

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	ST7
Core Size	8-Bit
Speed	8MHz
Connectivity	SCI, SPI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	32
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	3.8V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/st72f324bj4t3

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 101.	EMS test results
Table 102.	EMI emissions
Table 103.	Absolute maximum ratings
Table 104.	Electrical sensitivities
Table 105.	General characteristics
Table 106.	Output driving current
Table 107.	Asynchronous RESET pin
Table 108.	ICĆSEL/V _{PP} pin
Table 109.	16-bit timer
Table 110.	SPI characteristics
Table 111.	10-bit ADC characteristics
Table 112.	ADC accuracy
Table 113.	44-pin low profile quad flat package mechanical data
Table 114.	32-pin low profile quad flat package mechanical data
Table 115.	Thermal characteristics
Table 116.	Flash option bytes
Table 117.	Option byte 0 bit description
Table 118.	Option byte 1 bit description
Table 119.	Package selection (OPT7)
Table 120.	STMicroelectronics development tools
Table 121.	Suggested list of socket types
Table 122.	Port A and F configuration
Table 123.	Document revision history

Figure 49.	Single master/single slave application	
Figure 50.	Generic SS timing diagram	
Figure 51.	Hardware/software slave select management	
Figure 52.	Data clock timing diagram(1)	102
Figure 53.	Clearing the WCOL bit (Write Collision flag) software sequence	
Figure 54.	Single master/multiple slave configuration	
Figure 55.	SCI block diagram	112
Figure 56.	Word length programming	
Figure 57.	SCI baud rate and extended prescaler block diagram	
Figure 58.	Bit sampling in Reception mode	121
Figure 59.	ADC block diagram	131
Figure 60.	Pin loading conditions	145
Figure 61.	Pin input voltage	146
Figure 62.	f _{CPU} max versus V _{DD}	148
Figure 63.	Typical application with an external clock source	153
Figure 64.	Typical application with a crystal or ceramic resonator (8/16 Kbyte Flash	
-	and ROM devices)	154
Figure 65.	Typical application with a crystal or ceramic resonator (32 Kbyte Flash	
-	and ROM devices)	155
Figure 66.	Typical f _{OSC(RCINT)} vs T _A	155
Figure 67.	Integrated PLL jitter vs signal frequency(1)	
Figure 68.	Unused I/O pins configured as input(1)	
Figure 69.	Typical I _{PU} vs. V _{DD} with $V_{IN} = V_{SS}$	
Figure 70.	Typical V_{OL} at V_{DD} = 5V (standard ports)	
Figure 71.	Typical V_{OL} at V_{DD} = 5V (high-sink ports).	
Figure 72.	Typical V_{OH} at $V_{DD} = 5V$.	
Figure 73.	Typical V _{OL} vs. V _{DD} (standard ports)	
Figure 74.	Typical V _{OL} vs. V _{DD} (high-sink ports)	
Figure 75.	Typical V_{OH} vs. V_{DD}	
Figure 76.	RESET pin protection when LVD is enabled(1)(2)(3)(4)(5)(6)	
Figure 77.	RESET pin protection when LVD is disabled(1)(2)(3)(4)	
Figure 78.	Two typical applications with ICCSEL/V _{PP} pin(1)	
Figure 79.	SPI slave timing diagram with CPHA = 0(1).	
Figure 80.	SPI slave timing diagram with CPHA = 1(1)	
Figure 81.	SPI master timing diagram(1)	
Figure 82.	R_{AIN} max. vs f_{ADC} with $C_{AIN} = 0pF(1)$.	
Figure 83.	Recommended C _{AIN} and R _{AIN} values(1)	
Figure 84.	Typical A/D converter application	
Figure 85.	Power supply filtering	
Figure 86.	ADC accuracy characteristics.	
Figure 87.	44-pin low profile quad flat package outline	
Figure 88.	32-pin low profile quad flat package outline	
Figure 89.	pin 1 orientation in tape and reel conditioning	
Figure 90.	ST72F324Bxx-Auto Flash commercial product structure	
Figure 91.	ST72P324Bxx-Auto FastROM commercial product structure.	
Figure 92.	ST72324Bxx-Auto ROM commercial product structure	
· · · · · · · · ·		

