

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	e200z4
Core Size	32-Bit Dual-Core
Speed	80MHz
Connectivity	CANbus, FlexRay, LINbus, SPI, UART/USART
Peripherals	DMA, POR, PWM, WDT
Number of I/O	-
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 32x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5643lff0mlq8

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Feature	MPC5643L				
Memory	Flash	1 MB, ECC, RWW				
	Static RAM (SRAM)	128 KB, ECC				
Modules	Interrupt Controller (INTC)	16 interrupt levels, replicated module				
	Periodic Interrupt Timer (PIT)	1 × 4 channels				
	System Timer Module (STM)	1 × 4 channels, replicated module				
	Software Watchdog Timer (SWT)	Yes, replicated module				
	eDMA	16 channels, replicated module				
	FlexRay	1 × 64 message buffers, dual channel				
	FlexCAN	2 x 32 message buffers				
	LINFlexD (UART and LIN with DMA support)	2				
	Clock out	Yes				
	Fault Collection and Control Unit (FCCU)	Yes				
	Cross Triggering Unit (CTU)	Yes				
	eTimer	3 × 6 channels ¹				
	FlexPWM	2 Module 4 × (2 + 1) channels ²				
	Analog-to-Digital Converter (ADC)	2 x 12-bit ADC, 16 channels per ADC (3 internal, 4 shared and 9 external)				
	Sine Wave Generator (SWG)	32 point				
Modules (cont.)	Deserial Serial Peripheral Interface (DSPI)	3 × DSPI as many as 8 chip selects				
	Cyclic Redundancy Checker (CRC) unit	Yes				
	Junction temperature sensor (TSENS)	Yes, replicated module				
	Digital I/Os	≥ 16				
Supply	Device power supply	3.3 V with integrated bypassable ballast transistor External ballast transistor not needed for bare die				
	Analog reference voltage	3.0 V – 3.6 V and 4.5 V – 5.5 V				
Clocking	Frequency-modulated phase-locked loop (FMPLL)	2				
	Internal RC oscillator	16 MHz				
Cont.) Supply	External crystal oscillator	4 – 40 MHz				
Debug	Nexus	Level 3+				

Table 1. MPC5643L device summary (continued)

Introduction

1.5.32 Sine Wave Generator (SWG)

A digital-to-analog converter is available to generate a sine wave based on 32 stored values for external devices (ex: resolver).

1.5.33 Analog-to-Digital Converter module (ADC)

The ADC module features include:

Analog part:

- 2 on-chip ADCs
 - 12-bit resolution SAR architecture
 - Same digital interface as in the MPC5604P family
 - A/D Channels: 9 external, 3 internal and 4 shared with other A/D (total 16 channels)
 - One channel dedicated to each T-sensor to enable temperature reading during application
 - Separated reference for each ADC
 - Shared analog supply voltage for both ADCs
 - One sample and hold unit per ADC
 - Adjustable sampling and conversion time

Digital part:

- 4 analog watchdogs comparing ADC results against predefined levels (low, high, range) before results are stored in the appropriate ADC result location
- 2 modes of operation: CPU Mode or CTU Mode
- CPU mode features
 - Register based interface with the CPU: one result register per channel
 - ADC state machine managing three request flows: regular command, hardware injected command, software injected command
 - Selectable priority between software and hardware injected commands
 - 4 analog watchdogs comparing ADC results against predefined levels (low, high, range)
 - DMA compatible interface
- CTU mode features
 - Triggered mode only
 - 4 independent result queues $(1 \times 16 \text{ entries}, 2 \times 8 \text{ entries}, 1 \times 4 \text{ entries})$
 - Result alignment circuitry (left justified; right justified)
 - 32-bit read mode allows to have channel ID on one of the 16-bit parts
 - DMA compatible interfaces
- Built-in self-test features triggered by software

1.5.34 Cross Triggering Unit (CTU)

The ADC cross triggering unit allows automatic generation of ADC conversion requests on user selected conditions without CPU load during the PWM period and with minimized CPU load for dynamic configuration.

The CTU implements the following features:

- Cross triggering between ADC, FlexPWM, eTimer, and external pins
- Double buffered trigger generation unit with as many as 8 independent triggers generated from external triggers
- Maximum operating frequency less than or equal to 120 MHz
- Trigger generation unit configurable in sequential mode or in triggered mode
- Trigger delay unit to compensate the delay of external low pass filter

