
Parallax Inc. - JS1-IC Datasheet

Welcome to E-XFL.COM

Understanding Embedded - Microcontroller,
Microprocessor, FPGA Modules

Embedded - Microcontroller, Microprocessor, and FPGA
Modules are fundamental components in modern
electronic systems, offering a wide range of functionalities
and capabilities. Microcontrollers are compact integrated
circuits designed to execute specific control tasks within
an embedded system. They typically include a processor,
memory, and input/output peripherals on a single chip.
Microprocessors, on the other hand, are more powerful
processing units used in complex computing tasks, often
requiring external memory and peripherals. FPGAs (Field
Programmable Gate Arrays) are highly flexible devices that
can be configured by the user to perform specific logic
functions, making them invaluable in applications requiring
customization and adaptability.

Applications of Embedded - Microcontroller,
Microprocessor, FPGA Modules

These modules are integral to numerous applications
across various industries. Microcontrollers are commonly
used in consumer electronics, automotive systems,
industrial automation, and home appliances, providing
efficient control and processing capabilities.
Microprocessors power more complex systems such as
personal computers, servers, and advanced
communication devices. FPGAs find their applications in
fields requiring high-performance computation and real-
time processing, including telecommunications, medical
devices, aerospace, and defense systems. Their versatility
allows for rapid prototyping and the implementation of
custom hardware solutions, making them ideal for
innovative and cutting-edge applications.

Common Subcategories of Embedded -
Microcontroller, Microprocessor, FPGA Modules

Embedded modules can be categorized based on their
functionalities and intended applications. Microcontrollers
are often classified by their bit-width (8-bit, 16-bit, 32-bit)
and their integrated features, such as ADCs (Analog-to-
Digital Converters) and communication interfaces.
Microprocessors are categorized by their architecture (x86,
ARM, RISC-V) and performance metrics like clock speed
and core count. FPGAs are classified based on their logic
element count, speed grade, and the presence of
integrated features like DSP (Digital Signal Processing)
blocks and high-speed transceivers. These subcategories
help designers choose the right module for their specific
application requirements.

Types of Embedded - Microcontroller,
Microprocessor, FPGA Modules

There are various types of modules available, each tailored
to different application needs. Basic microcontrollers, such
as the 8-bit AVR series from Microchip, are ideal for simple
control tasks. More advanced 32-bit microcontrollers, like
the STM32 series from STMicroelectronics, offer higher
performance and greater peripheral integration. In the
realm of microprocessors, the ARM Cortex-A series is
popular for its balance of power efficiency and

Details

Product Status Obsolete

Module/Board Type MPU Core

Core Processor SX48AC

Co-Processor -

Speed -

Flash Size 32KB EEPROM

RAM Size 32KB

Connector Type 24-DIP

Size / Dimension 1.2" x 0.6" (30mm x 15mm)

Operating Temperature 0°C ~ 70°C

Purchase URL https://www.e-xfl.com/product-detail/parallax/js1-ic

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/js1-ic-4510591
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontroller-microprocessor-fpga-modules
https://www.e-xfl.com/product/filter/embedded-microcontroller-microprocessor-fpga-modules
https://www.e-xfl.com/product/filter/embedded-microcontroller-microprocessor-fpga-modules
https://www.e-xfl.com/product/filter/embedded-microcontroller-microprocessor-fpga-modules

1: Introduction

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 3

Javelin Stamp Integrated Development Environment (Javelin Stamp IDE) offers the features
that you would commonly expect from a source-level debugger:

• Multiple breakpoints
• Stack backtrace
• Inspection of all variables and objects, both static and dynamically allocated
• Single-step, run, stop, reset
• Built-in bi-directional serial message terminal for System.out.println() and

Terminal.getChar() type debugging

The Javelin Stamp IDE is introduced in Chapter 2, and then discussed in more detail in
Chapter 5. This IDE makes real-time debugging so easy that a PC emulator is completely
unnecessary. It is just as easy to develop and debug on the Javelin module itself.

Virtual Peripherals
The Javelin Stamp firmware supports a variety of Virtual Peripherals (VPs). The VPs are
separated into two separate categories, foreground and background. The background
processes allow you to create UARTs, pulse trains, and a timer. Once created, background
VP objects run independently from the program. Since time-sensitive tasks are taken care of
by the VPs in the background, designs that used to be difficult become easy. For example,
serial communication does not stop just because the Javelin is measuring the duration of an
incoming pulse. The programmer simply needs to periodically check the serial buffer in the
foreground code. Below is a list of background and foreground VPs.