Address	Block	Register label	Register name	Reset status ⁽¹⁾	Remarks ⁽¹⁾			
000Fh 0010h 0011h	Port F ⁽¹⁾	PFDR PFDDR PFOR	Port F data register Port F data direction register Port F option register	00h ⁽²⁾ 00h 00h	R/W R/W R/W			
0012h to 0020h	Reserved area (15 bytes)							
0021h 0022h 0023h	SPI	SPIDR SPICR SPICSR	SPI data I/O register SPI control register SPI control/status register	xxh 0xh 00h	R/W R/W R/W			
0024h 0025h 0026h 0027h	ITC	ISPR0 ISPR1 ISPR2 ISPR3	Interrupt software priority register 0 Interrupt software priority register 1 Interrupt software priority register 2 Interrupt software priority register 3	FFh FFh FFh FFh	R/W R/W R/W R/W			
0028h		EICR	External interrupt control register	00h	R/W			
0029h	Flash	FCSR	Flash control/status register	00h	R/W			
002Ah	Watchdog	WDGCR	Watchdog control register	7Fh	R/W			
002Bh	SI	SICSR	System integrity control/status register		R/W			
002Ch 002Dh	MCC	MCCSR MCCBCR	Main clock control/status register Main clock controller: beep control register	00h 00h	R/W R/W			
002Eh to 0030h			Reserved area (3 bytes)					
0031h 0032h 0033h 0034h 0035h 0036h 0037h 0038h 0039h 003Ah 003Bh 003Ch 003Ch 003Dh 003Eh 003Fh	Timer A	TACR2 TACR1 TACSR TAIC1HR TAIC1LR TAOC1LR TAOC1LR TACHR TACLR TACLR TAACLR TAACLR TAIC2HR TAIC2LR TAOC2LR TAOC2LR	Timer A control register 2 Timer A control register 1 Timer A control/status register Timer A input capture 1 high register Timer A input capture 1 low register Timer A output compare 1 high register Timer A output compare 1 low register Timer A counter high register Timer A counter low register Timer A alternate counter high register Timer A alternate counter low register Timer A input capture 2 high register Timer A output compare 2 low register Timer A output compare 2 low register	00h 00h xxxx x0xxb xxh 80h 00h FFh FCh FCh FCh xxh xxh 80h 00h	R/W R/W R/W Read only Read only R/W Read only Read only			
0040h		1	Reserved area (1 byte)		<u>I</u>			

Table 3. Hardware register map (continued)

5.3.5 Stack Pointer register (SP)

SP												R	eset va	alue: 0	1 FFh
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	1	SP7	SP6	SP5	SP4	SP3	SP2	SP1	SP0
R/W	R/W	R/W													

The Stack Pointer is a 16-bit register which is always pointing to the next free location in the stack. It is then decremented after data has been pushed onto the stack and incremented before data is popped from the stack (see *Figure 8*).

Since the stack is 256 bytes deep, the 8 most significant bits are forced by hardware. Following an MCU reset, or after a Reset Stack Pointer instruction (RSP), the Stack Pointer contains its reset value (the SP7 to SP0 bits are set) which is the stack higher address.

The least significant byte of the Stack Pointer (called S) can be directly accessed by an LD instruction.

Note: When the lower limit is exceeded, the Stack Pointer wraps around to the stack upper limit, without indicating the stack overflow. The previously stored information is then overwritten and therefore lost. The stack also wraps in case of an underflow.

The stack is used to save the return address during a subroutine call and the CPU context during an interrupt. The user may also directly manipulate the stack by means of the PUSH and POP instructions. In the case of an interrupt, the PCL is stored at the first location pointed to by the SP. Then the other registers are stored in the next locations as shown in *Figure 8*.