Pin #	Port/function	Peripheral	Output function	Input function	
D11	A[11]	SIUL	GPIO[11]	GPIO[11]	
		DSPI_2	SCK	SCK	
		FlexPWM_0	A[0]	A[0]	
		FlexPWM_0	A[2]	A[2]	
		SIUL	—	EIRQ[10]	
D12	E[13]	SIUL	GPIO[77]	GPI0[77]	
	-	eTimer_0	ETC[5]	ETC[5]	
		DSPI_2	CS3		
	-	SIUL	_	EIRQ[25]	
D13	F[15]	SIUL	GPIO[95]	GPIO[95]	
		LINFlexD_1	—	RXD	
D14	V _{DD_HV_IO_RING}				
D15	V _{PP_TEST} ¹		_		
D16	D[14]	SIUL	GPIO[62]	GPIO[62]	
		FlexPWM_0	B[1]	B[1]	
		eTimer_0 —		ETC[3]	
D17 G[3]		SIUL	GPIO[99]	GPIO[99]	
		FlexPWM_0	A[2]	A[2]	
		eTimer_0	—	ETC[4]	
E1	MDO0		—		
E2	F[6]	SIUL	GPIO[86]	GPIO[86]	
		NPC	MDO[1]		
E3	D[1]	SIUL	GPIO[49]	GPIO[49]	
		eTimer_1	ETC[2]	ETC[2]	
		CTU_0	EXT_TGR		
		FlexRay	—	CA_RX	
E4	NMI				
E14	Not connected		—		
E15	C[14]	SIUL	GPIO[46]	GPIO[46]	
		eTimer_1	ETC[2]	ETC[2]	
		CTU_0 EXT_TGR			
E16	G[2]	SIUL	GPIO[98]	GPIO[98]	
		FlexPWM_0	X[2]	X[2]	
		DSPI_1	CS1	—	

Package pinouts and signal descriptions

Pin #	Port/function	Peripheral	Output function	Input function
K17	A[3]	SIUL	GPIO[3]	GPIO[3]
		eTimer_0	ETC[3]	ETC[3]
		DSPI_2	CS0	CS0
		FlexPWM_0	B[3]	B[3]
		MC_RGM	_	ABS[2]
		SIUL	_	EIRQ[3]
L1	F[10]	SIUL	GPIO[90]	GPIO[90]
		NPC	EVTO	_
L2	F[11]	SIUL	GPIO[91]	GPIO[91]
		NPC	—	EVTI
L3	D[9]	SIUL	GPIO[57]	GPIO[57]
		FlexPWM_0	X[0]	X[0]
		LINFlexD_1	TXD	_
L4	Not connected		_	
L6	V _{DD_LV}		_	
L7	V _{SS_LV}		_	
L8	V _{SS_LV}		_	
L9	V _{SS_LV}		_	
L10	V _{SS_LV}		_	
L11	V _{SS_LV}		_	
L12	V _{DD_LV}		_	
L14	Not connected		_	
L15	тск		_	
L16	H[4]	SIUL	GPIO[116]	GPIO[116]
		FlexPWM_1	X[0]	X[0]
		eTimer_2	ETC[0]	ETC[0]
L17	B[4]	SIUL	GPIO[20]	GPIO[20]
		JTAGC	TDO	_
M1	V _{DD_HV_OSC}			
M2	V _{DD_HV_IO_RING}		_	
M3	D[8]	SIUL	GPIO[56]	GPIO[56]
		DSPI_1	CS2	_
		eTimer_1	ETC[4]	ETC[4]
		DSPI_0	CS5	_
		FlexPWM_0	—	FAULT[3]

Table 4. 257 MAPBGA pin function summary (continued)

Table 7. Pin muxing (continued)

Port			Alternate	Output	Input	Input mux	Weak pull	Pad s	peed ¹		Pin #										
name	PCR	Peripheral	output function	mux sel	functions	select	config during reset	SRC = 1	SRC = 0		144 pkg	257 pkg									
A[5]	PCR[5]	SIUL	GPIO[5]	ALT0	GPIO[5]	—			М	S		14	H4								
		DSPI_1	CS0	ALT1	CS0	—															
		eTimer_1	ETC[5]	ALT2	ETC[5]	PSMI[14]; PADSEL=0															
		DSPI_0	CS7	ALT3	—	_															
		SIUL	_	—	EIRQ[5]	_															
A[6]	PCR[6]	SIUL	GPIO[6]	ALT0	GPIO[6]	—	—	—	—	—	—	—	—	_	—		М	S		2	G4
		DSPI_1	SCK	ALT1	SCK	—															
		SIUL	_	—	EIRQ[6]	_															
A[7]	PCR[7]	SIUL	GPIO[7]	ALT0	GPIO[7]	—	—	М	S		10	F3									
		DSPI_1	SOUT	ALT1	—	_															
		SIUL	_	—	EIRQ[7]	_															
A[8]	PCR[8]	SIUL	GPIO[8]	ALT0	GPIO[8]	_		М	S		12	F4									
		DSPI_1	_	—	SIN	_															
		SIUL	_	—	EIRQ[8]	—															
A[9]	PCR[9]	SIUL	GPIO[9]	ALT0	GPIO[9]	_	—	М	S		134	B6									
		DSPI_2	CS1	ALT1	—	—	1														
		FlexPWM_0	B[3]	ALT3	B[3]	PSMI[27]; PADSEL=1															
		FlexPWM_0	_	_	FAULT[0]	PSMI[16]; PADSEL=0															

MPC5643L
Microcontroller
Data
Sheet,
Rev. 9

		Table 7. Pi	n muxing (co	ntinued)
Peripheral	Alternate output	Output	Input	Input mu

