperature in proximity of the sensor location on the die. Temperature distribution may not be uniformly distributed; therefore, the read out value may not be the reflection of the temperature value for the entire die.
TZASC	Trust-Zone Address Space Controller	Security	The TZASC (TZC-380 by ARM) provides security address region control functions required for intended application. It is used on the path to the DRAM controller.
UART-1 UART-2 UART-3 UART-4 UART-5	UART Interface	Connectivity Peripherals	 Each of the UARTv2 modules support the following serial data transmit/receive protocols and configurations: 7- or 8-bit data words, 1 or 2 stop bits, programmable parity (even, odd or none) Programmable baud rates up to 5 MHz 32-byte FIFO on Tx and 32 half-word FIFO on Rx supporting auto-baud IrDA 1.0 support (up to SIR speed of 115200 bps) Option to operate as 8-pins full UART, DCE, or DTE
USBOH3A	USB 2.0 High Speed OTG and 3x HS Hosts	Connectivity Peripherals	 USBOH3 contains: One high-speed OTG module with integrated HS USB PHY One high-speed Host module with integrated HS USB PHY Two identical high-speed Host modules connected to HSIC USB ports.

system to determine when the load capability of the regulator is being exceeded to take the necessary steps. Current-limiting can be enabled to allow for in-rush current requirements during start-up, if needed. Active-pull-down can also be enabled for systems requiring this feature.

For information on external capacitor requirements for this regulator, see the Hardware Development Guide for i.MX 6Quad, 6Dual, 6DualLite, 6Solo Families of Applications Processors (IMX6DQ6SDLHDG).

For additional information, see the i.MX 6Dual/6Quad reference manual (IMX6DQRM).

4.3.2.2 LDO_2P5

The LDO_2P5 module implements a programmable linear-regulator function from VDD_HIGH_IN (see Table 6 for min and max input requirements). Typical Programming Operating Range is 2.25 V to 2.75 V with the nominal default setting as 2.5 V. The LDO_2P5 supplies the SATA PHY, USB PHY, LVDS PHY, HDMI PHY, MIPI PHY, E-fuse module and PLLs. A programmable brown-out detector is included in the regulator that can be used by the system to determine when the load capability of the regulator is being exceeded, to take the necessary steps. Current-limiting can be enabled to allow for in-rush current requirements during start-up, if needed. Active-pull-down can also be enabled for systems requiring this feature. An alternate self-biased low-precision weak-regulator is included that can be enabled for applications needing to keep the output voltage alive during low-power modes where the main regulator driver and its associated global bandgap reference module are disabled. The output of the weak-regulator is not programmable and is a function of the input supply as well as the load current. Typically, with a 3 V input supply the weak-regulator output is 2.525 V and its output impedance is approximately $40 \, \Omega$.

For information on external capacitor requirements for this regulator, see the Hardware Development Guide for i.MX 6Quad, 6Dual, 6DualLite, 6Solo Families of Applications Processors (IMX6DQ6SDLHDG).

For additional information, see the i.MX 6Dual/6Quad reference manual (IMX6DQRM).

4.3.2.3 LDO_USB

The LDO_USB module implements a programmable linear-regulator function from the USB_OTG_VBUS and USB_H1_VBUS voltages (4.4 V–5.25 V) to produce a nominal 3.0 V output voltage. A programmable brown-out detector is included in the regulator that can be used by the system to determine when the load capability of the regulator is being exceeded, to take the necessary steps. This regulator has a built in power-mux that allows the user to select to run the regulator from either VBUS supply, when both are present. If only one of the VBUS voltages is present, then the regulator automatically selects this supply. Current limit is also included to help the system meet in-rush current targets. If no VBUS voltage is present, then the VBUSVALID threshold setting will prevent the regulator from being enabled.

For information on external capacitor requirements for this regulator, see the Hardware Development Guide for i.MX 6Quad, 6Dual, 6DualLite, 6Solo Families of Applications Processors (IMX6DQ6SDLHDG).

For additional information, see the i.MX 6Dual/6Quad reference manual (IMX6DQRM).

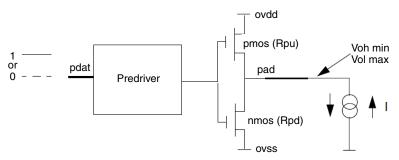


Figure 3. Circuit for Parameters Voh and Vol for I/O Cells

4.6.1 XTALI and RTC_XTALI (Clock Inputs) DC Parameters

Table 21 shows the DC parameters for the clock inputs.

