

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	ST7
Core Size	8-Bit
Speed	8MHz
Connectivity	SCI, SPI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	3.8V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/st72f324bk4t3

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4 Flash program memory

4.1 Introduction

The ST7 dual voltage High Density Flash (HDFlash) is a non-volatile memory that can be electrically erased as a single block or by individual sectors and programmed on a byte-by-byte basis using an external V_{PP} supply.

The HDFlash devices can be programmed and erased off-board (plugged in a programming tool) or on-board using ICP (in-circuit programming) or IAP (in-application programming).

The array matrix organization allows each sector to be erased and reprogrammed without affecting other sectors.

4.2 Main features

- 3 Flash programming modes:
 - Insertion in a programming tool. In this mode, all sectors including option bytes can be programmed or erased.
 - ICP (in-circuit programming). In this mode, all sectors including option bytes can be programmed or erased without removing the device from the application board.
 - IAP (in-application programming). In this mode, all sectors, except Sector 0, can be programmed or erased without removing the device from the application board and while the application is running.
- ICT (in-circuit testing) for downloading and executing user application test patterns in RAM
- Readout protection
- Register Access Security System (RASS) to prevent accidental programming or erasing

4.3 Structure

The Flash memory is organized in sectors and can be used for both code and data storage.

Depending on the overall Flash memory size in the microcontroller device, there are up to three user sectors (see *Table 4*). Each of these sectors can be erased independently to avoid unnecessary erasing of the whole Flash memory when only a partial erasing is required.

The first two sectors have a fixed size of 4 Kbytes (see *Figure 5*). They are mapped in the upper part of the ST7 addressing space so the reset and interrupt vectors are located in Sector 0 (F000h-FFFFh).

Table 4.	Sectors	available i	n Flash	devices

Flash size (bytes)	Available sectors
4K	Sector 0
8К	Sectors 0, 1
>8K	Sectors 0, 1, 2

5 Central processing unit (CPU)

5.1 Introduction

This CPU has a full 8-bit architecture and contains six internal registers allowing efficient 8bit data manipulation.

5.2 Main features

- Enable executing 63 basic instructions
- Fast 8-bit by 8-bit multiply
- 17 main addressing modes (with indirect addressing mode)
- Two 8-bit index registers
- 16-bit stack pointer
- Low power Halt and Wait modes
- Priority maskable hardware interrupts
- Non-maskable software/hardware interrupts

5.3 CPU registers

The six CPU registers shown in *Figure 7* are not present in the memory mapping and are accessed by specific instructions.

Figure 7. CPU registers

Doc ID13466 Rev 4

7 Interrupts

7.1 Introduction

The ST7 enhanced interrupt management provides the following features:

- Hardware interrupts
- Software interrupt (TRAP)
- Nested or concurrent interrupt management with flexible interrupt priority and level management:
 - up to 4 software programmable nesting levels
 - up to 16 interrupt vectors fixed by hardware
 - 2 non-maskable events: reset, TRAP

This interrupt management is based on:

- Bit 5 and bit 3 of the CPU CC register (I1:0)
- Interrupt software priority registers (ISPRx)
- Fixed interrupt vector addresses located at the high addresses of the memory map (FFE0h to FFFFh) sorted by hardware priority order

This enhanced interrupt controller guarantees full upward compatibility with the standard (not nested) ST7 interrupt controller.

7.2 Masking and processing flow

The interrupt masking is managed by the I1 and I0 bits of the CC register and the ISPRx registers which give the interrupt software priority level of each interrupt vector (see *Table 14*). The processing flow is shown in *Figure 16*.

When an interrupt request has to be serviced:

- Normal processing is suspended at the end of the current instruction execution.
- The PC, X, A and CC registers are saved onto the stack.
- I1 and I0 bits of CC register are set according to the corresponding values in the ISPRx registers of the serviced interrupt vector.
- The PC is then loaded with the interrupt vector of the interrupt to service and the first instruction of the interrupt service routine is fetched (refer to *Table 25: Interrupt mapping* for vector addresses).

The interrupt service routine should end with the IRET instruction which causes the contents of the saved registers to be recovered from the stack.

Note: As a consequence of the IRET instruction, the I1 and I0 bits will be restored from the stack and the program in the previous level will resume.

