

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	ST7
Core Size	8-Bit
Speed	8MHz
Connectivity	SCI, SPI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3.8V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	•
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/st72f324bk6t3

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

-		~ ~
Table 49.		. 89
Table 50.		. 91
Table 51.	CSR register description.	. 92
Table 52.	16-bit timer register map and reset values	. 96
Table 53.	Effect of low power modes on SPI	105
Table 54.	SPI interrupt control/wake-up capability	105
Table 55.	SPICR register description	106
Table 56.	SPI master mode SCK frequency	107
Table 57.	SPICSR register description	108
Table 58.	SPI register map and reset values	109
Table 59.	Frame formats	119
Table 60.	Effect of low power modes on SCI	122
Table 61.	SCI interrupt control/wake-up capability	122
Table 62.	SCISR register description	123
Table 63.	SCICR1 register description	124
Table 64.	SCICR2 register description	125
Table 65.	SCIBRR register description	127
Table 66	SCIERPR register description	128
Table 67	SCIETPB register description	129
Table 68	Baud rate selection	129
Table 60.	SCI register man and reset values	130
Table 70	Effect of low nower modes on ADC	133
Table 70. Table 71		133
Table 71.		12/
Table 72.		104
Table 73.		100
Table 74.		100
Table 75.		130
Table 76.		130
Table 77.		137
Table 78.		138
Table 79.	Instructions supporting direct, indexed, indirect and indirect indexed addressing modes	139
Table 80.	Relative direct and indirect instructions and functions	140
Table 81.	Instruction groups	140
Table 82.	Instruction set overview	143
Table 83.	Voltage characteristics	146
Table 84.	Current characteristics	147
Table 85.	Thermal characteristics	147
Table 86.	Operating conditions	148
Table 87.	Operating conditions with LVD	149
Table 88.	AVD thresholds	149
Table 89.	ROM current consumption	150
Table 90.	Flash current consumption	151
Table 91.	Oscillators, PLL and LVD current consumption	152
Table 92.	On-chip peripherals current consumption.	152
Table 93.	General timings.	153
Table 94.	External clock source	153
Table 95.	Crystal and ceramic resonator oscillators	154
Table 96.	OSCRANGE selection for typical resonators	155
Table 97.	RC oscillators	155
Table 98	PLL characteristics	156
Table 99	BAM and hardware registers	156
Table 100	Dual voltage HDFlash memory	157

5.3.5 Stack Pointer register (SP)

SP												R	eset va	alue: 0	1 FFh
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	1	SP7	SP6	SP5	SP4	SP3	SP2	SP1	SP0
R/W	R/W	R/W													

The Stack Pointer is a 16-bit register which is always pointing to the next free location in the stack. It is then decremented after data has been pushed onto the stack and incremented before data is popped from the stack (see *Figure 8*).

Since the stack is 256 bytes deep, the 8 most significant bits are forced by hardware. Following an MCU reset, or after a Reset Stack Pointer instruction (RSP), the Stack Pointer contains its reset value (the SP7 to SP0 bits are set) which is the stack higher address.

The least significant byte of the Stack Pointer (called S) can be directly accessed by an LD instruction.

Note: When the lower limit is exceeded, the Stack Pointer wraps around to the stack upper limit, without indicating the stack overflow. The previously stored information is then overwritten and therefore lost. The stack also wraps in case of an underflow.

The stack is used to save the return address during a subroutine call and the CPU context during an interrupt. The user may also directly manipulate the stack by means of the PUSH and POP instructions. In the case of an interrupt, the PCL is stored at the first location pointed to by the SP. Then the other registers are stored in the next locations as shown in *Figure 8*.

- When an interrupt is received, the SP is decremented and the context is pushed on the stack.
- On return from interrupt, the SP is incremented and the context is popped from the stack.

A subroutine call occupies two locations and an interrupt five locations in the stack area.