Table 21. XTALI and RTC_	XTALI DC Parameters
--------------------------	---------------------

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
XTALI high-level DC input voltage	Vih	_	0.8 x NVCC_PLL_OUT	—	NVCC_PLL_ OUT	V
XTALI low-level DC input voltage	Vil	—	0	—	0.2	V
RTC_XTALI high-level DC input voltage	Vih	—	0.8	_	1.1 ^(See note 1)	V
RTC_XTALI low-level DC input voltage	Vil	—	0	_	0.2	V
Input capacitance	C _{IN}	Simulated data	—	5	—	pF
XTALI input leakage current at startup	I _{XTALI_STARTUP}	Power-on startup for 0.15 msec with a driven 32 KHz RTC clock @ 1.1 V. ²	_	—	600	μA
DC input current	I _{XTALI_DC}	—	—	—	2.5	μΑ

¹ This voltage specification must not be exceeded and, as such, is an absolute maximum specification.

² This current draw is present even if an external clock source directly drives XTALI.

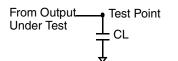
NOTE

The Vil and Vih specifications only apply when an external clock source is used. If a crystal is used, Vil and Vih do not apply.

4.6.2 General Purpose I/O (GPIO) DC Parameters

Table 22 shows DC parameters for GPIO pads. The parameters in Table 22 are guaranteed per the operating ranges in Table 6, unless otherwise noted.

Parameter	Symbol	Test Conditions	Min	Max	Unit
Output Differential Voltage	V _{OD}	Rload = 50 Ω between padP and padN	300	500	mV
Output High Voltage	V _{OH}		1.15	1.75	V
Output Low Voltage	V _{OL}		0.75	1.35	V
Common-mode Output Voltage ((Vpad_P + Vpad_N) / 2))	V _{OCM}		1	1.5	V
Differential Output Impedance	Z _O	—	1.6	_	kΩ


Table 27. MLB I/O DC Parameters

4.7 I/O AC Parameters

This section includes the AC parameters of the following I/O types:

- General Purpose I/O (GPIO)
- Double Data Rate I/O (DDR) for LPDDR2 and DDR3/DDR3L modes
- LVDS I/O
- MLB I/O

The GPIO and DDR I/O load circuit and output transition time waveforms are shown in Figure 4 and Figure 5.

CL includes package, probe and fixture capacitance

Figure 4. Load Circuit for Output

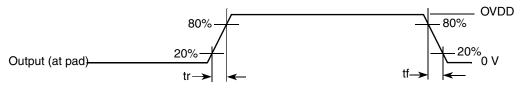


Figure 5. Output Transition Time Waveform

4.9.3.2 General EIM Timing-Synchronous Mode

Figure 12, Figure 13, and Table 41 specify the timings related to the EIM module. All EIM output control signals may be asserted and deasserted by an internal clock synchronized to the EIM_BCLK rising edge according to corresponding assertion/negation control fields.

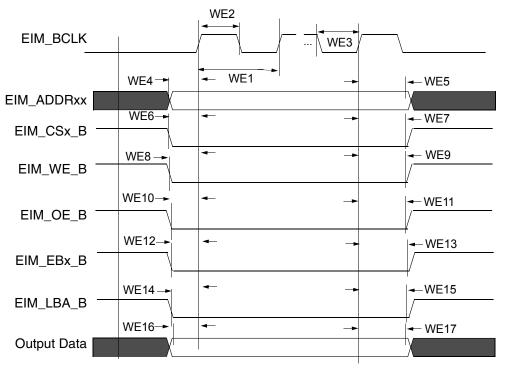


Figure 12. EIM Output Timing Diagram

Figure 13. EIM Input Timing Diagram

4.9.3.3 Examples of EIM Synchronous Accesses

Table 41. EIM Bus Timing Parameters

ID	Parameter	Min ¹	Max ¹	Unit
WE1	EIM_BCLK cycle time ²	t × (k+1)	_	ns
WE2	EIM_BCLK high level width	$0.4 \times t \times (k+1)$	—	ns
WE3	EIM_BCLK low level width	$0.4 \times t \times (k+1)$	_	ns

4.9.3.4 General EIM Timing-Asynchronous Mode

Figure 18 through Figure 22 and Table 42 provide timing parameters relative to the chip select (CS) state for asynchronous and DTACK EIM accesses with corresponding EIM bit fields and the timing parameters mentioned above.