Output compare

In this section, the index, i, may be 1 or 2 because there are two output compare functions in the 16-bit timer.

This function can be used to control an output waveform or indicate when a period of time has elapsed.

When a match is found between the Output Compare register and the free running counter, the output compare function:

- Assigns pins with a programmable value if the OC/E bit is set
- Sets a flag in the status register
- Generates an interrupt if enabled

Two 16-bit registers Output Compare register 1 (OC1R) and Output Compare register 2 (OC2R) contain the value to be compared to the counter register each timer clock cycle.

Output compare byte distribution Table 45.

Register	MS byte	LS byte
OCiR	OC <i>i</i> HR	OC <i>i</i> LR

These registers are readable and witable and are not affected by the timer hardware. A reset event changes the OC/R value to 8000h.

Timing resolution is one count of the free running counter: (f_{CPU}/CC[1:0]).

Procedure

To use the Output Compare function, select the following in the CR2 register:

- Set the OC/E bit if an output is needed then the OCMP i pin is dedicated to the output compare *i* signal.
- Select the timer clock (CC[1:0]) (see Table 50).

And select the following in the CR1 register:

- Select the OLVL*i* bit to applied to the OCMP*i* pins after the match occurs.
- Set the OCIE bit to generate an interrupt if it is needed.

When a match is found between OCRi register and CR register:

- OCFi bit is set
- The OCMP*i* pin takes OLVL*i* bit value (OCMP*i* pin latch is forced low during reset)
- A timer interrupt is generated if the OCIE bit is set in the CR1 register and the I bit is cleared in the CC register (CC).

The OC/R register value required for a specific timing application can be calculated using the following formula:

$$\Delta \text{ OC} i \mathbf{R} = \frac{\Delta t * f_{CPU}}{\text{PRESC}}$$

Where:

Δt = Output compare period (in seconds) = CPU clock frequency (in hertz) f_{CPU}

PRESC = Timer prescaler factor (2, 4 or 8 depending on CC[1:0] bits; see Table 50)

If the timer clock is an external clock, the formula is:

$$\Delta \text{ OC}i\text{R} = \Delta t \star f_{\text{EXT}}$$

Where:

Clearing the output compare interrupt request (that is, clearing the OCF*i* bit) is done by:

- 1. Reading the SR register while the OCF*i* bit is set.
- 2. An access (read or write) to the OC*i*LR register.

The following procedure is recommended to prevent the OCF*i* bit from being set between the time it is read and the write to the OC*i*R register:

- Write to the OC*i*HR register (further compares are inhibited).
- Read the SR register (first step of the clearance of the OCF*i* bit, which may be already set).
- Write to the OC*i*LR register (enables the output compare function and clears the OCF*i* bit).
- Note: 1 After a processor write cycle to the OCiHR register, the output compare function is inhibited until the OCiLR register is also written.
 - 2 If the OCiE bit is not set, the OCMPi pin is a general I/O port and the OLVLi bit will not appear when a match is found but an interrupt could be generated if the OCIE bit is set.
 - 3 In both internal and external clock modes, OCFi and OCMPi are set while the counter value equals the OCiR register value (see Figure 42 on page 83 for an example with f_{CPU}/2 and Figure 43 on page 83 for an example with f_{CPU}/4). This behavior is the same in OPM or PWM mode.
 - 4 The output compare functions can be used both for generating external events on the OCMPi pins even if the input capture mode is also used.
 - 5 The value in the 16-bit OCiR register and the OLVi bit should be changed after each successful comparison in order to control an output waveform or establish a new elapsed timeout.

Forced output compare capability

When the FOLV*i* bit is set by software, the OLVL*i* bit is copied to the OCMP*i* pin. The OLV*i* bit has to be toggled in order to toggle the OCMP*i* pin when it is enabled (OC*i*E bit = 1). The OCF*i* bit is then not set by hardware, and thus no interrupt request is generated.

The FOLVL*i* bits have no effect in both one pulse mode and PWM mode.