Figure 10. Clock, reset and supply block diagram

6.3 Multi-oscillator (MO)

The main clock of the ST7 can be generated by three different source types coming from the multi-oscillator block:

- an external source
- 4 crystal or ceramic resonator oscillators
- an internal high frequency RC oscillator

Each oscillator is optimized for a given frequency range in terms of consumption and is selectable through the option byte. The associated hardware configurations are shown in *Table 9*. Refer to the electrical characteristics section for more details.

Caution: The OSC1 and/or OSC2 pins must not be left unconnected. For the purposes of Failure Mode and Effect Analysis, it should be noted that if the OSC1 and/or OSC2 pins are left unconnected, the ST7 main oscillator may start and, in this configuration, could generate an f_{OSC} clock frequency in excess of the allowed maximum (> 16 MHz.), putting the ST7 in an unsafe/undefined state. The product behavior must therefore be considered undefined when the OSC pins are left unconnected.

6.3.1 External clock source

In this external clock mode, a clock signal (square, sinus or triangle) with ~50% duty cycle has to drive the OSC1 pin while the OSC2 pin is tied to ground.

Interrupt software priority	Level	11	10					
Level 0 (main)	Low	1	0					
Level 1		0	1					
Level 2	↓	0	0					
Level 3 (= interrupt disable)	High	1	1					

Table 1/ Interrupt software priority levels

Figure 16. Interrupt processing flowchart

7.2.1 Servicing pending interrupts

As several interrupts can be pending at the same time, the interrupt to be taken into account is determined by the following two-step process:

- the highest software priority interrupt is serviced,
- if several interrupts have the same software priority then the interrupt with the highest hardware priority is serviced first.

Figure 17 describes this decision process.

Figure 17. Priority decision process flowchart

7.6 External interrupts

7.6.1 I/O port interrupt sensitivity

The external interrupt sensitivity is controlled by the IPA, IPB and ISxx bits of the EICR register (*Figure 20*). This control allows up to four fully independent external interrupt source sensitivities.

Each external interrupt source can be generated on four (or five) different events on the pin:

- Falling edge
- Rising edge
- Falling and rising edge
- Falling edge and low level
- Rising edge and high level (only for ei0 and ei2)

To guarantee correct functionality, the sensitivity bits in the EICR register can be modified only when the I1 and I0 bits of the CC register are both set to 1 (level 3). This means that interrupts must be disabled before changing sensitivity.

The pending interrupts are cleared by writing a different value in the ISx[1:0], IPA or IPB bits of the EICR.

Doc ID13466 Rev 4

9 I/O ports

9.1 Introduction

The I/O ports offer different functional modes:

• transfer of data through digital inputs and outputs,

and for specific pins:

- external interrupt generation,
- alternate signal input/output for the on-chip peripherals.

An I/O port contains up to 8 pins. Each pin can be programmed independently as digital input (with or without interrupt generation) or digital output.

9.2 Functional description

Each port has two main registers:

- Data Register (DR)
- Data Direction Register (DDR)

and one optional register:

• Option Register (OR)

Each I/O pin may be programmed using the corresponding register bits in the DDR and OR registers: bit X corresponding to pin X of the port. The same correspondence is used for the DR register.

The following description takes into account the OR register, (for specific ports which do not provide this register refer to *Section 9.3: I/O port implementation on page 62*). The generic I/O block diagram is shown in *Figure 28*.

9.2.1 Input modes

The input configuration is selected by clearing the corresponding DDR register bit.

In this case, reading the DR register returns the digital value applied to the external I/O pin.

Different input modes can be selected by software through the OR register.

- Note: 1 Writing the DR register modifies the latch value but does not affect the pin status.
 - 2 When switching from input to output mode, the DR register has to be written first to drive the correct level on the pin as soon as the port is configured as an output.
 - 3 Do not use read/modify/write instructions (BSET or BRES) to modify the DR register as this might corrupt the DR content for I/Os configured as input.