- When an interrupt is received, the SP is decremented and the context is pushed on the stack.
- On return from interrupt, the SP is incremented and the context is popped from the stack.

A subroutine call occupies two locations and an interrupt five locations in the stack area.

Bit	Name	Function
2	СРНА	 Clock Phase This bit is set and cleared by software. 0: The first clock transition is the first data capture edge. 1: The second clock transition is the first capture edge. Note: The slave must have the same CPOL and CPHA settings as the master.
1:0	SPR[1:0]	Serial clock frequency These bits are set and cleared by software. Used with the SPR2 bit, they select the baud rate of the SPI serial clock SCK output by the SPI in master mode (see <i>Table 56</i>). <i>Note: These 2 bits have no effect in slave mode</i> .

Table 55. SPICR register description	(continued)
--------------------------------------	-------------

Table 56. SPI master mode SCK frequency

Serial clock	SPR2	SPR1	SPR0
f _{CPU} /4	1	0	0
f _{CPU} /8	0	0	0
f _{CPU} /16	0	0	1
f _{CPU} /32	1	1	0
f _{CPU} /64	0	1	0
f _{CPU} /128	0	1	1

SPI Control/Status Register (SPICSR)

SPICSR Reset value: 0000 0000							0000 (00h)
7	6	5	4	3	2	1	0
SPIF	WCOL	OVR	MODF	Reserved	SOD	SSM	SSI
RO	RO	RO	RO	-	R/W	R/W	R/W

SPI Data I/O Register (SPIDR)

SPIDR						Reset value	e: undefined
7	6	5	4	3	2	1	0
D7	D6	D5	D4	D3	D2	D1	D0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

The SPIDR register is used to transmit and receive data on the serial bus. In a master device, a write to this register will initiate transmission/reception of another byte.

Note:

During the last clock cycle the SPIF bit is set, a copy of the received data byte in the shift register is moved to a buffer. When the user reads the serial peripheral data I/O register, the buffer is actually being read.

While the SPIF bit is set, all writes to the SPIDR register are inhibited until the SPICSR register is read.

Warning: A write to the SPIDR register places data directly into the shift register for transmission.

A read to the SPIDR register returns the value located in the buffer and not the content of the shift register (see *Figure 48*).

Address (Hex.)	Register label	7	6	5	4	3	2	1	0
0021h	SPIDR Reset value	MSB x	x	x	x	x	x	x	LSB x
0022h	SPICR Reset value	SPIE 0	SPE 0	SPR2 0	MSTR 0	CPOL x	CPHA x	SPR1 x	SPR0 x
0023h	SPICSR Reset value	SPIF 0	WCOL 0	OVR 0	MODF 0	0	SOD 0	SSM 0	SSI 0

Table 58. SPI register map and reset values

10.5.3 General description

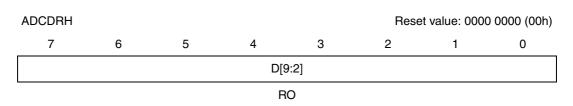
The interface is externally connected to another device by two pins (see *Figure 56*):

- TDO: Transmit Data Output. When the transmitter and the receiver are disabled, the output pin returns to its I/O port configuration. When the transmitter and/or the receiver are enabled and nothing is to be transmitted, the TDO pin is at high level.
- RDI: Receive Data Input is the serial data input. Oversampling techniques are used for data recovery by discriminating between valid incoming data and noise.