Background VPs
• UART (Full duplex, HW flow control, buffered)
• PWM
• 32-bit Timer
• 1-bit DAC
• Delta/Sigma ADC

Foreground VPs
• Pulse count
• Pulse width measurement
• Pulse generation
• RC Timer
• SPI master

4: Application Examples – Circuits and Programs

Page 74 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

 static int dsTemp(int command){
 CPU.writePin(enablePin,true);
 CPU.shiftOut(dataPin,clockPin,8,CPU.SHIFT_LSB,command);
 data = ((CPU.shiftIn(dataPin,clockPin,9,CPU.POST_CLOCK_LSB)>>7));
 CPU.writePin(enablePin,false);

 sign = data >> 8;
 if (sign == 1) {
 return -data;
 }
 else
 return data;
 } // end dsTemp

 // The main routine calls the dsInit method to initialize the
DS1620,
 // then it gets the temperature value from the dsTemp method and
displays it.

 public static void main(){

 dsInit(setup);
 while (true){
 System.out.print(HOME);
 System.out.println ("Celsius temperature: ");
 System.out.println(dsTemp(READ_TEMP)/2); // Divide by 2
for deg-C
 CPU.delay(5000);
 } // end while
 } // end main
} // end class
declaration

Communicating with Other Computers
Using the built-in Uart virtual peripheral, it is easy to communicate with a PC or other
microcontroller. Since virtual peripherals always run in the background, you don’t have to
constantly poll for serial input. If input arrives while your program is doing something else,
the virtual peripheral will buffer the data for you until you decide to process it. Each Uart
object handles communication in one direction, so for two-way communications, you’ll need
two Uart objects.

You can find more information about the Uart class in
Chapter 9.

5: Using the Javelin Stamp IDE

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 81

The Javelin Stamp IDE (Integrated Development Environment) provides a work environment
where you can write, run, and debug your Javelin Stamp programs. In addition, you can view
the javadoc documentation from within the IDE.

Starting the IDE
You can run the IDE by selecting the icon from your Start menu. From Windows, press on
the Start button on your menu bar. Mouse up to Programs, scroll over and mouse to the
Javelin Stamp, scroll over once more and select the IDE and the program will begin. You
may wish to maximize the window (double click on the title bar, use the system menu on the
left-hand side of the title bar, or use the maximize button to the right-hand side of the title
bar).

By default, you’ll see two command areas just below the title bar. The first area holds the
main menu (which has items for File, Edit, etc.). The second area is a toolbar that has small
icons to execute common methods. Below the tool bar, you’ll see a tab that reads
Untitled.java. This is the name of the file you are editing. If you open multiple files, each
will have its own tab and you can switch between them by clicking on the tabs. The area
below the tab is where the text will appear. The gray area to the left will contain indicators
while debugging, as you’ll see shortly.

Setting Global Options
Before you get started, it is a good idea to review the option settings found within the Global
Options… under the Project menu. The dialog (see Figure 5.1) that appears has three tabs.
The first tab, Compiler, should contain the Class Path and the path to the compiler. Having
the correct Class Path is vital so that the IDE can find the library files required for your
programs. Be careful not to change the settings unless you are certain you know what you are
doing (you’ll learn more about changing the Class Path at the end of this chapter).

Figure 5.1 Global Options for IDE

5: Using the Javelin Stamp IDE

Page 82 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

(a) Compiler (b) Debugger (c) Documentation

The Debugger tab has a single option that allows you to set the COM port you’ve used when
connected your Javelin Stamp. The IDE uses this port to communicate with the Javelin
Stamp. You can press the Auto button and the IDE will attempt to detect the Javelin Stamp
automatically.

The final tab, Documentation, allows you to set the path to the javadoc files and the javadoc
program. You’ll read more about javadoc later in this chapter.

If you change things inadvertently, you can push the Default button to restore everything to its
original state. For now, the only thing you should change is the COM port setting on the
Debugger tab.

Starting a Project
To start a project, you can just begin defining a class in the Untitled.java window. However,
it is easier if you use the Insert Template under the File menu to insert a prototypical class
into the editor workspace.

Here is the code inserted by the Insert Template command:

import stamp.core.*;

/**
 * Put a one line description of your class here.
 * <p>
 * This comment should contain a description of the class.
What it

5: Using the Javelin Stamp IDE

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 83

 * is for, what it does, how it use it.
 *
 * You should rename the class and then save it in a file with
 * exactly the same name as the class.
 *
 * @version 1.0 Date
 * @author Your Name Here
 */
public class MyClass {

 // Put variables here.
 static int myVar;

 public static void main() {
 // Your code goes here.
 }

}

You’ll need to change MyClass to an appropriate name. You’ll also want to alter the
comments and myVar variable to suit your program. Java requires that each file have only
one public class and that the class have exactly the same name as the Java file (including the
case of the name). So if your class is MyFirstClass, you should save the file as
MyFirstClass.java Save or Save As under the File menu.