10.3.6 Summary of timer modes

Table 48.Summary of timer modes

	Timer resources						
Mode	Input Capture 1	Input Capture 2	Output Compare 1	Output Compare 2			
Input Capture (1 and/or 2)	Vac	Vac	Yos	Vas			
Output Compare (1 and/or 2)		165	165	165			
One Pulse mode		Not recommended ⁽¹⁾	No	Partially ⁽²⁾			
PWM mode	NO	Not recommended ⁽³⁾	NO	No			

- 1. See note 4 in *One Pulse mode on page 84*.
- 2. See note 5 in One Pulse mode on page 84.
- 3. See note 4 in Pulse Width Modulation mode on page 86.

10.3.7 16-bit timer registers

Each timer is associated with three control and status registers, and with six pairs of data registers (16-bit values) relating to the two input captures, the two output compares, the counter and the alternate counter.

Control Register 1 (CR1)

Table 49. CR1 register description

Bit	Name	Function
7	ICIE	 Input Capture Interrupt Enable 0: Interrupt is inhibited. 1: A timer interrupt is generated whenever the ICF1 or ICF2 bit of the SR register is set.
6	OCIE	Output Compare Interrupt Enable 0: Interrupt is inhibited. 1: A timer interrupt is generated whenever the OCF1 or OCF2 bit of the SR register is set.
5	TOIE	Timer Overflow Interrupt Enable 0: Interrupt is inhibited. 1: A timer interrupt is enabled whenever the TOF bit of the SR register is set.

Bit	Name	Function
4	FOLV2	 Forced Output compare 2 This bit is set and cleared by software. 0: No effect on the OCMP2 pin. 1: Forces the OLVL2 bit to be copied to the OCMP2 pin, if the OC2E bit is set and even if there is no successful comparison.
3	FOLV1	 Forced Output compare 1 This bit is set and cleared by software. 0: No effect on the OCMP1 pin. 1: Forces OLVL1 to be copied to the OCMP1 pin, if the OC1E bit is set and even if there is no successful comparison.
2	OLVL2	Output Level 2 This bit is copied to the OCMP2 pin whenever a successful comparison occurs with the OC2R register and OCxE is set in the CR2 register. This value is copied to the OCMP1 pin in One Pulse mode and Pulse Width modulation mode.
1	IEDG1	 Input Edge 1 This bit determines which type of level transition on the ICAP1 pin will trigger the capture. 0: A falling edge triggers the capture. 1: A rising edge triggers the capture.
0	OLVL1	Output Level 1 The OLVL1 bit is copied to the OCMP1 pin whenever a successful comparison occurs with the OC1R register and the OC1E bit is set in the CR2 register.

 Table 49.
 CR1 register description (continued)

Control Register 2 (CR2)

Input Capture 1 High Register (IC1HR)

This is an 8-bit register that contains the high part of the counter value (transferred by the input capture 1 event).

Address (Hex.)	Register label	7	6	5	4	3	2	1	0
Timer A: 35 Timer B: 45	IC1LR Reset value	MSB x	x	x	x	x	x	x	LSB x
Timer A: 36 Timer B: 46	OC1HR Reset value	MSB 1	0	0	0	0	0	0	LSB 0
Timer A: 37 Timer B: 47	OC1LR Reset value	MSB 0	0	0	0	0	0	0	LSB 0
Timer A: 3E Timer B: 4E	OC2HR Reset value	MSB 1	0	0	0	0	0	0	LSB 0
Timer A: 3F Timer B: 4F	OC2LR Reset value	MSB 0	0	0	0	0	0	0	LSB 0
Timer A: 38 Timer B: 48	CHR Reset value	MSB 1	1	1	1	1	1	1	LSB 1
Timer A: 39 Timer B: 49	CLR Reset value	MSB 1	1	1	1	1	1	0	LSB 0
Timer A: 3A Timer B: 4A	ACHR Reset value	MSB 1	1	1	1	1	1	1	LSB 1
Timer A: 3B Timer B: 4B	ACLR Reset value	MSB 1	1	1	1	1	1	0	LSB 0
Timer A: 3C Timer B: 4C	IC2HR Reset value	MSB x	x	x	x	x	x	x	LSB x
Timer A: 3D Timer B: 4D	IC2LR Reset value	MSB x	x	x	x	x	x	x	LSB x

Table 52. 16-bit timer register map and reset values (continued)

10.4 Serial peripheral interface (SPI)

10.4.1 Introduction

The serial peripheral interface (SPI) allows full-duplex, synchronous, serial communication with external devices. An SPI system may consist of a master and one or more slaves. However, the SPI interface can not be a master in a multi-master system.