Through these pins, serial data is transmitted and received as frames comprising:

- an Idle Line prior to transmission or reception
- a start bit
- a data word (8 or 9 bits) least significant bit first
- a Stop bit indicating that the frame is complete

This interface uses two types of baud rate generator:


- a conventional type for commonly-used baud rates
- an extended type with a prescaler offering a very wide range of baud rates even with non-standard oscillator frequencies

lable	;/l. F	ADCCSR register description
Bit	Name	Function
5	ADON	A/D Converter onThis bit is set and cleared by software.0: Disable ADC and stop conversion1: Enable ADC and start conversion
4	-	Reserved, must be kept cleared.
3:0	CH[3:0]	Channel selection These bits are set and cleared by software. They select the analog input to convert. 0000: Channel pin = AIN0 0001: Channel pin = AIN1 0010: Channel pin = AIN2 0011: Channel pin = AIN3 0100: Channel pin = AIN4 0101: Channel pin = AIN5 0110: Channel pin = AIN6 0111: Channel pin = AIN7 1000: Channel pin = AIN8 1001: Channel pin = AIN9 1010: Channel pin = AIN10 1011: Channel pin = AIN10 1011: Channel pin = AIN12 1101: Channel pin = AIN13 1110: Channel pin = AIN14 1111: Channel pin = AIN15 Note: The number of channels is device dependent. Refer to Section 2: Pin description.

Table 71. ADCCSR register description

ADC Data Register High (ADCDRH)

Table 72. ADCDRH register description

Bit	Name	Function
7:0	D[9:2]	MSB of Converted Analog Value

Using a prebyte

The instructions are described with one to four opcodes.

In order to extend the number of available opcodes for an 8-bit CPU (256 opcodes), three different prebyte opcodes are defined. These prebytes modify the meaning of the instruction they precede.

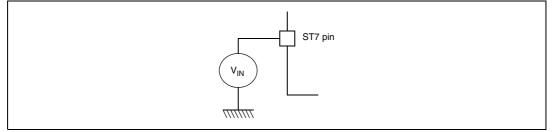
The whole instruction becomes:

- PC-2 End of previous instruction
- PC-1 Prebyte
- PC Opcode
- PC+1 Additional word (0 to 2) according to the number of bytes required to compute the effective address

These prebytes enable the instruction in Y as well as indirect addressing modes to be implemented. They precede the opcode of the instruction in X or the instruction using direct addressing mode. The prebytes are:

- PDY 90 Replace an X based instruction using immediate, direct, indexed, or inherent addressing mode by a Y one.
- PIX 92 Replace an instruction using direct, direct bit, or direct relative addressing mode to an instruction using the corresponding indirect addressing mode. It also changes an instruction using X indexed addressing mode to an instruction using indirect X indexed addressing mode.
- PIY 91 Replace an instruction using X indirect indexed addressing mode by a Y one.

Mnemo	Description	Function/example	Dst	Src	11	н	10	Ν	z	С
ADC	Add with Carry	A = A + M + C	А	М		Н		Ν	Z	С
ADD	Addition	A = A + M	А	М		н		Ν	Z	С
AND	Logical And	A = A . M	А	М				Ν	Z	
BCP	Bit compare A, memory	tst (A . M)	А	М				Ν	Z	
BRES	Bit reset	bres Byte, #3	М							
BSET	Bit set	bset Byte, #3	М							
BTJF	Jump if bit is false (0)	btjf Byte, #3, Jmp1	М							С
BTJT	Jump if bit is true (1)	btjt Byte, #3, Jmp1	М							С
CALL	Call sub-routine									
CALLR	Call sub-routine relative									
CLR	Clear		reg, M					0	1	
СР	Arithmetic Compare	tst(Reg - M)	reg	М				Ν	Z	С
CPL	One Complement	A = FFH-A	reg, M					Ν	Z	1
DEC	Decrement	dec Y	reg, M					Ν	Z	
HALT	Halt				1		0			
IRET	Interrupt routine return	Pop CC, A, X, PC			11	н	10	Ν	Z	С
INC	Increment	inc X	reg, M					Ν	Z	
JP	Absolute Jump	jp [TBL.w]								
JRA	Jump relative always									
JRT	Jump relative									
JRF	Never jump	jrf *								
JRIH	Jump if ext. INT pin = 1	(ext. INT pin high)								
JRIL	Jump if ext. INT pin = 0	(ext. INT pin low)								
JRH	Jump if H = 1	H = 1 ?								
JRNH	Jump if H = 0	H = 0 ?								
JRM	Jump if I1:0 = 11	11:0 = 11 ?								
JRNM	Jump if I1:0 <> 11	1:0 <> 11 ?								
JRMI	Jump if N = 1 (minus)	N = 1 ?								
JRPL	Jump if N = 0 (plus)	N = 0 ?								
JREQ	Jump if Z = 1 (equal)	Z = 1 ?								
JRNE	Jump if Z = 0 (not equal)	Z = 0 ?								
JRC	Jump if C = 1	C = 1 ?								
JRNC	Jump if C = 0	C = 0 ?								
JRULT	Jump if C = 1	Unsigned <				1				
JRUGE	Jump if C = 0	Jmp if unsigned >=	1			1				