Asynchronous read and write access length in cycles may vary from what is shown in Figure 18 through Figure 21 as RWSC, OEN & CSN is configured differently. See the i.MX 6Dual/6Quad reference manual (IMX6DQRM) for the EIM programming model.

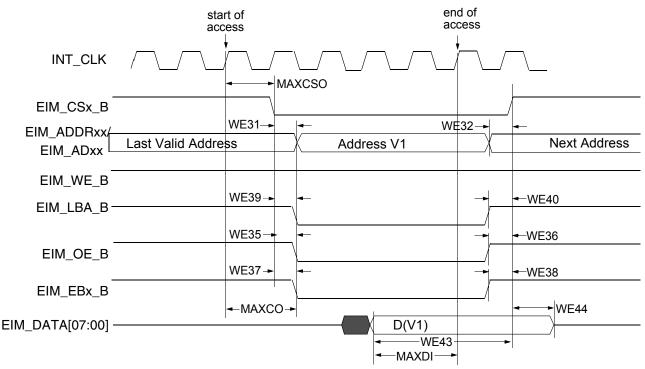


Figure 18. Asynchronous Memory Read Access (RWSC = 5)

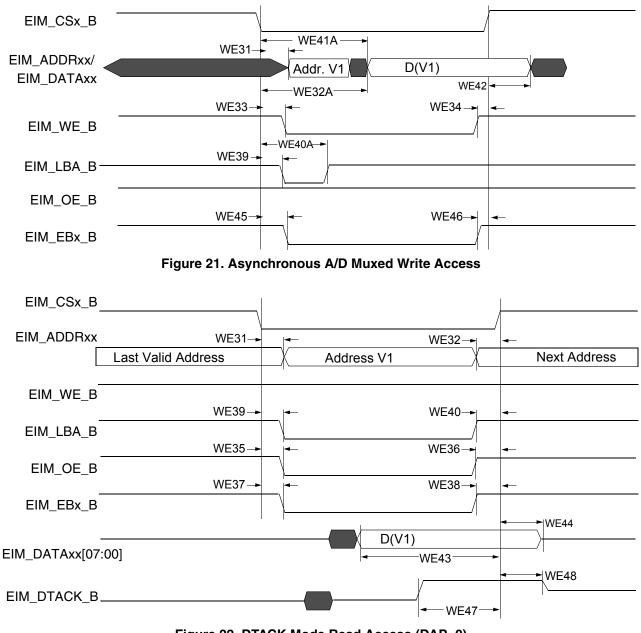


Figure 22. DTACK Mode Read Access (DAP=0)

4.12.5.3 RGMII Signal Switching Specifications

The following timing specifications meet the requirements for RGMII interfaces for a range of transceiver devices.

Symbol	Description	Min	Max	Unit
T _{cyc} ²	Clock cycle duration	7.2	8.8	ns
T _{skewT} ³	Data to clock output skew at transmitter	-100	900	ps
T _{skewR} ³	Data to clock input skew at receiver	1	2.6	ns
Duty_G ⁴	Duty cycle for Gigabit	45	55	%
Duty_T ⁴	Duty cycle for 10/100T	40	60	%
Tr/Tf	Rise/fall time (20–80%)	_	0.75	ns

Table 58. RGMII Signal	I Switching Specifications
------------------------	----------------------------

¹ The timings assume the following configuration: DDR_SEL = (11)b

DSE (drive-strength) = (111)b

 $^2~$ For 10 Mbps and 100 Mbps, T_{cyc} will scale to 400 ns ±40 ns and 40 ns ±4 ns respectively.

³ For all versions of RGMII prior to 2.0; This implies that PC board design will require clocks to be routed such that an additional delay of greater than 1.2 ns and less than 1.7 ns will be added to the associated clock signal. For 10/100, the max value is unspecified.

⁴ Duty cycle may be stretched/shrunk during speed changes or while transitioning to a received packet's clock domain as long as minimum duty cycle is not violated and stretching occurs for no more than three Tcyc of the lowest speed transitioned between.