10.4.2 Main features

- Full duplex synchronous transfers (on 3 lines)
- Simplex synchronous transfers (on 2 lines)
- Master or slave operation
- 6 master mode frequencies (f_{CPU}/4 max.)
- f_{CPU}/2 max. slave mode frequency (see note)
- SS Management by software or hardware
- Programmable clock polarity and phase
- End of transfer interrupt flag
- Write collision, Master mode fault and Overrun flags

Figure 53. Clearing the WCOL bit (Write Collision flag) software sequence

Single master systems

A typical single master system may be configured, using an MCU as the master and four MCUs as slaves (see *Figure 54*).

The master device selects the individual slave devices by using four pins of a parallel port to control the four \overline{SS} pins of the slave devices.

The \overline{SS} pins are pulled high during reset since the master device ports will be forced to be inputs at that time, thus disabling the slave devices.

Note: To prevent a bus conflict on the MISO line the master allows only one active slave device during a transmission.

For more security, the slave device may respond to the master with the received data byte. Then the master will receive the previous byte back from the slave device if all MISO and MOSI pins are connected and the slave has not written to its SPIDR register.

Other transmission security methods can use ports for handshake lines or data bytes with command fields.

Figure 54. Single master/multiple slave configuration

10.5 Serial communications interface (SCI)

10.5.1 Introduction

The serial communications interface (SCI) offers a flexible means of full-duplex data exchange with external equipment requiring an industry standard NRZ asynchronous serial data format. The SCI offers a very wide range of baud rates using two baud rate generator systems.

10.5.2 Main features

- Full duplex, asynchronous communications
- NRZ standard format (mark/space)
- Dual baud rate generator systems
- Independently programmable transmit and receive baud rates up to 500K baud.
- Programmable data word length (8 or 9 bits)
- Receive buffer full, Transmit buffer empty and End of Transmission flags
- 2 receiver wake-up modes
 - Address bit (MSB)
 - Idle line
- Muting function for multiprocessor configurations
- Separate enable bits for Transmitter and Receiver
- 4 error detection flags
 - Overrun error
 - Noise error
 - Frame error
 - Parity error
- 5 interrupt sources with flags
 - Transmit data register empty
 - Transmission complete
 - Receive data register full
 - Idle line received
 - Overrun error detected
- Parity control
 - Transmits parity bit
 - Checks parity of received data byte
- Reduced power consumption mode

Conventional baud rate generation

The baud rate for the receiver and transmitter (Rx and Tx) are set independently and calculated as follows:

$$Tx = \frac{f_{CPU}}{(16.PR) \cdot TR} \qquad Rx = \frac{f_{CPU}}{(16.PR) \cdot RR}$$

with:

PR = 1, 3, 4 or 13 (see SCP[1:0] bits)

TR = 1, 2, 4, 8, 16, 32, 64,128

(see SCT[2:0] bits)

RR = 1, 2, 4, 8, 16, 32, 64,128

(see SCR[2:0] bits)

All these bits are in the SCI Baud Rate Register (SCIBRR) on page 127.

Example: If f_{CPU} is 8 MHz (normal mode) and if PR = 13 and TR = RR = 1, the transmit and receive baud rates are 38400 baud.

Note: The baud rate registers MUST NOT be changed while the transmitter or the receiver is enabled.

Extended baud rate generation

The extended prescaler option gives a very fine tuning on the baud rate, using a 255 value prescaler, whereas the conventional baud rate generator retains industry standard software compatibility.

The extended baud rate generator block diagram is described in *Figure 57*.

The output clock rate sent to the transmitter or to the receiver will be the output from the 16 divider divided by a factor ranging from 1 to 255 set in the SCIERPR or the SCIETPR register.

The extended prescaler is activated by setting the SCIETPR or SCIERPR register to a value other than zero. The baud rates are calculated as follows:

$$Tx = \frac{f_{CPU}}{16 \cdot ETPR^*(PR^*TR)} \quad Rx = \frac{f_{CPU}}{16 \cdot ERPR^*(PR^*RR)}$$

with:

ETPR = 1,..,255, see *SCI Extended Transmit Prescaler Division Register (SCIETPR) on* page 128.