Port			Alternate	Output	Input	Input mux	Weak pull	Pad s	peed ¹	Pin #													
name	PCR	Peripheral	output function	mux sel	functions	select	config during reset	SRC = 1	SRC = 0	144 pkg	257 pkg												
A[10]	PCR[10]	SIUL	GPIO[10]	ALT0	GPIO[10]	—		М	S	118	A13												
		DSPI_2	CS0	ALT1	CS0	PSMI[3]; PADSEL=1																	
		FlexPWM_0	B[0]	ALT2	B[0]	PSMI[24]; PADSEL=0																	
		FlexPWM_0	X[2]	ALT3	X[2]	PSMI[29]; PADSEL=0		l															
		SIUL	_	—	EIRQ[9]	—																	
A[11]	PCR[11]	SIUL	GPIO[11]	ALT0	GPIO[11]	_	—	M S	S	120	D11												
		DSPI_2	SCK	ALT1	SCK	PSMI[1]; PADSEL=1																	
		FlexPWM_0	A[0]	ALT2	A[0]	PSMI[20]; PADSEL=0	-																
		FlexPWM_0	A[2]	ALT3	A[2]	PSMI[22]; PADSEL=0																	
		SIUL		—	EIRQ[10]	—	-																
A[12]	PCR[12]	SIUL	GPIO[12]	ALT0	GPIO[12]	-	—	М	S	122	A10												
		DSPI_2	SOUT	ALT1		_																	
		FlexPWM_0	A[2]	ALT2	A[2]	PSMI[22]; PADSEL=1																	
		FlexPWM_0	B[2]	ALT3	B[2]	PSMI[26]; PADSEL=0																	
		SIUL	_	—	EIRQ[11]	—	1																

58

MPC5643L	
Microcontroller	
Data (
Sheet,	
Rev. 9	

63	

Port			Alternate	Output	Input		Weak pull	Pad s	peed ¹	I	Pin #															
name	PCR	Peripheral	output function	mux sel	functions	Input mux select	config during reset	SRC = 1	SRC = 0		144 pkg	257 pkg														
C[5]	PCR[37]	SIUL	GPIO[37]	ALT0	GPIO[37]	—	—	М	S		13	G3														
		DSPI_0	SCK	ALT1	SCK	—	_	-																		
		SSCM	DEBUG[5]	ALT3		—			-																	
		FlexPWM_0		_	FAULT[3]	PSMI[19]; PADSEL=0																				
		SIUL	—	—	EIRQ[23]	—																				
C[6]	PCR[38]	SIUL	GPIO[38]	ALT0	GPIO[38]	_	-	М	S		142	D4														
		DSPI_0	SOUT	ALT1	_	_		-	-	-																
		FlexPWM_0	B[1]	ALT2	B[1]	PSMI[25]; PADSEL=0					-	-	-	-	-											
		SSCM	DEBUG[6]	ALT3	_	_																				
		SIUL		—	EIRQ[24]	_																				
C[7]	PCR[39]	SIUL	GPIO[39]	ALT0	GPIO[39]	_	—	—	М	S		15	K4													
		FlexPWM_0	A[1]	ALT2	A[1]	PSMI[21]; PADSEL=0																				
		SSCM	DEBUG[7]	ALT3	_	_																				
		DSPI_0	—	—	SIN	_																				
C[10]	PCR[42]	SIUL	GPIO[42]	ALT0	GPIO[42]	_	_	—	—	—	М	S		111	A15											
		DSPI_2	CS2	ALT1	_	_																				
		FlexPWM_0	A[3]	ALT3	A[3]	PSMI[23]; PADSEL=1								-												
		FlexPWM_0	—	—	FAULT[1]	PSMI[17]; PADSEL=0																				
C[11]	PCR[43]	SIUL	GPIO[43]	ALT0	GPIO[43]	—	_		М	S		80	M14													
		eTimer_0	ETC[4]	ALT1	ETC[4]	PSMI[7]; PADSEL=1						1														
		DSPI_2	CS2	ALT2	_	—																				