Table 82. Instruction set overview

12.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in *Figure 61*.

Figure 61. Pin input voltage

12.2 Absolute maximum ratings

Stresses above those listed as "absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

12.2.1 Voltage characteristics

Table 83.Voltage characteristics

Symbol	Ratings	Maximum value	Unit
V _{DD} - V _{SS}	Supply voltage	6.5	
V _{PP} - V _{SS}	Programming voltage	13	
	Input voltage on true open drain pin	V _{SS} - 0.3 to 6.5	V
V _{IN} ⁽¹⁾⁽²⁾	Input voltage on any other pin	V _{SS} - 0.3 to V _{DD} + 0.3	
$ \Delta V_{DDx} $ and $ \Delta V_{SSx} $	Variations between different digital power pins	50	mV
IV _{SSA} - V _{SSx} I	Variations between digital and analog ground pins	50	IIIV
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	see Section 12.8.	3 on
V _{ESD(MM)}	Electrostatic discharge voltage (machine model)	page 160	

1. Directly connecting the RESET and I/O pins to V_{DD} or V_{SS} could damage the device if an unintentional internal reset is generated or an unexpected change of the I/O configuration occurs (for example, due to a corrupted program counter). To guarantee safe operation, this connection has to be done through a pull-up or pull-down resistor (typical: $4.7k\Omega$ for RESET, $10k\Omega$ for I/Os). For the same reason, unused I/O pins must not be directly tied to V_{DD} or V_{SS}.

2. $I_{INJ(PIN)}$ must never be exceeded. This is implicitly ensured if V_{IN} maximum is respected. If V_{IN} maximum cannot be respected, the injection current must be limited externally to the $I_{INJ(PIN)}$ value. A positive injection is induced by $V_{IN} > V_{DD}$ while a negative injection is induced by $V_{IN} < V_{SS}$. For true open-drain pads, there is no positive injection current, and the corresponding V_{IN} maximum must always be respected.

12.2.2 Current characteristics

Table 84. Current characteristics	Table 84.	Current characteristics
-----------------------------------	-----------	-------------------------

Symbol	Ratings		Max value	Unit
1	Total current into V _{DD} power lines (source) ⁽¹⁾	32-pin devices	75	
I _{VDD}	Total current into V _{DD} power lines (source)	44-pin devices	150	
I	Total current out of V _{SS} ground lines (sink) ⁽¹⁾	32-pin devices	75	
VSS	Total current out of v_{SS} ground lines (sink).	44-pin devices	150	
	Output current sunk by any standard I/O and co	ntrol pin	20	
I _{IO}	Output current sunk by any high sink I/O pin		40	
	Output current source by any I/Os and control p	in	- 25	mA
I _{VSS} I _{IO} I _{INJ(PIN)} ⁽²⁾⁽³⁾	Injected current on V _{PP} pin	± 5	IIIA	
	Injected current on RESET pin	± 5		
ı (2)(3)	Injected current on OSC1 and OSC2 pins	± 5		
'INJ(PIN)````	Injected current on ROM and 32 Kbyte Flash de	± 5		
	Injected current on 8/16 Kbyte Flash devices PE	+ 5		
	Injected current on any other $pin^{(4)(5)}$	± 5		
$\Sigma I_{\rm INJ(PIN)}^{(2)}$	Total injected current (sum of all I/O and control	pins) ⁽⁴⁾	± 25	