ERPR = 1,.. 255, see *SCI Extended Receive Prescaler Division Register (SCIERPR) on* page 128

SCIETPR					Rese	et value: 0000	0 0000 (00h)
7	6	5	4	3	2	1	0
			ETPI	R[7:0]			
			R	/W			

Table 67. SCIET	PR register	description
-----------------	-------------	-------------

Bit	Name	Function
7:0	ETPR[7:0]	8-bit Extended Transmit Prescaler Register The extended baud rate generator is activated when a value different from 00h is stored in this register. Therefore the clock frequency issued from the 16 divider (see <i>Figure 57</i>) is divided by the binary factor set in the SCIETPR register (in the range 1 to 255). The extended baud rate generator is not used after a reset.

Table 68.Baud rate selection

Symbol	Parameter		Con				
		Parameter Ac		Prescaler	Standard	Baud rate	Unit
f _{Tx} f _{Rx}	Communication frequency	8 MHz	~0.16%	Conventional mode TR (or RR) = 128, PR = 13 TR (or RR) = 32, PR = 13 TR (or RR) = 16, PR = 13 TR (or RR) = 8, PR = 13 TR (or RR) = 4, PR = 13 TR (or RR) = 16, PR = 3 TR (or RR) = 2, PR = 13 TR (or RR) = 1, PR = 13	300 1200 2400 4800 9600 10400 19200 38400	~300.48 ~1201.92 ~2403.84 ~4807.69 ~9615.38 ~10416.67 ~19230.77 ~38461.54	Hz
			~0.79%	Extended mode ETPR (or ERPR) = 35, TR (or RR)= 1, PR = 1	14400	~14285.71	

ADC Data Register Low (ADCDRL)

	ADCDRL					Rese	t value: 0000	0000 (00h)
	7	6	5	4	3	2	1	0
Reserved				D[⁻	1:0]			
				-			B	0

Table 73. ADCDRL register description

Bit	Name	Function
7:2	-	Reserved. Forced by hardware to 0.
1:0	D[1:0]	LSB of Converted Analog Value

Table 74. ADC register map and reset values

Address (Hex.)	Register label	7	6	5	4	3	2	1	0
0070h	ADCCSR Reset value	EOC 0	SPEED 0	ADON 0	0	CH3 0	CH2 0	CH1 0	CH0 0
0071h	ADCDRH Reset value	D9 0	D8 0	D7 0	D6 0	D5 0	D4 0	D3 0	D2 0
0072h	ADCDRL Reset value	0	0	0	0	0	0	D1 0	D0 0

11.1.2 Immediate

Immediate instructions have two bytes: The first byte contains the opcode and the second byte contains the operand value.

	Table 78.	Immediate instruct	ions
--	-----------	--------------------	------

Instruction	Function
LD	Load
СР	Compare
BCP	Bit Compare
AND, OR, XOR	Logical operations
ADC, ADD, SUB, SBC	Arithmetic operations

11.1.3 Direct

In Direct instructions, the operands are referenced by their memory address. The direct addressing mode consists of two submodes:

Direct (short)

The address is a byte, thus requiring only one byte after the opcode, but only allows 00 - FF addressing space.

Direct (long)

The address is a word, thus allowing 64 Kbyte addressing space, but requires 2 bytes after the opcode.

11.1.4 Indexed (no offset, short, long)

In this mode, the operand is referenced by its memory address, which is defined by the unsigned addition of an index register (X or Y) with an offset.

The indexed addressing mode consists of three submodes:

Indexed (no offset)

There is no offset, (no extra byte after the opcode), and it allows 00 - FF addressing space.

Indexed (short)

The offset is a byte, thus requiring only one byte after the opcode and allows 00 - 1FE addressing space.

Indexed (long)

The offset is a word, thus allowing 64 Kbyte addressing space and requires 2 bytes after the opcode.

1. I/O can be left unconnected if it is configured as output (0 or 1) by the software. This has the advantage of greater EMC robustness and lower cost.

12.9.2 Output driving current

Subject to general operating conditions for $V_{\text{DD}},\,f_{\text{CPU}},$ and T_{A} unless otherwise specified.