<u> </u>
~
Ψ
œ
ĸ
N.
<u>w</u>
e
Ψ
^
×
Ø
_
Ξ.
8
0
Ē
~
Å
_
lcto
¥
0
≤

MPC5643L Microcontroller Data Sheet, Rev. 9

Port			Alternate	Output	Input		Weak pull	Pad s	speed ¹	Pin #	
name	PCR	Peripheral	output function	mux sel	functions	Input mux select	config during reset	SRC = 1	SRC = 0	144 pkg	257 pkg
G[9]	PCR[105]	SIUL	GPIO[105]	ALT0	GPIO[105]	—	—	М	S	79	R17
		FlexRay	DBG1	ALT1	—	—					
		DSPI_1	CS1	ALT2	—	—					
		FlexPWM_0	_	—	FAULT[1]	PSMI[17]; PADSEL=2	-				
		SIUL		—	EIRQ[29]	—					
G[10]	PCR[106]	SIUL	GPIO[106]	ALT0	GPIO[106]	—	—	М	S	77	P15
		FlexRay	DBG2	ALT1	—	—					
		DSPI_2	CS3	ALT2	_	—					
		FlexPWM_0	—	—	FAULT[2]	PSMI[18]; PADSEL=1					
G[11]	PCR[107]	SIUL	GPIO[107]	ALT0	GPIO[107]	—	—	М	S	75	U15
		FlexRay	DBG3	ALT1	—	—					
		FlexPWM_0	—	—	FAULT[3]	PSMI[19]; PADSEL=2					
G[12]	PCR[108]	SIUL	GPIO[108]	ALT0	GPIO[108]	—	—	F	S	—	F2
		NPC	MDO[11]	ALT2	—	—					
G[13]	PCR[109]	SIUL	GPIO[109]	ALT0	GPIO[109]	—	—	F	S	—	H1
		NPC	MDO[10]	ALT2	—	—					
G[14]	PCR[110]	SIUL	GPIO[110]	ALT0	GPIO[110]	—	—	F	S		A6
		NPC	MDO[9]	ALT2	—	—					
G[15]	PCR[111]	SIUL	GPIO[111]	ALT0	GPIO[111]	—	—	F	S		J2
		NPC	MDO[8]	ALT2	—	—					
					Port H	•					
H[0]	PCR[112]	SIUL	GPIO[112]	ALT0	GPIO[112]			F	S	_	A5
		NPC	MDO[7]	ALT2	—	—	1				

Table 7. Pin muxing (continued)

Package pinouts and signal descriptions

72

Table 7. Pin muxing (continued	(t	
--------------------------------	----	--

Port			Alternate	Output	Input	Input mux	Weak pull	Pad s	peed ¹	Pin #	
name	PCR	Peripheral	output function	mux sel	functions	select	config during reset	SRC = 1	SRC = 0	144 pkg	257 pkg
H[1]	PCR[113]	SIUL	GPIO[113]	ALT0	GPIO[113]			F	S	—	F1
	-	NPC	MDO[6]	ALT2	—	—					
H[2]	PCR[114]	SIUL	GPIO[114]	ALT0	GPIO[114]	—	—	F	S	—	A4
		NPC	MDO[5]	ALT2	—	—					
H[3]	PCR[115]	SIUL	GPIO[115]	ALT0	GPIO[115]	—	—	F	S	—	G1
	-	NPC	MDO[4]	ALT2	—	—					
H[4]	PCR[116]	SIUL	GPIO[116]	ALT0	GPIO[116]	—	—	М	S	—	L16
		FlexPWM_1	X[0]	ALT1	X[0]	—					
		eTimer_2	ETC[0]	ALT2	ETC[0]	PSMI[39]; PADSEL=0					
H[5]	PCR[117]	SIUL	GPIO[117]	ALT0	GPIO[117]	_	—	М	S	—	M17
		FlexPWM_1	A[0]	ALT1	A[0]						
		DSPI_0	CS4	ALT3	—	—					
H[6]	PCR[118]	SIUL	GPIO[118]	ALT0	GPIO[118]	—	—	М	S	—	H17
		FlexPWM_1	B[0]	ALT1	B[0]	_					
		DSPI_0	CS5	ALT3	—	—					
H[7]	PCR[119]	SIUL	GPIO[119]	ALT0	GPIO[119]	—	—	М	S	—	K16
		FlexPWM_1	X[1]	ALT1	X[1]	—					
		eTimer_2	ETC[1]	ALT2	ETC[1]	PSMI[40]; PADSEL=0					
H[8]	PCR[120]	SIUL	GPIO[120]	ALT0	GPIO[120]		_	М	S	_	K15
		FlexPWM_1	A[1]	ALT1	A[1]	_					
		DSPI_0	CS6	ALT3	—	_					
H[9]	PCR[121]	SIUL	GPIO[121]	ALT0	GPIO[121]		_	М	S	_	G16
		FlexPWM_1	B[1]	ALT1	B[1]						
		DSPI_0	CS7	ALT3	_	—]				

Symb	ol	Parameter	Conditions	Min	Тур	Мах	Unit
V_{EME}	CC	Radiated emissions	Configuration A; frequency range 150 kHz–50 MHz	_	16		dBμV
			Configuration A; frequency range 50–150 MHz		16		_
			Configuration A; frequency range 150–500 MHz	_	32		
			Configuration A; frequency range 500–1000 MHz	_	25		
			Configuration B; frequency range 50–150 MHz	_	15	_	
			Configuration B; frequency range 50–150 MHz	_	21		
			Configuration B; frequency range 150–500 MHz	_	30		
			Configuration B; frequency range 500–1000 MHz		24	—	

Table 14. EN	II emission testin	a specifications
		gopooniounono

EMC testing was performed and documented according to these standards: [IEC61508-2-7.4.5.1.b, IEC61508-2-7.2.3.2.e, IEC61508-2-Table-A.17 (partially), IEC61508-2-Table-B.5(partially), SRS2110]

EME testing was performed and documented according to these standards: [IEC 61967-2 & -4]

EMS testing was performed and documented according to these standards: [IEC 62132-2 & -4]

Refer MPC5643L for detailed information pertaining to the EMC, EME, and EMS testing and results.