You can also ask the IDE to help you write your code by invoking specific templates. If you
press CONTROL+J while editing a file, you’ll see a list of templates you can insert. For
example, if you select the for (count) template, this will appear in your file:

for (int i = 0; i <; i++) {

}

If you’ve already typed a partial statement, pressing CONTROL+J will automatically insert
the correct template without displaying a list. For example, if you enter if and then press
CONTROL+J, the IDE will automatically insert the code template for if.

Table 5.1 shows the available templates and the keywords that will automatically invoke
them.

5: Using the Javelin Stamp IDE

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 95

Cut Remove the selection to the clipboard CONTROL+X
Copy Copy the selection to the clipboard CONTROL+C
Paste Paste the clipboard contents to the

document
CONTROL+V

Select All Select all text CONTROL+A
Find and ReplaceÉ Find or find and replace text CONTROL+F
Find Again Repeat last find operation F3

Toolbars and Menubars
You can move the main menu to different locations by grabbing the double vertical bar to the
left-hand side of the menu and dragging. You can move the menu anywhere horizontally, and
you can move the menu to two different vertical locations.

You can also drag the toolbars around in this fashion. In addition, you can drag the toolbars
into the main window area to convert them into floating windows. If you want to restore
them to their bar state, you can drag them to the top window border and they will stick. By
grabbing the double bar to the left-hand side of the toolbar, you can move the toolbar to
different locations.

Another way to issue commands is to right click on the file’s tab at the top of the editor
screen. Right clicking will display a menu that will allow you to compile, debug, program,
manipulate projects (covered shortly), or close the current file. Note that the menu commands
always apply to the current document, even if you right click another document’s tab.

Class Path Considerations
One of the most critical aspects of working with any Java or Java-like development tools is
the CLASSPATH. Each time you name a class in your program, the compiler searches for
the appropriate class file by searching the directories named in the CLASSPATH (you’ll find
more about this topic in Chapter 3).

It is crucial that the directories in the CLASSPATH refer to the correct class files, and not
class files aimed at another target system (like the PC, for example). In addition, if you create
your own libraries of code, you’ll want to place the correct directories for that code in the
CLASSPATH.

Selecting Global Options under the Project menu will give you a Global Options window.
You can select the Compiler tab to view the CLASSPATH variable. You can directly change
the string you find there if you like. It is simply a list of paths separated by semicolons. The
paths should be absolute (e.g., c:\myclasses\lib1 instead of ..\lib1).

6: Javelin Stamp Programmers Reference

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 127

computation might divide by zero, depending on the input parameters. Of course, you could
test for a zero denominator before dividing, but what do you do if you detect this condition?
You could print an error message, but that presupposes your program can display a message
(remember, I said this routine was general-purpose).

A common solution is to return an error code to the calling method. This is not always good,
though. What if the calling program is another general routine? It will have to propagate the
error condition somehow. What if the calling program doesn’t check for an error condition?
You can solve these problems with exceptions.

When an event occurs, like a division by zero, Java throws an exception. Your code can
handle the exception by wrapping the code in a try block see Program Listing 6.8. In this
case there isn’t much advantage to using exceptions. However, suppose the equation inside
the try block called other methods to do its work.

Program Listing 6.8 - Exceptions Ex1

public class Ex1 {
 public static void main() {
 int x=0;
 int y=20;
 int z;
 try {
 z=y/x;
 } // end try
 catch (Exception e) {
 System.out.println("Divide by zero");
 } // end catch
 } // end main
} // end class
declaration

Even if code in these other methods divided by zero, the catch block beneath the try
would be activated (unless, of course, the called methods provided their own try block.
Consider this example.

Program Listing 6.9 - Exceptions Ex2

public class Ex2 {
 static int docomp(int a, int b) {
 return a/b;
 } // end docomp
 public static void main() {

sdill
Comment [22]: This code might have some
issues, I tried adding println’s in the try and in the
catch and got some errors from it. See Twiki

sdill
Comment [23]: This may need re-work as well

6: Javelin Stamp Programmers Reference

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 129

 if (b==0) throw new ScaleError();
 return a/b;
 }

 public static void main() {
 int x=0;
 int y=20;
 int z;
 try {
 z=docalc(y,x);
 }
 catch (ScaleError e) {
 System.out.println("Scale Error");
 }
 catch (Exception e) {
 System.out.println("Unknown exception");
 }
 }
}

Notice that there are multiple catch clauses. The first one is the most specific type of
exception. The last one catches any Exception object including objects that derive from
Exception. That’s why that clause must come last. If it were first, it would match the
ScaleError exception and the second catch clause would never execute. Try removing
the try and catch block and rebuilding the program. You’ll find that the compiler rejects
the program because it sees that there is an unchecked exception. Of course, you could mark
main so that it throws a ScaleError exception. Then the exception would terminate the
program like an unchecked exception.