Table 106.	Output	driving	current
------------	--------	---------	---------

Symbol	Parameter		Conditions		Мах	Unit
	Output low level voltage for a standard I/O pin when 8 pins are sunk at same time (see <i>Figure 70</i>)		$I_{IO} = +5mA$ $I_{IO} = +2mA$		1.2 0.5	
V _{OL} ⁽¹⁾	Output low level voltage for a high sink I/O pin when 4 pins are sunk at same time (see <i>Figure 71</i> and <i>Figure 73</i>)	V _{DD} = 5V	$\begin{array}{l} I_{IO} = +20 mA \\ T_A \leq 85^{\circ} \\ T_A > 85^{\circ}C \end{array}$		1.3 1.5	v
			I _{IO} = +8mA		0.6	
V _{OH} ⁽²⁾	Output high level voltage for an I/O pin when 4 pins are sourced at same time (see Figure 72 and Figure 75)		I _{IO} = -5mA, T _A ≤ 85°C T _A > 85°C	V _{DD} - 1.4 V _{DD} - 1.6		
			I _{IO} = -2mA	V _{DD} - 0.7		

The I_{IO} current sunk must always respect the absolute maximum rating specified in Section 12.2.2 and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VSS}.

2. The I_{IO} current sourced must always respect the absolute maximum rating specified in Section 12.2.2 and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VDD}. True open drain I/O pins do not have V_{OH}.

12.10 Control pin characteristics

12.10.1 Asynchronous RESET pin

Subject to general operating conditions for V_{DD} , f_{CPU} , and T_A unless otherwise specified.

Table 107. Asynchronous RESET pin

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{IL}	Input low level voltage ⁽¹⁾				$0.3 \mathrm{xV}_{\mathrm{DD}}$	V
V _{IH}	Input high level voltage ⁽¹⁾		$0.7 \mathrm{xV}_{\mathrm{DD}}$			
V _{hys}	Schmitt trigger voltage hysteresis ⁽²⁾			2.5		
V _{OL}	Output low level voltage ⁽³⁾	$V_{DD} = 5V, I_{IO} = +2mA$		0.2	0.5	V
I _{IO}	Driving current on RESET pin			2		mA
R _{ON}	Weak pull-up equivalent resistor	$V_{DD} = 5V$	20	30	120	kΩ
t _{w(RSTL)out}	Generated reset pulse duration	Internal reset sources	20	30	42 ⁽⁴⁾	μs
t _{h(RSTL)in}	External reset pulse hold time ⁽⁵⁾		2.5			μs
t _{g(RSTL)in}	Filtered glitch duration ⁽⁶⁾			200		ns

1. Data based on characterization results, not tested in production.

2. Hysteresis voltage between Schmitt trigger switching levels.

3. The I_{IO} current sunk must always respect the absolute maximum rating specified in *Section 12.2.2* and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VSS}.

4. Data guaranteed by design, not tested in production.

5. To guarantee the reset of the device, a minimum pulse has to be applied to the $\overline{\text{RESET}}$ pin. All short pulses applied on the $\overline{\text{RESET}}$ pin with a duration below $t_{h(\text{RSTL})in}$ can be ignored.

6. The reset network (the resistor and two capacitors) protects the device against parasitic resets, especially in noisy environments.

12.12 Communication interface characteristics

12.12.1 Serial peripheral interface (SPI)

The following characteristics are ubject to general operating conditions for V_{DD} , f_{CPU} , and T_A unless otherwise specified. The data is based on design simulation and/or characterization results, not tested in production.

When no communication is on-going the data output line of the SPI (MOSI in master mode, MISO in slave mode) has its alternate function capability released. In this case, the pin status depends on the I/O port configuration. Refer to the I/O port characteristics for more details on the input/output alternate function characteristics (SS, SCK, MOSI, MISO).