3.6 Electrostatic discharge (ESD) characteristics

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts \times (*n* + 1) supply pin). This test conforms to the AEC-Q100-002/-003/-011 standard.

No.	Symbol		Parameter	Conditions	Class	Max value ³	Unit
1	V _{ESD(HBM)}	SR	Electrostatic discharge (Human Body Model)	$T_A = 25 \text{ °C}$ conforming to AEC-Q100-002	H1C	2000	V
2	V _{ESD(MM)}	SR	Electrostatic discharge (Machine Model)	T _A = 25 °C conforming to AEC-Q100-003	M2	200	V
3	V _{ESD(CDM)}	SR	Electrostatic discharge (Charged Device Model)	$T_A = 25 \ ^{\circ}C$ conforming to AEC-Q100-011	СЗА	500 750 (corners)	V

Table	15.	ESD	ratings ^{1, 2}	
-------	-----	-----	-------------------------	--

¹ All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.

² A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification requirements. Complete DC parametric and functional testing shall be performed per applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

² Adjust resistor at bipolar transistor collector for 3.3V to avoid VCE<VCE_{SAT}

The recommended external ballast transistor is the bipolar transistor BCP68 with the gain range of 85 up to 375 (for IC=500mA, VCE=1V) provided by several suppliers. This includes the gain variations BCP68-10, BCP68-16 and BCP68-25. The most important parameters for the interoperability with the integrated voltage regulator are the DC current gain (hFE) and the temperature coefficient of the gain (XTB). While the specified gain range of most BCP68 vendors is the same, there are slight variations in the temperature coefficient parameter. MPC5643L Voltage regulator operation was simulated against the typical variation on temperature coefficient and against the specified gain range to have a robust design.

Symb	ool	Parameter	Conditions	Min	Тур	Max	Unit
	C _{ext}	External decoupling/ stability capacitor	Min, max values shall be granted with respect to tolerance, voltage, temperature, and aging variations.	12	_	40	μF
	SR	Combined ESR of external capacitor	_	1	—	100	mΩ
	SR	Number of pins for external decoupling/ stability capacitor	_	5	_	_	
C _{V1V2}	SR	Total capacitance on 1.2 V pins	Ceramic capacitors, taking into account tolerance, aging, voltage and temperature variation	300	_	900	nF
t _{SU}		Start-up time after main supply stabilization	$C_{load} = 10 \ \mu F \times 4$	—	—	2.5	ms
—		Main High Voltage Power - Low Voltage Detection, upper threshold	_	_	_	2.93	V
_	D	Main supply low voltage detector, lower threshold	_	2.6	—	—	V
_	D	Digital supply high voltage detector upper threshold	Before a destructive reset initialization phase completion	1.355	_	1.495	V
			After a destructive reset initialization phase completion	1.39	_	1.47	
_	D	Digital supply high voltage detector lower threshold	Before a destructive reset initialization phase completion	1.315	_	1.455	V
			After a destructive reset initialization phase completion	1.35	_	1.38	

Table 18.	Voltage regulator	electrical s	specifications
-----------	-------------------	--------------	----------------

Symbo	I	Parameter	Conditions	Min	Тур	Max	Unit
t _{ipli}	D	FMPLL lock time 6, 7	_	—	_	200	μs
t _{dc}	D	Duty cycle of reference	_	40	_	60	%
C _{JITTER}	Т	CLKOUT period jitter ^{8,9,10,11}	Long-term jitter (avg. over 2 ms interval), f _{FMPLLOUT} maximum	-6	_	6	ns
Δt_{PKJIT}	Т	Single period jitter (peak to peak)	PHI @ 120 MHz, Input clock @ 4 MHz	—	_	175	ps
			PHI @ 100 MHz, Input clock @ 4 MHz	—	_	185	ps
			PHI @ 80 MHz, Input clock @ 4 MHz	—	_	200	ps
Δt_{LTJIT}	Т	Long term jitter	PHI @ 16 MHz, Input clock @ 4 MHz	—	_	±6	ns
f _{LCK}	D	Frequency LOCK range	_	-6	_	6	% f _{FMPLLOUT}
f _{UL}	D	Frequency un-LOCK range	_	-18	_	18	% f _{FMPLLOUT}
fcs	D	Modulation depth	Center spread	±0.25	—	±2.0	%
^f DS			Down spread	-0.5	—	-8.0	[†] FMPLLOUT
f _{MOD}	D	Modulation frequency ¹²	—		_	100	kHz

Table 23. FMPLL electrical characteristics (continued)
--

¹ Considering operation with FMPLL not bypassed.

² With FM; the value does not include a possible +2% modulation

³ "Loss of Reference Frequency" window is the reference frequency range outside of which the FMPLL is in self clocked mode.