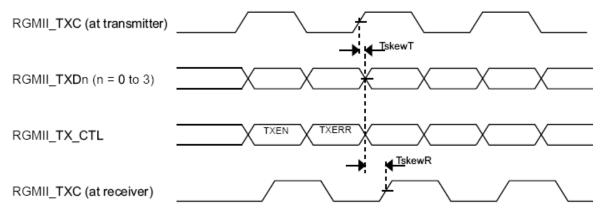


Figure 47. RGMII Transmit Signal Timing Diagram Original

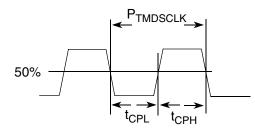


Figure 53. TMDS Clock Signal Definitions

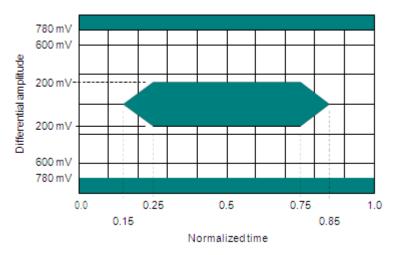


Figure 54. Eye Diagram Mask Definition for HDMI Driver Signal Specification at TP1

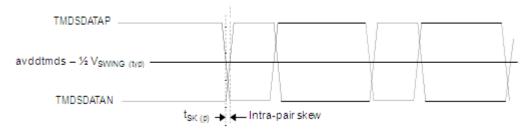


Figure 55. Intra-Pair Skew Definition

i.MX 6Dual/6Quad								
	RGB,	R	GB/TV	Signal /	Allocatior	n (Examp	ole)	Comment ^{1,2}
Port Name (x = 0, 1)	Signal Name (General)	16-bit RGB	18-bit RGB	24 Bit RGB	8-bit YCrCb ³	16-bit YCrCb	20-bit YCrCb	
IPUx_DIx_PIN04		/ _ / _ / _ / _ / _ / _ /					1	Additional frame/row synchronous
IPUx_DIx_PIN05								signals with programmable timing
IPUx_DIx_PIN06								
IPUx_DIx_PIN07								
IPUx_DIx_PIN08		_						
IPUx_DIx_D0_CS				_				—
IPUx_DIx_D1_CS		_					Alternate mode of PWM output for contrast or brightness control	
IPUx_DIx_PIN11				_				
IPUx_DIx_PIN12				_				
IPUx_DIx_PIN13				_				Register select signal
IPUx_DIx_PIN14		_				Optional RS2		
IPUx_DIx_PIN15		DRDY/DV				Data validation/blank, data enable		
IPUx_DIx_PIN16							Additional data synchronous	
IPUx_DIx_PIN17				Q				signals with programmable features/timing

Table 64. Video Signal Cross-Reference (continued)

¹ Signal mapping (both data and control/synchronization) is flexible. The table provides examples.

² Restrictions for ports IPUx_DISPx_DAT00 through IPUx_DISPx_DAT23 are as follows:

• A maximum of three continuous groups of bits can be independently mapped to the external bus. Groups must not overlap.

• The bit order is expressed in each of the bit groups, for example, B[0] = least significant blue pixel bit.

³ This mode works in compliance with recommendation ITU-R BT.656. The timing reference signals (frame start, frame end, line start, and line end) are embedded in the 8-bit data bus. Only video data is supported, transmission of non-video related data during blanking intervals is not supported.

NOTE

Table 64 provides information for both the DISP0 and DISP1 ports. However, DISP1 port has reduced pinout depending on IOMUXC configuration and therefore may not support all configurations. See the IOMUXC table for details.

4.12.10.5 IPU Display Interface Timing

The IPU Display Interface supports two kinds of display accesses: synchronous and asynchronous. There are two groups of external interface pins to provide synchronous and asynchronous controls.

4.12.10.5.1 Synchronous Controls

The synchronous control changes its value as a function of a system or of an external clock. This control has a permanent period and a permanent waveform.

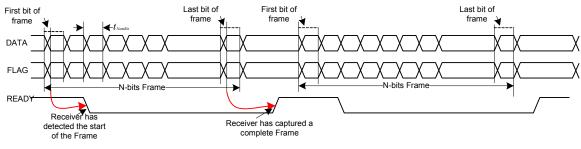
4.12.11 LVDS Display Bridge (LDB) Module Parameters

The LVDS interface complies with TIA/EIA 644-A standard. For more details, see TIA/EIA STANDARD 644-A, "Electrical Characteristics of Low Voltage Differential Signaling (LVDS) Interface Circuits."