Packages and CLASSPATH
When Java must locate a class file, it searches the directories listed in the CLASSPATH
environment variable. This is a list of directories separated by semicolons.

Even with multiple directories, you’d quickly clutter each directory with class files. For that
reason, Java supports packages. Packages are somewhat like subdirectories that contain class
files. For example, suppose your CLASSPATH variable contains a single directory named
C:\Classes. When you attempt to load an ordinary class, the IDE will search in the
C:\Classes directory.

However, some classes belong to a package, a group of related classes. For example, you
might want to refer to a Cache object. That object is in the stamp.util package, so to
declare it, you could write:

sdill
Comment [25]: ANDY: Should the title
Classpath be CLASSPATH instead?

6: Javelin Stamp Programmers Reference

Page 130 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

stamp.util.Cache = new stamp.util.Cache();

The JVM would look for the Cache.class file in a subdirectory of one of the
CLASSPATH directories. In this case, there is only one directory (C:\Classes) so the
class file should be in C:\Classes\javelin stamp\util\Cache.class. Of
course, if there were more directories listed in the CLASSPATH variable, the IDE would also
search those directories, always looking in the javelin stamp\util subdirectory.

It wouldn’t be very convenient to have to write stamp.util.Cache every time you
wanted to use it. By default, if you use a class name, it can only reside in one of the top-level
CLASSPATH directories or in the special package java.lang. However, you can use the
import statement to mark certain packages that you want to behave as though they were
local.

If you wanted to use the name Cache instead of stamp.util.Cache, you can add the
following line at the start of your java source file:

import stamp.util.Cache;

You can also get all the classes in stamp.util by writing:

import stamp.util.*;

Keep in mind that you never have to use import. If you prefer, you can simply use fully
qualified class names everywhere. Still, using import makes your programs much more
readable so you’ll want to use it where appropriate. A common mistake beginning Java
programmers make is to try something like this:

import System.out.println;
println(“Hello World”);

This won’t work! That’s because System is an object (part of the java.lang package),
but out is a static field of this object. This field is an object reference that has a method
called println. The import statement only works with classes. You can’t import a field
or method.

Summary

6: Javelin Stamp Programmers Reference

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 131

You could read an entire book on Java – there are plenty around. However, this chapter,
along with the examples in the next few chapters, will give you a lot of practice with Java.
You can also find many online tutorials, books, and documentation on Java. Be sure to check
out the online resources section for more information. Be aware, though, that many books
and other materials will focus on writing graphical programs, not embedded systems.

This chapter may leave you wondering why use Java. In the next chapter, however, you’ll see
that Java’s networking capability is a real winner. And Java’s cross platform ability will
serve you well in a networked environment.

Online Resources
http://java.sun.com

 Java’s home on the Web. Free downloads of the JDK, tutorials, news, and
more.

http://www.norvig.com/java-iaq.html
Java Infrequently Asked Question (IAQ) list.

http://mindprod.com/gotchas.html
Java gotchas

http://www.afu.com/javafaq.htm
Java programmer’s FAQ

http://www.mindspring.com/~chroma/docwiz/
Adds java doc comments to your code

http://uranus.it.swin.edu.au/~jn/java/style.htm
Automatically format your Java code

Javelin Stamp Keyword Reference

abstract
The abstract keyword has two possible methods. You can mark a method as abstract
to indicate that the class contains no code for the method. That implies that you can’t
instantiate the class, only extend it. Classes that extend the class must either implement the
abstract method, or also be an abstract class.

You can also mark an entire class as abstract – any class that contains at least one abstract
method is an abstract class.