- ⁴ Self clocked mode frequency is the frequency that the FMPLL operates at when the reference frequency falls outside the f_{LOR} window.
- ⁵ f_{VCO} is the frequency at the output of the VCO; its range is 256–512 MHz. f_{SCM} is the self-clocked mode frequency (free running frequency); its range is 20–150 MHz. $f_{SYS} = f_{VCO}$ +ODF
- ⁶ This value is determined by the crystal manufacturer and board design. For 4 MHz to 20 MHz crystals specified for this FMPLL, load capacitors should not exceed these limits.
- ⁷ This specification applies to the period required for the FMPLL to relock after changing the MFD frequency control bits in the synthesizer control register (SYNCR).
- ⁸ This value is determined by the crystal manufacturer and board design.
- ⁹ Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{SYS}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FMPLL circuitry via V_{DDPLL} and V_{SSPLL} and variation in crystal oscillator frequency increase the C_{JITTER} percentage for a given interval.
- ¹⁰ Proper PC board layout procedures must be followed to achieve specifications.
- ¹¹ Values are with frequency modulation disabled. If frequency modulation is enabled, jitter is the sum of C_{JITTER} and either f_{CS} or f_{DS} (depending on whether center spread or down spread modulation is enabled).
- ¹² Modulation depth is attenuated from depth setting when operating at modulation frequencies above 50 kHz.

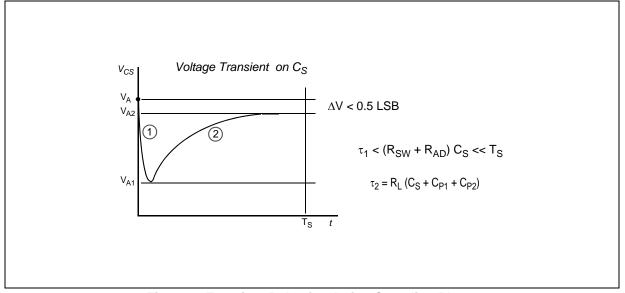


Figure 9. Transient Behavior during Sampling Phase

In particular two different transient periods can be distinguished:

• A first and quick charge transfer from the internal capacitance C_{P1} and C_{P2} to the sampling capacitance C_S occurs (C_S is supposed initially completely discharged): considering a worst case (since the time constant in reality would be faster) in which C_{P2} is reported in parallel to C_{P1} (call $C_P = C_{P1} + C_{P2}$), the two capacitances C_P and C_S are in series, and the time constant is

$$\tau_{1} = (R_{SW} + R_{AD}) \bullet \frac{C_{P} \bullet C_{S}}{C_{P} + C_{S}}$$
 Eqn. 5

Equation 5 can again be simplified considering only C_S as an additional worst condition. In reality, the transient is faster, but the A/D converter circuitry has been designed to be robust also in the very worst case: the sampling time T_S is always much longer than the internal time constant:

$$\tau_1 < (R_{SW} + R_{AD}) \bullet C_S \ll T_S$$
 Eqn. 6

The charge of C_{P1} and C_{P2} is redistributed also on C_S , determining a new value of the voltage V_{A1} on the capacitance according to Equation 7:

$$V_{A1} \bullet (C_S + C_{P1} + C_{P2}) = V_A \bullet (C_{P1} + C_{P2})$$
 Eqn. 7

• A second charge transfer involves also C_F (that is typically bigger than the on-chip capacitance) through the resistance R_L : again considering the worst case in which C_{P2} and C_S were in parallel to C_{P1} (since the time constant in reality would be faster), the time constant is:

$$\tau_2 < R_L \bullet (C_S + C_{P1} + C_{P2})$$
 Eqn. 8

In this case, the time constant depends on the external circuit: in particular imposing that the transient is completed well before the end of sampling time T_S , a constraints on R_L sizing is obtained:

$$10 \bullet \tau_2 = 10 \bullet R_L \bullet (C_S + C_{P1} + C_{P2}) < T_S$$
 Eqn. 9

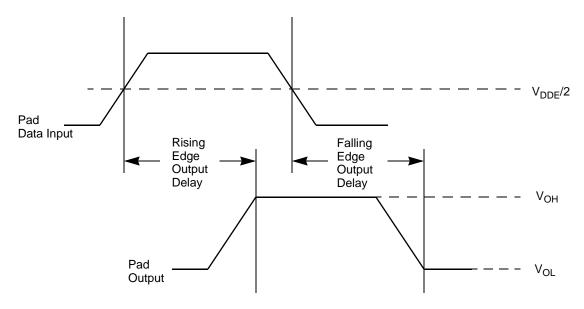


Figure 11. Pad output delay

3.19 Reset sequence

This section shows the duration for different reset sequences. It describes the different reset sequences and it specifies the start conditions and the end indication for the reset sequences.

3.19.1 Reset sequence duration

Table 31 specifies the minimum and the maximum reset sequence duration for the five different reset sequences described in Section 3.19.2, Reset sequence description.

Ne	Symbol		Denemeter	Conditions	T _{Reset}			Unit
No.			Parameter	Conditions	Min	Тур	Max ¹	Unit
1	T _{DRB}	CC	Destructive Reset Sequence, BIST enabled		28	34	39	ms
2	T _{DR}	СС	Destructive Reset Sequence, BIST disabled	_	500	4200	5000	μS
3	T _{ERLB}	СС	External Reset Sequence Long, BIST enabled		28	32	37	ms
4	T _{FRL}	СС	Functional Reset Sequence Long	_	35	150	400	μS
5	T _{FRS}	СС	Functional Reset Sequence Short	_	1	4	10	μS

Table 31. RESET sequences

The maximum value is applicable only if the reset sequence duration is not prolonged by an extended assertion of RESET by an external reset generator.