Parameter	Symbol	Test Condition		Max	Units
Differential Voltage Output Voltage	V _{OD}	100 Ω Differential load	250	450	mV
Output Voltage High	Voh	100 Ω differential load (0 V Diff—Output High Voltage static)	1.25	1.6	V
Output Voltage Low	Vol	00 Ω differential load 0 V Diff—Output Low Voltage static)		1.25	V
Offset Static Voltage	V _{OS}	Two 49.9 Ω resistors in series between N-P terminal, with output in either Zero or One state, the voltage measured between the 2 resistors.	1.15	1.375	V
VOS Differential	V _{OSDIFF}	Difference in $V_{\mbox{\scriptsize OS}}$ between a One and a Zero state	-50	50	mV
Output short-circuited to GND	ISA ISB	With the output common shorted to GND	-24	24	mA
VT Full Load Test	VTLoad	100 Ω Differential load with a 3.74 k Ω load between GND and I/O supply voltage	247	454	mV

Table 67. LVDS Display Bridge (LDB) Electrical Specification

4.12.12 MIPI D-PHY Timing Parameters


This section describes MIPI D-PHY electrical specifications, compliant with MIPI CSI-2 version 1.0, D-PHY specification Rev. 1.0 (for MIPI sensor port x4 lanes) and MIPI DSI Version 1.01, and D-PHY specification Rev. 1.0 (and also DPI version 2.0, DBI version 2.0, DSC version 1.0a at protocol layer) (for MIPI display port x2 lanes).

4.12.12.1 Electrical and Timing Information

Symbol	Parameters	Test Conditions	Min	Тур	Max	Unit				
	Input DC Specifications—Apply to DSI_CLK_P/_N and DSI_DATA_P/_N Inputs									
V ₁ Input signal voltage range Transient voltage range is limited from -300 mV to 1600 mV				—	1350	mV				
V _{LEAK}	Input leakage current	VGNDSH(min) = VI = VGNDSH(max) + VOH(absmax) Lane module in LP Receive Mode	-10		10	mA				
V _{GNDSH}	Ground Shift	_	-50		50	mV				
V _{OH(absmax)}	Maximum transient output voltage level	_	_	_	1.45	V				
t _{voh(absmax)}	Maximum transient time above VOH(absmax)	_	_		20	ns				

 Table 68. Electrical and Timing Information

4.12.13.3 Receiver Real-Time Data Flow

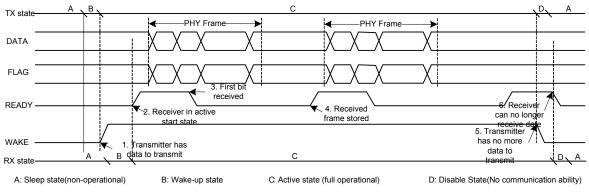
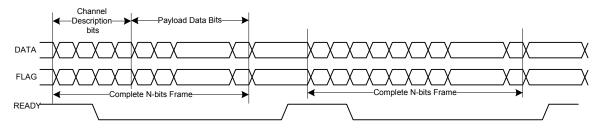



Figure 76. Synchronized Data Flow Transmission with WAKE

4.12.13.5 Stream Transmission Mode Frame Transfer

Parameter	Symbol	Test Conditions	Min	Max	Unit
Common-mode output voltage: (V _{O+} - V _{O-}) / 2	V _{OCM}	_	1.0	1.5	V
Difference in common-mode output between (high/low) steady-states: I V _{OCM, high} - V _{OCM, low} I	ΔV _{OCM}	_	-50	50	mV
Variations on common-mode output during a logic state transitions	V _{CMV}	See Note ²	—	150	mVpp
Short circuit current	ll _{os} l	See Note ³	—	43	mA
Differential output impedance	Z _O	_	1.6	_	kΩ
	Receiver	Characteristics			
Differential clock input: • logic low steady-state • logic high steady-state • hysteresis	V _{ILC} V _{IHC} V _{HSC}	See Note ⁴	50 -25	-50 25	mV mV mV
Differential signal/data input: • logic low steady-state • logic high steady-state	V _{ILS} V _{IHS}	_	 50	-50 —	mV mV
Signal-ended input voltage (steady-state): • MLB_SIG_P, MLB_DATA_P • MLB_SIG_N, MLB_DATA_N	V _{IN+} V _{IN-}	_	0.5 0.5	2.0 2.0	v v

Table 72. MediaLB 6-Pin Interface Electrical DC Specifications (continued)

The signal-ended output voltage of a driver is defined as V_{O+} on MLB_CLK_P, MLB_SIG_P, and MLB_DATA_P. The signal-ended output voltage of a driver is defined as V_{O-} on MLB_CLK_N, MLB_SIG_N, and MLB_DATA_N.