1. All power (V_{DD}) and ground (V_{SS}) lines must always be connected to the external supply.

- I_{INJ(PIN)} must never be exceeded. This is implicitly insured if V_{IN} maximum is respected. If V_{IN} maximum cannot be respected, the injection current must be limited externally to the I_{INJ(PIN)} value. A positive injection is induced by V_{IN} > V_{DD} while a negative injection is induced by V_{IN} < V_{SS}. For true open-drain pads, there is no positive injection current, and the corresponding V_{IN} maximum must always be respected.
- 3. Negative injection degrades the analog performance of the device. See note in *Section 12.13.3: ADC* accuracy on page 174. If the current injection limits given in *Section Table 105.: General characteristics on* page 162 are exceeded, general device malfunction may result.
- 4. When several inputs are submitted to a current injection, the maximum SI_{INJ(PIN)} is the absolute sum of the positive and negative injected currents (instantaneous values). These results are based on characterization with SI_{INJ(PIN)} maximum current injection on four I/O port pins of the device.
- 5. True open drain I/O port pins do not accept positive injection.

12.2.3 Thermal characteristics

Table 85.Thermal characteristics

Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	-65 to +150	°C
TJ	Maximum junction temperature (see Section 13.3: Thermal of	characteristics)	

12.8 EMC characteristics

Susceptibility tests are performed on a sample basis during product characterization.

12.8.1 Functional electromagnetic susceptibility (EMS)

Based on a simple running application on the product (toggling two LEDs through I/O ports), the product is stressed by two electromagnetic events until a failure occurs (indicated by the LEDs).

- **ESD**: Electrostatic discharge (positive and negative) is applied on all pins of the device until a functional disturbance occurs. This test conforms with the IEC 1000-4-2 standard.
- FTB: A burst of fast transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100pF capacitor, until a functional disturbance occurs. This test conforms with the IEC 1000-4-4 standard.

A device reset allows normal operations to be resumed. The test results given in *Table 101* on page 159 are based on the EMS levels and classes defined in application note AN1709.

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Software recommendations

The software flowchart must include the management of runaway conditions such as:

- corrupted program counter
- unexpected reset
- critical data corruption (control registers...)

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the reset pin or the oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

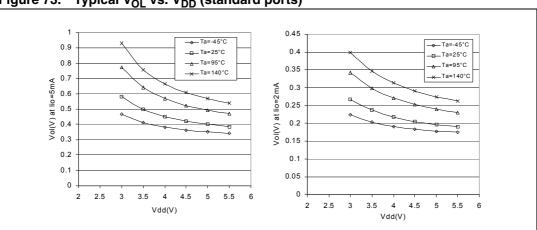


Figure 73. Typical V_{OL} vs. V_{DD} (standard ports)

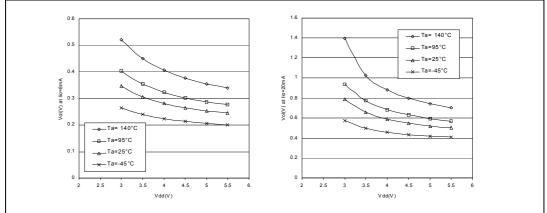
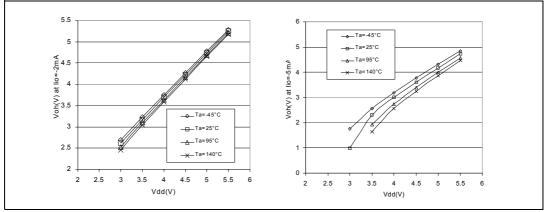
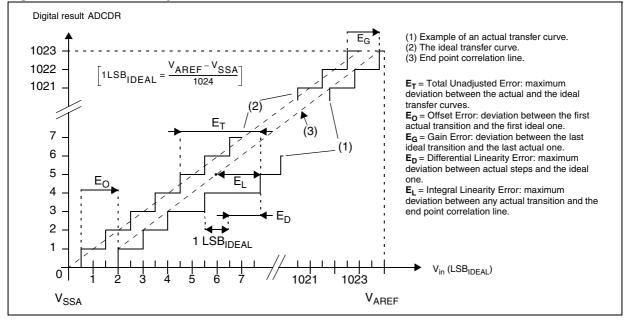