3.19.2 Reset sequence description

The figures in this section show the internal states of the chip during the five different reset sequences. The doted lines in the figures indicate the starting point and the end point for which the duration is specified in Table 31. The start point and end point

conditions as well as the reset trigger mapping to the different reset sequences is specified in Section 3.19.3, Reset sequence trigger mapping.

With the beginning of DRUN mode the first instruction is fetched and executed. At this point application execution starts and the internal reset sequence is finished.

The figures below show the internal states of the chip during the execution of the reset sequence and the possible states of the signal pin RESET.

NOTE

RESET is a bidirectional pin. The voltage level on this pin can either be driven low by an external reset generator or by the chip internal reset circuitry. A high level on this pin can only be generated by an external pull up resistor which is strong enough to overdrive the weak internal pull down resistor. The rising edge on **RESET** in the following figures indicates the time when the device stops driving it low. The reset sequence durations given in table Table 31 are applicable only if the internal reset sequence is not prolonged by an external reset generator keeping **RESET** asserted low beyond the last PHASE3.

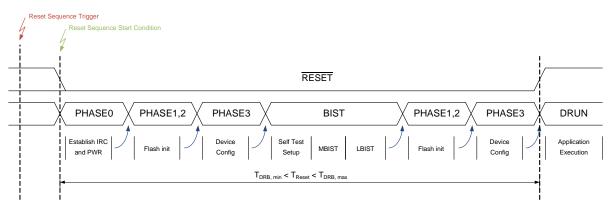


Figure 12. Destructive Reset Sequence, BIST enabled

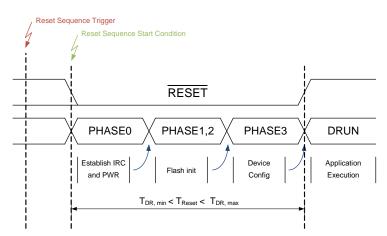


Figure 13. Destructive Reset Sequence, BIST disabled

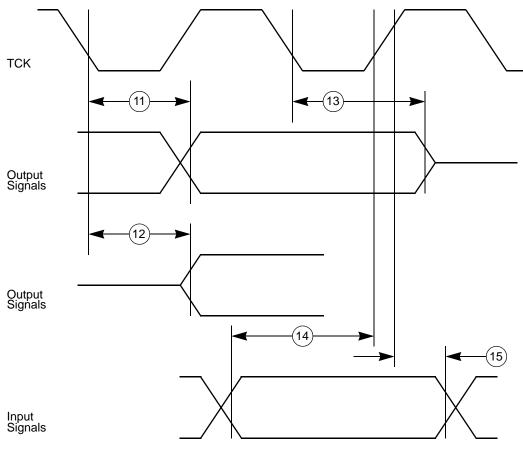


Figure 24. JTAG boundary scan timing

3.20.4 Nexus timing

Table 37.	Nexus	debug	port	timing ¹
-----------	-------	-------	------	---------------------

No.	o. Symbol		Parameter	Conditions	Min	Max	Unit	
1	t _{MCYC}	D	MCKO Cycle Time	—	15.6	—	ns	
2	t _{MDC}	D	MCKO Duty Cycle	—	40	60	%	
3	t _{MDOV}	D	MCKO Low to MDO, $\overline{\text{MSEO}}$, $\overline{\text{EVTO}}$ Data Valid ²	—	-0.1	0.25	t _{MCYC}	
4	t _{EVTIPW}	D	EVTI Pulse Width	—	4.0	—	t _{TCYC}	
5	t _{EVTOPW}	D	EVTO Pulse Width	—	1		t _{MCYC}	
6	t _{TCYC}	D	TCK Cycle Time ³	—	62.5	_	ns	
7	t _{TDC}	D	TCK Duty Cycle	—	40	60	%	
8	t _{NTDIS} , t _{NTMSS}	D	TDI, TMS Data Setup Time	—	8	_	ns	
9	t _{NTDIH} , t _{NTMSH}	D	TDI, TMS Data Hold Time		5		ns	
10	t _{JOV}	D	TCK Low to TDO/RDY Data Valid		0	25	ns	

¹ JTAG specifications in this table apply when used for debug functionality. All Nexus timing relative to MCKO is measured from 50% of MCKO and 50% of the respective signal.

² For all Nexus modes except DDR mode, MDO, MSEO, and EVTO data is held valid until next MCKO low cycle.