Examples:

abstract class AbaseClass {
 abstract void someMethod();
}

6: Javelin Stamp Programmers Reference

Page 152 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

y = 5/256*x;

Instead, you want to write:

y = (5*x)/256; // parenthesis not necessary, but added for
clarity

Even writing it this way, any value below 52 will result in a 0 result. You might prefer to
compute decivolts (1/10 of a volt units) instead by scaling everything up by 10. For example:

y = (50*x)/256;

If you need to find the volts, you can use the / operator. The % operator could determine the
fractional (1/10) volt units. For example:

System.out.println("Volts = " + y/10 + "." + y%10);

Examples:

y = 10 + 33 / 17 % 3 * 100; // answer is 110

<<, >>, >>>
These operators all shift their left argument to the left (<<) or right (>> and >>>) the number
of times specified by their right argument. Shifting to the left is equivalent to multiplying by
powers of two, and shifting right is the same as dividing by a power of 2. So writing 100>>4
is the same as writing 100/16 (because 2 to the 4th power is 16). In addition, shifting is
typically faster than multiplication and division.

It is possible to rewrite certain common multiplication statements as sums of shifts to realize
faster execution. For example, when working with decimal numbers, you’ll often need to
multiply by 10. Observing that 10 is actually 8+2, you can rewrite 10*x as
(x<<3)+(x<<1).

The << operator always sets the least-significant bit of the result to zero. The >> operator
preserves the most significant bit (which represents the sign). This makes positive numbers
stay positive and negative numbers stay negative. If you really want to zero fill the most
significant bit, use >>> which is a true unsigned shift.

Examples:

8: Object Reference

Page 176 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

Your program will throw a NullPointerException if you attempt to access an object
reference that is equal to null.

Base Class: RuntimeException

Methods:
static RuntimeException throwIt() – Throw a run-time exception.

Object
Object is the top-level base class for all objects, even those that don’t explicitly extend
anything. Public methods of Object are available in all objects, since all objects extend
Object.

8: Object Reference

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 181

Example:

StringBuffer sb = new StringBuffer("ATDT");
sb.append(getTelephoneNumber()); //getTelephoneNumber
returns String
dial(sb.toString()); //dial expects a String
argument

System
The System object holds static items that apply to the system as a whole. It is essentially
a holder for global methods and variables.

Base Class: Object

Fields:
static PrintStream out – A PrintStream used to send data back to the system
console on the host PC.

Example:

System.out.println("Parallax");

Throwable
Throwable is a base class for all exceptions.

Base Class: Object

Common derived classes: Error, Exception

Methods:
String getMessage () – Returns a message appropriate for the exception.

The java.io Package
The java.io package contains the PrintStream class. This is the way that the Javelin
Stamp can write data out to a stream. A stream might be a serial I/O port, or any other input
and output device that works with characters.

9: Javelin Stamp Hardware Reference

Javelin Stamp Manual v1.1• www.javelinstamp.com • Page 193

DAC object named dac. This example also assumes that the dac object has already been
declared and removed once. Reinstalling the dac object involves installVP plus
reassigning it a value:

DAC dac = new DAC(CPU.pin2);
dac.update(125);
CPU.removeVP(dac);

// Later in the program after pwm was installed and removed...
CPU.installVP(dac);
dac.update(125);

message
static void message(char [] data, int length) – Sends a message to the
Messages from Javelin window. Note that the text is a char array, not a string. You can use
String.toCharArray if you want to provide text in a String object. You can also use
System.out.println to send strings to the Messages from Javelin window.

Example:

char [] characters = {'a', 'b'};
CPU.message(characters,2);
String s = "CDE";
CPU.message(s.toCharArray(),3);

nap
static void nap(int period) – Places the processor in a low power sleep state.
All operations cease while the Javelin is napping.

The Javelin Stamp can only call nap as a foreground
process with no background processes running. Before
calling this method, you must use
VirtualPeripheral.removeItem to uninstall any
VPs that are installed. See example below.

The period argument can range from 0 to 7, depending on how long you want to the Javelin
Stamp to nap (see below). However, the nap time is only approximate and should not be
used for timing where accuracy is required. The primary reason you’ll use nap is to conserve
power when operating the Javelin from batteries. Here are the values for the period
argument:

Index

Page 238 • Javelin Stamp Manual v1.1 • www.javelinstamp.com

setInput, 174
shiftln, 174
short, 89, 125
static, 33, 125
StringBuffer, 42, 100, 104, 154, 192
Strings, 104–5, 152, 192

StringBuffer. See StringBuffer

Calculations, 34
char, 89
Declaration, 89-91
final, 32, 90-91
int, 89
short, 89
static, 80

Variables (continued)

static final, 91
Virtual Peripherals, xiv, 3, 145, 163,

164, 173, 184
ADC, 159
Background, 3
DAC, 59
Foreground, 3

 PWM, 58, 146, 184-185

Virtual Peripherals
Timer, 187

 UART(s), 64, 188void, 99, 130
volatile, 136

 - W -
while, 37–40, 88, 97, 115, 130
wrapper, 109