Figure 75. Typical V_{OH} vs. V_{DD}

12.13.3 ADC accuracy


Table 112.ADC accuracy

					Ма		
Symbol	Parameter		Conditions	Тур	ROM and 8/16 Kbyte Flash	32 Kbyte Flash	Unit
IE _T I	Total unadjusted error ⁽²⁾			3	4	6	
IE _O I	Offset error ⁽²⁾	$5V^{(2)}$		2	3	5	
IE _G I	Gain error ⁽²⁾	Ш	CPU in run mode @ f _{ADC} 2 MHz	0.5	3	4.5	LSB
IE _D I	Differential linearity error ⁽²⁾	V _{DD}		1	2	2	
IELI	Integral linearity error ⁽²⁾			I	2	3	

1. Data based on characterization results, monitored in production to guarantee 99.73% within \pm max value from -40°C to 125°C (\pm 3 σ distribution limits).

 ADC accuracy vs. negative injection current: Injecting negative current may reduce the accuracy of the conversion being performed on another analog input. Any positive injection current within the limits specified for I_{INJ(PIN)} and ΣI_{INJ(PIN)} in Section 12.9 does not affect the ADC accuracy.

Figure 86. ADC accuracy characteristics

Dim.		mm			inches	
Dini.	Min	Тур	Max	Min	Тур	Мах
L1		1.00			0.039	
		N	lumber of pins			
Ν			3	2		

 Table 114.
 32-pin low profile quad flat package mechanical data (continued)

14.2 ROM device ordering information and transfer of customer code

Customer code is made up of the ROM/FASTROM contents and the list of the selected options (if any). The ROM/FASTROM contents are to be sent with the S19 hexadecimal file generated by the development tool. All unused bytes must be set to FFh. Complete the appended ST72324B-Auto Microcontroller FASTROM/ROM Option List on page 185 to communicate the selected options to STMicroelectronics.

Refer to application note AN1635 for information on the counter listing returned by ST after code has been transferred.

The following *Figure 91: ST72P324Bxx-Auto FastROM commercial product structure* and *Figure 92: ST72324Bxx-Auto ROM commercial product structure* serve as guides for ordering. The STMicroelectronics Sales Organization will be pleased to provide detailed information on contractual points.

Caution: The readout protection binary value is inverted between ROM and Flash products. The option byte checksum differs between ROM and Flash.

Example:	ST72	324B	т	А	/xxx	Х	S
Product class							
ST72 microcontroller							
324B = 324B sub-family							
Package type							
T = LQFP							
Temperature range							
A = -40 °C to 85 °C							
B = -40 °C to 105 °C							
C = -40 °C to 125 °C							
D = -40 °C to 115 °C							
Code name							
Defined by							
STMicroelectronics. Denotes ROM code, pinout							
and program memory size.							
Tape and Reel conditioning	options	s (left bl	ank	if Tra	ay) —		
TR or $R = Pin 1$ left-oriented TX or $X = Pin 1$ right-oriented		1 C	anlia	~ +\			
	(EIA 40		ipilai	11)			
ECOPACK/Fab code							
Blank or E = Lead-free ECOP.	ACK [®] F	hoenix	Fab				
S = Lead-free ECOPACK [®] Ca	tania F	ah					

Figure 92. ST72324Bxx-Auto ROM commercial product structure

15 Known limitations

15.1 All Flash and ROM devices

15.1.1 Safe connection of OSC1/OSC2 pins

The OSC1 and/or OSC2 pins must not be left unconnected, otherwise the ST7 main oscillator may start and, in this configuration, could generate an f_{OSC} clock frequency in excess of the allowed maximum (> 16 MHz), putting the ST7 in an unsafe/undefined state. Refer to *Section 6.3 on page 32*.