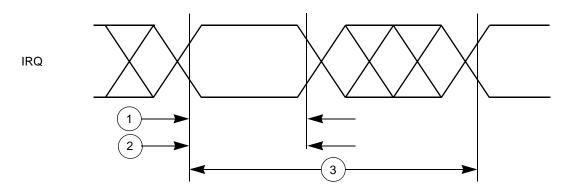


Figure 29. External interrupt timing

3.20.6 DSPI timing

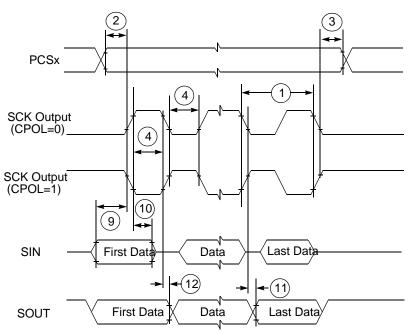
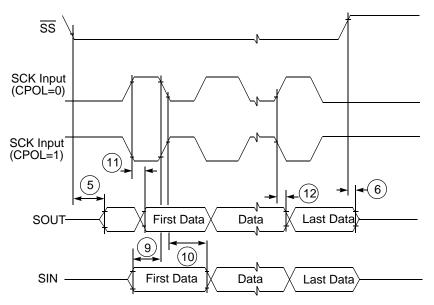
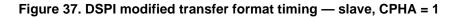

No.	No. Symbol		Parameter	Conditions	Min	Max	Unit
1	1 t _{SCK}		DSPI cycle time	Master (MTFE = 0)	62	—	ns
		D	-	Slave (MTFE = 0)	62	—	
		D		Slave Receive Only Mode ¹	16	_	
2	t _{CSC}	D	PCS to SCK delay	—	16		ns
3	t _{ASC}	D	After SCK delay	_	16	_	ns
4	t _{SDC}	D	SCK duty cycle	_	t _{SCK} /2 - 10	t _{SCK} /2 + 10	ns
5	t _A	D	Slave access time	SS active to SOUT valid	_	40	ns
6	t _{DIS}	D	Slave SOUT disable time	SS inactive to SOUT High-Z or invalid	_	10	ns
7	t _{PCSC}	D	PCSx to PCSS time	_	13	—	ns
8	t _{PASC}	D	PCSS to PCSx time	_	13		ns
9	t _{SUI}	D	Data setup time for inputs	Master (MTFE = 0)	20	—	ns
				Slave	2	—	
				Master (MTFE = 1, CPHA = 0)	5	—	
				Master (MTFE = 1, CPHA = 1)	20	—	
10	t _{HI}	D	Data hold time for inputs	Master (MTFE = 0)	-5	—	ns
				Slave	4	—	
				Master (MTFE = 1, CPHA = 0)	11	—	
				Master (MTFE = 1, CPHA = 1)	-5	—	
11	t _{SUO}	D	Data valid (after SCK edge)	Master (MTFE = 0)		4	ns
				Slave		23	
				Master (MTFE = 1, CPHA = 0)	—	12	
				Master (MTFE = 1, CPHA = 1)	_	4	

Table 39. DSPI timing

No.	. Symbol		Parameter	Conditions	Min	Max	Unit
12	t _{HO}	D	Data hold time for outputs	Master (MTFE = 0)	-2	_	ns
				Slave	6		
				Master (MTFE = 1, CPHA = 0)	6	—	
				Master (MTFE = 1, CPHA = 1)	-2	_	


Table 39. DSPI timing (continued)

¹ Slave Receive Only Mode can operate at a maximum frequency of 60 MHz. In this mode, the DSPI can receive data on SIN, but no valid data is transmitted on SOUT.



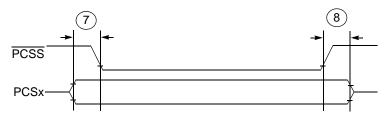

Note: The numbers shown are referenced in Table 39.

Figure 30. DSPI classic SPI timing — master, CPHA = 0

Note: The numbers shown are referenced in Table 39.

Note: The numbers shown are referenced in Table 39.

Figure 38. DSPI PCS strobe (PCSS) timing

4 Package characteristics

4.1 Package mechanical data

Document revision history

Revision	Date	Description of changes
	Date 7 April 2012	Description of changes Editorial changes. In the "Device comparison" section, changed "Ambient temperature range using external ballast transistor (BGA)" from TBD to "-40 to 125 °C". In the "Block diagram" section, removed one PMU from the figure. In the 257-pin pinout figure, changed cut2 to cut2/3 in Notes. In the pin-function summary table, changed cut2 to cut2/3. In the "System pins" table: • Added Note regarding Open Drain Enable. • Added Note about Open Drain. • Changed cut2 to cut2/3. • Changed cut2 to cut2/3. • Added Note about Open Drain. • Added Note about Open Drain. • Added Hoe PCR[21]. In the "Absolute maximum ratings" table: • Removed the "VSS. HV_REG" row. • Added the footnote "Internal structures hold the input voltage" to the V _{IN} maximum specifications. In the "conditions" table, removed the "VSS_HV_REG" row. In the "Thermal characteristics section: • Added the "Thermal characteristics" table: • Added tootnote 1 in the 257 package table. In the "Supply current characteristics" table: • Added tootnote 1 to parameter "IDD_LV_TYP + IDD_LV_PLL" (symbol "T"). • Changed "IDD_LV_HAIT" at 150C from 72mÅ to 80mÅ. In the "FMPLL

Table 41. Revision history (continued)