² Variations in the common-mode voltage can occur between logic states (for example, during state transitions) as a result of differences in the transition rate of V_{O+} and V_{O-}.

 $^3\,$ Short circuit current is applicable when V_{O_{+}} and V_{O_{-}} are shorted together and/or shorted to ground.

 $^4\,$ The logic state of the receiver is undefined when -50 mV < V_{ID} < 50 mV.

Parameter	Symbol	Min	Max	Unit	Comment
Cycle-to-cycle system jitter	t _{jitter}	_	600	ps	—
Transmitter MLB_SIG_P/_N (MLB_DATA_P/_N) output valid from transition of MLB_CLK_P/_N (low-to-high) ¹	t _{delay}	0.6	1.3	ns	_
Disable turnaround time from transition of MLB_CLK_P/_N (low-to-high)	t _{phz}	0.6	3.5	ns	_
Enable turnaround time from transition of MLB_CLK_P/_N (low-to-high)	t _{plz}	0.6	5.6	ns	_
MLB_SIG_P/_N (MLB_DATA_P/_N) valid to transition of MLB_CLK_P/_N (low-to-high)	t _{su}	0.05	—	ns	_
MLB_SIG_P/_N (MLB_DATA_P/_N) hold from transition of MLB_CLK_P/_N (low-to-high) ²	t _{hd}	0.6	—	ns	_

Table 75. MLB 6-Pin Interface Timing Parameters

t_{delay}, t_{phz}, t_{plz}, t_{su}, and t_{hd} may also be referenced from a low-to-high transition of the recovered clock for 2:1 and 4:1 recovered-to-external clock ratios.

² The transmitting device must ensure valid data on MLB_SIG_P/_N (MLB_DATA_P/_N) for at least t_{hd(min)} following the rising edge of MLBCP/N; receivers must latch MLB_SIG_P/_N (MLB_DATA_P/_N) data within t_{hd(min)} of the rising edge of MLB_CLK_P/_N.

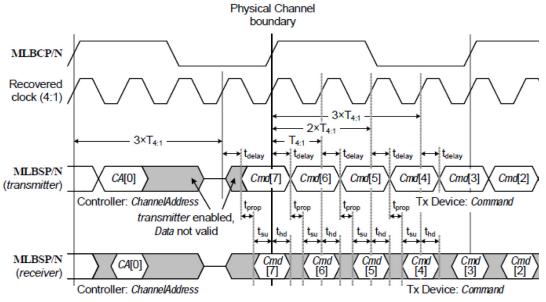


Figure 82. MLB 6-Pin Delay, Setup, and Hold Times

4.12.15 PCIe PHY Parameters

The PCIe interface complies with PCIe specification Gen2 x1 lane and supports the PCI Express 1.1/2.0 standard.

1

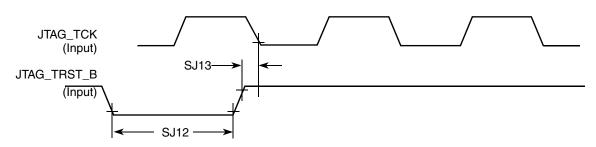


Figure 87. JTAG_TRST_B Timing Diagram

ID	Parameter ^{1,2}	All Freq	uencies	Unit
		Min	Max	
SJ0	JTAG_TCK frequency of operation 1/(3xT _{DC}) ¹	0.001	22	MHz
SJ1	JTAG_TCK cycle time in crystal mode	45	_	ns
SJ2	JTAG_TCK clock pulse width measured at V_M^2	22.5	_	ns
SJ3	JTAG_TCK rise and fall times	—	3	ns
SJ4	Boundary scan input data set-up time	5	—	ns
SJ5	Boundary scan input data hold time	24	_	ns
SJ6	JTAG_TCK low to output data valid	—	40	ns
SJ7	JTAG_TCK low to output high impedance	—	40	ns
SJ8	JTAG_TMS, JTAG_TDI data set-up time	5	—	ns
SJ9	JTAG_TMS, JTAG_TDI data hold time	25	_	ns
SJ10	JTAG_TCK low to JTAG_TDO data valid	—	44	ns
SJ11	JTAG_TCK low to JTAG_TDO high impedance	—	44	ns
SJ12	JTAG_TRST_B assert time	100	—	ns
SJ13	JTAG_TRST_B set-up time to JTAG_TCK low	40	—	ns

Table	79.	JTAG	Timing
14010			

¹ T_{DC} = target frequency of SJC

² V_{M} = mid-point voltage

4.12.19 SPDIF Timing Parameters

The Sony/Philips Digital Interconnect Format (SPDIF) data is sent using the bi-phase marking code. When encoding, the SPDIF data signal is modulated by a clock that is twice the bit rate of the data signal.