15.1.2 External interrupt missed

To avoid any risk of generating a parasitic interrupt, the edge detector is automatically disabled for one clock cycle during an access to either DDR and OR. Any input signal edge during this period will not be detected and will not generate an interrupt.

This case can typically occur if the application refreshes the port configuration registers at intervals during runtime.

Workaround

The workaround is based on software checking the level on the interrupt pin before and after writing to the PxOR or PxDDR registers. If there is a level change (depending on the sensitivity programmed for this pin) the interrupt routine is invoked using the call instruction with three extra PUSH instructions before executing the interrupt routine (this is to make the call compatible with the IRET instruction at the end of the interrupt service routine).

But detection of the level change does not make sure that edge occurs during the critical one cycle duration and the interrupt has been missed. This may lead to occurrence of same interrupt twice (one hardware and another with software call).

To avoid this, a semaphore is set to '1' before checking the level change. The semaphore is changed to level '0' inside the interrupt routine. When a level change is detected, the semaphore status is checked and if it is '1' this means that the last interrupt has been missed. In this case, the interrupt routine is invoked with the call instruction.

There is another possible case that is, if writing to PxOR or PxDDR is done with global interrupts disabled (interrupt mask bit set). In this case, the semaphore is changed to '1' when the level change is detected. Detecting a missed interrupt is done after the global interrupts are enabled (interrupt mask bit reset) and by checking the status of the semaphore. If it is '1' this means that the last interrupt was missed and the interrupt routine is invoked with the call instruction.

To implement the workaround, the following software sequence is to be followed for writing into the PxOR/PxDDR registers. The example is for Port PF1 with falling edge interrupt sensitivity. The software sequence is given for both cases (global interrupt disabled/enabled).

Nested interrupt context

The symptom does not occur when the interrupts are handled normally, that is, when:

- The interrupt flag is cleared within its own interrupt routine
- The interrupt flag is cleared within any interrupt routine with higher or identical priority level
- The interrupt flag is cleared in any part of the code while this interrupt is disabled

If these conditions are not met, the symptom can be avoided by implementing the following sequence:

- PUSH CC
- SIM
- Reset interrupt flag
- POP CC

15.1.5 16-bit timer PWM mode

In PWM mode, the first PWM pulse is missed after writing the value FFFCh in the OC1R register (OC1HR, OC1LR). It leads to either full or no PWM during a period, depending on the OLVL1 and OLVL2 settings.

15.1.6 TIMD set simultaneously with OC interrupt

If the 16-bit timer is disabled at the same time the output compare event occurs then output compare flag gets locked and cannot be cleared before the timer is enabled again.

Impact on the application

If output compare interrupt is enabled, then the output compare flag cannot be cleared in the timer interrupt routine. Consequently the interrupt service routine is called repeatedly.

Workaround

Disable the timer interrupt before disabling the timer. Again while enabling, first enable the timer then the timer interrupts.

- Perform the following to disable the timer:
 - TACR1 or TBCR1 = 0x00h; // Disable the compare interrupt
 - TACSR I or TBCSR I = 0x40; // Disable the timer
- Perform the following to enable the timer again:
 - TACSR & or TBCSR & = ~0x40; // Enable the timer
 - TACR1 or TBCR1 = 0x40; // Enable the compare interrupt

15.1.7 SCI wrong break duration

Description

A single break character is sent by setting and resetting the SBK bit in the SCICR2 register. In some cases, the break character may have a longer duration than expected:

- 20 bits instead of 10 bits if M = 0
- 22 bits instead of 11 bits if M = 1