Symbol	Parameter	Conditions	Min	Мах	Unit
f _{SCK}	SPI clock froguency	Master f _{CPU} = 8 MHz	$f_{CPU}/128 = 0.0625$	$f_{CPU}/4 = 2$	
1/t _{c(SCK)}	SFI Clock liequency	Slave f _{CPU} = 8 MHz	0	$f_{CPU}/2 = 4$	
t _{r(SCK)} t _{f(SCK)}	SPI clock rise and fall time		see I/O po	ort pin description	
$t_{su(\overline{SS})}^{(1)}$	SS setup time ⁽²⁾	Slave	t _{CPU} + 50		
$t_{h(\overline{SS})}^{(1)}$	SS hold time	Slave	120		
$\begin{array}{c}t_{w(SCKH)}^{(1)}\\t_{w(SCKL)}^{(1)}\end{array}$	SCK high and low time	Master Slave	100 90		
t _{su(MI)} ⁽¹⁾ t _{su(SI)} ⁽¹⁾	Data input setup time	Master Slave	100 100		
t _{h(MI)} (1) t _{h(SI)} (1)	Data input hold time	Master Slave	100 100		ns
t _{a(SO)} ⁽¹⁾	Data output access time	Slave	0	120	
t _{dis(SO)} ⁽¹⁾	Data output disable time	Slave		240	
t _{v(SO)} ⁽¹⁾	Data output valid time	Slave (after enable edge)		120	
t _{h(SO)} ⁽¹⁾	Data output hold time	Slave (allel ellable euge)	0		
t _{v(MO)} ⁽¹⁾	Data output valid time	Maatar (aftar apabla adga)		120	
t _{h(MO)} ⁽¹⁾	Data output hold time	iviasiei (aitei enable euge)	0		

 Table 110.
 SPI characteristics

1. Data based on design simulation and/or characterization results, not tested in production.

2. Depends on f_{CPU} . For example, if f_{CPU} = 8 MHz, then t_{CPU} = 1 / f_{CPU} = 125ns and $t_{su(SS)}$ = 175ns.

Bit	Name	Function
OPT5	-	Reserved, must be kept at default value.
OPT4:3	VD[1:0]	Voltage detection These option bits enable the voltage detection block (LVD and AVD) with a selected threshold for the LVD and AVD. 00: Selected LVD = Highest threshold (V_{DD} ~4V). 01: Selected LVD = Medium threshold (V_{DD} ~3.5V). 10: Selected LVD = Lowest threshold (V_{DD} ~3V). 11: LVD and AVD off Caution: If the medium or low thresholds are selected, the detection may occur outside the specified operating voltage range. Below 3.8V, device operation is not guaranteed. For details on the AVD and LVD threshold levels refer to Section 12.4.1 on page 149.
OPT2:1	-	Reserved, must be kept at default value
OPT0	FMP_R	 Flash memory readout protection Readout protection, when selected, provides a protection against program memory content extraction and against write access to Flash memory. Erasing the option bytes when the FMP_R option is selected causes the whole user memory to be erased first, afterwhich the device can be reprogrammed. Refer to Section 4.3.1 on page 23 and the ST7 Flash Programming Reference Manual for more details. 0: Readout protection enabled 1: Readout protection disabled

Table 117. Option byte 0 bit description (continued)

Table 118. Option byte 1 bit description
--

Bit	Name	Function
OPT7	PKG1	Pin package selection bit This option bit selects the package (see <i>Table 119</i>). Note: On the chip, each I/O port has eight pads. Pads that are not bonded to external pins are in input pull-up configuration after reset. The configuration of these pads must be kept at reset state to avoid added current consumption.
OPT6	RSTC	 Reset clock cycle selection This option bit selects the number of CPU cycles applied during the reset phase and when exiting Halt mode. For resonator oscillators, it is advised to select 4096 due to the long crystal stabilization time. 0: Reset phase with 4096 CPU cycles 1: Reset phase with 256 CPU cycles
OPT5:4	OSCTYPE[1:0]	Oscillator type These option bits select the ST7 main clock source type. 00: Clock source = Resonator oscillator 01: Reserved 10: Clock source = Internal RC oscillator 11: Clock source = External source

Example:	ST72 P 324B T A /xxx X S
Product class ST72 microcontroller	
Family type P = FastROM	
Sub-family type 324B = 324B sub-family	
Package type T = LQFP	
Temperature range A = -40 °C to 85 °C C = -40 °C to 125 °C	
Code name Defined by STMicroelectronics. Denotes ROM code, pinout and program memory size.	
Tape and Reel conditioning options (left blank if Tray) TR or R = Pin 1 left-oriented TX or X = Pin 1 right-oriented (EIA 481-C compliant)	
ECOPACK/Fab code Blank or E = Lead-free ECOPACK [®] Phoenix Fab S = Lead-free ECOPACK [®] Catania Fab	

Figure 91. ST72P324Bxx-Auto FastROM commercial product structure