Table 80 and Figure 88 and Figure 89 show SPDIF timing parameters for the Sony/Philips Digital Interconnect Format (SPDIF), including the timing of the modulating Rx clock (SPDIF_SR_CLK) for SPDIF in Rx mode and the timing of the modulating Tx clock (SPDIF_ST_CLK) for SPDIF in Tx mode.

ID	Parameter	Min	Max	Unit				
	Internal Clock Operation							
SS1	AUDx_TXC/AUDx_RXC clock period	81.4	_	ns				
SS2	AUDx_TXC/AUDx_RXC clock high period	36.0	—	ns				
SS4	AUDx_TXC/AUDx_RXC clock low period	36.0	—	ns				
SS6	AUDx_TXC high to AUDx_TXFS (bl) high	—	15.0	ns				
SS8	AUDx_TXC high to AUDx_TXFS (bl) low	—	15.0	ns				
SS10	AUDx_TXC high to AUDx_TXFS (wl) high	—	15.0	ns				
SS12	AUDx_TXC high to AUDx_TXFS (wl) low	_	15.0	ns				
SS14	AUDx_TXC/AUDx_RXC Internal AUDx_TXFS rise time	—	6.0	ns				
SS15	AUDx_TXC/AUDx_RXC Internal AUDx_TXFS fall time	—	6.0	ns				
SS16	AUDx_TXC high to AUDx_TXD valid from high impedance	—	15.0	ns				
SS17	AUDx_TXC high to AUDx_TXD high/low	—	15.0	ns				
SS18	AUDx_TXC high to AUDx_TXD high impedance	—	15.0	ns				
	Synchronous Internal Clock Oper	ration						
SS42	AUDx_RXD setup before AUDx_TXC falling	10.0	_	ns				
SS43	AUDx_RXD hold after AUDx_TXC falling	0.0	—	ns				

Table 82. SSI Transmitter Timing with Internal Clock

NOTE

- All the timings for the SSI are given for a non-inverted serial clock polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync (TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting the clock signal AUDx_TXC/AUDx_RXC and/or the frame sync AUDx_TXFS/AUDx_RXFS shown in the tables and in the figures.
- All timings are on Audiomux Pads when SSI is being used for data transfer.
- The terms, WL and BL, refer to Word Length (WL) and Bit Length (BL).
- For internal Frame Sync operation using external clock, the frame sync timing is the same as that of transmit data (for example, during AC97 mode of operation).

4.12.22 USB HSIC Timings

This section describes the electrical information of the USB HSIC port.

NOTE

HSIC is a DDR signal. The following timing specification is for both rising and falling edges.

4.12.22.1 Transmit Timing

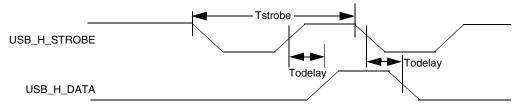


Figure 98. USB HSIC Transmit Waveform

Table 91. USB HSIC Transmit Parameters

Name	Parameter	Min	Max	Unit	Comment
Tstrobe	strobe period	4.166	4.167	ns	_
Todelay	data output delay time	550	1350	ps	Measured at 50% point
Tslew	strobe/data rising/falling time	0.7	2	V/ns	Averaged from 30% – 70% points

4.12.22.2 Receive Timing

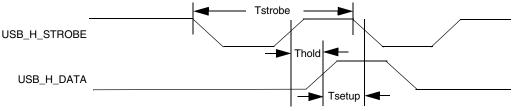


Figure 99. USB HSIC Receive Waveform

Table 92. USB HSIC Receive Parameters¹

Name	Parameter	Min	Max	Unit	Comment
Tstrobe	strobe period	4.166	4.167	ns	—
Thold	data hold time	300	—	ps	Measured at 50% point
Tsetup	data setup time	365	—	ps	Measured at 50% point
Tslew	strobe/data rising/falling time	0.7	2	V/ns	Averaged from 30% – 70% points

¹ The timings in the table are guaranteed when:

-AC I/O voltage is between 0.9x to 1x of the I/O supply

-DDR_SEL configuration bits of the I/O are set to (10)b

6 Package Information and Contact Assignments

This section includes the contact assignment information and mechanical package drawing.

6.1 Signal Naming Convention

The signal names of the i.MX6 series of products are standardized to align the signal names within the family and across the documentation. Benefits of this standardization are as follows:

- Signal names are unique within the scope of an SoC and within the series of products
- Searches will return all occurrences of the named signal
- Signal names are consistent between i.MX 6 series products implementing the same modules
- The module instance is incorporated into the signal name

This standardization applies only to signal names. The ball names are preserved to prevent the need to change schematics, BSDL models, IBIS models, and so on.

Throughout this document, the signal names are used except where referenced as a ball name (such as the Functional Contact Assignments table, Ball Map table, and so on). A master list of signal names is in the document, *IMX 6 Series Standardized Signal Name Map* (EB792). This list can be used to map the signal names used in older documentation to the standardized naming conventions.

6.2 21 x 21 mm Package Information

6.2.1 Case FCPBGA, 21 x 21 mm, 0.8 mm Pitch, 25 x 25 Ball Matrix

Package Information and Contact Assignments

Supply Rail Name	Ball(s) Position(s)	Remark
VDDHIGH_CAP	H10, J10	Secondary supply for the 2.5 V domain (internal regulator output—requires capacitor if internal regulator is used)
VDDHIGH_IN	H9, J9	Primary supply for the 2.5 V regulator
VDDPU_CAP	H17, J17, K17, L17, M17, N17, P17	Secondary supply for the VPU and GPU (internal regulator output— requires capacitor if internal regulator is used)
VDDSOC_CAP	R10, T10, T13, T14, U10, U13, U14	Secondary supply for the SoC and PU (internal regulator output—requires capacitor if internal regulator is used)
VDDSOC_IN	H16, J16, K16, L16, M16, N16, P16, R16, T16, U16	Primary supply for the SoC and PU regulators
VDDUSB_CAP	F9	Secondary supply for the 3 V domain (internal regulator output—requires capacitor if internal regulator is used)
ZQPAD	AE17	Connect ZQPAD to an external 240Ω 1% resistor to GND. This is a reference used during DRAM output buffer driver calibration.

Table 95. 21 x 21 mm Supplies Contact Assignment (continued)

6.2.3 21 x 21 mm Functional Contact Assignments

Table 96 displays an alpha-sorted list of the signal assignments including power rails. The table also includes out of reset pad state.

					Out of Reset Con	dition ¹	
Ball Name	Ball	Power Group	Ball Type	Default Mode (Reset Mode)	Default Function (Signal Name)	Input/Output	Value ²
BOOT_MODE0	C12	VDD_SNVS_IN	GPIO	ALT0	SRC_BOOT_MODE0	Input	PD (100K)
BOOT_MODE1	F12	VDD_SNVS_IN	GPIO	ALT0	SRC_BOOT_MODE1	Input	PD (100K)
CLK1_N	C7	VDD_HIGH_CAP	—	—	CLK1_N	—	—
CLK1_P	D7	VDD_HIGH_CAP	—	—	CLK1_P	—	—
CLK2_N	C5	VDD_HIGH_CAP	—		CLK2_N	—	—
CLK2_P	D5	VDD_HIGH_CAP	—	—	CLK2_P	—	—
CSI_CLK0M	F4	NVCC_MIPI	—	—	CSI_CLK_N	—	—
CSI_CLK0P	F3	NVCC_MIPI	—	—	CSI_CLK_P	—	—
CSI_D0M	E4	NVCC_MIPI	—	—	CSI_DATA0_N	—	—
CSI_D0P	E3	NVCC_MIPI	—	—	CSI_DATA0_P	—	—
CSI_D1M	D1	NVCC_MIPI	_		CSI_DATA1_N	_	—

Table 96. 21 x 21 mm Functional Contact Assignments

Package Information and Contact Assignments

Dell Neme	Before Reset State				
Ball Name	Input/Output	Value			
EIM_DA14	Input	PD (100K)			
EIM_DA15	Input	PD (100K)			
EIM_EB0	Input	PD (100K)			
EIM_EB1	Input	PD (100K)			
EIM_EB2	Input	PD (100K)			
EIM_EB3	Input	PD (100K)			
EIM_LBA	Input	PD (100K)			
EIM_RW	Input	PD (100K)			
EIM_WAIT	Input	PD (100K)			
GPIO_17	Output	Drive state unknown (x)			
GPIO_19	Output	Drive state unknown (x)			
KEY_COL0	Output	Drive state unknown (x)			