Figure 28. I/O port general block diagram

Table 28.I/O port mode options

Configuration mode		Pull-up	D -buffor	Diodes		
		Full-up	r-bullet	to V _{DD} ⁽¹⁾	to V _{SS} ⁽²⁾	
Input	Floating with/without Interrupt	Off ⁽³⁾	Off		On	
	Pull-up with/without Interrupt	On ⁽⁴⁾	Oli	On		
Output	Push-pull	Off	On	OII		
	Open drain (logic level)	Oli	Off			
	True open drain	NI	NI	NI ⁽⁵⁾		

1. The diode to V_{DD} is not implemented in the true open drain pads.

2. A local protection between the pad and V_{SS} is implemented to protect the device against positive stress.

3. Off = implemented not activated.

4. On = implemented and activated.

5. NI = not implemented

Table 29. I/O port configurations

1. When the I/O port is in input configuration and the associated alternate function is enabled as an output, reading the DR register will read the alternate function output status.

2. When the I/O port is in output configuration and the associated alternate function is enabled as an input, the alternate function reads the pin status given by the DR register content.

Caution: The alternate function must not be activated as long as the pin is configured as input with interrupt, in order to avoid generating spurious interrupts.

		•		•		,			
Address (Hex.)	Register label	7	6	5	4	3	2	1	0
000Ch	PEDR								
000Dh	PEDDR	MSB							LSB
000Eh	PEOR								
000Fh	PFDR								
0010h	PFDDR	MSB							LSB
0011h	PFOR								

 Table 33.
 I/O port register map and reset values (continued)

Figure 30. Watchdog block diagram

10.1.4 How to program the Watchdog timeout

Figure 31 shows the linear relationship between the 6-bit value to be loaded in the Watchdog Counter (CNT) and the resulting timeout duration in milliseconds. This can be used for a quick calculation without taking the timing variations into account. If more precision is needed, use the formulae in *Figure 32*.

Caution: When writing to the WDGCR register, always write 1 in the T6 bit to avoid generating an immediate reset.

Figure 31. Approximate timeout duration

10.3 16-bit timer

10.3.1 Introduction

The timer consists of a 16-bit free-running counter driven by a programmable prescaler.

It may be used for a variety of purposes, including pulse length measurement of up to two input signals (input capture) or generation of up to two output waveforms (output compare and PWM).

Pulse lengths and waveform periods can be modulated from a few microseconds to several milliseconds using the timer prescaler and the CPU clock prescaler.

Some ST7 devices have two on-chip 16-bit timers. They are completely independent, and do not share any resources. They are synchronized after a MCU reset as long as the timer clock frequencies are not modified.

This description covers one or two 16-bit timers. In ST7 devices with two timers, register names are prefixed with TA (Timer A) or TB (Timer B).

10.3.2 Main features

- Programmable prescaler: f_{CPU} divided by 2, 4 or 8
- Overflow status flag and maskable interrupt
- External clock input (must be at least four times slower than the CPU clock speed) with the choice of active edge
- 1 or 2 output compare functions each with:
 - 2 dedicated 16-bit registers
 - 2 dedicated programmable signals
 - 2 dedicated status flags
 - 1 dedicated maskable interrupt
- 1 or 2 input capture functions each with:
 - 2 dedicated 16-bit registers
 - 2 dedicated active edge selection signals
 - 2 dedicated status flags
 - 1 dedicated maskable interrupt
- Pulse width modulation mode (PWM)
- One pulse mode
- Reduced power mode
- 5 alternate functions on I/O ports (ICAP1, ICAP2, OCMP1, OCMP2, EXTCLK)^(c)

The timer block diagram is shown in *Figure 34*.

c. Some timer pins may not be available (not bonded) in some ST7 devices. Refer to *Section 2: Pin description*. When reading an input signal on a non-bonded pin, the value will always be '1'.

Alternate Counter Low Register (ACLR)

This is an 8-bit register that contains the low part of the counter value. A write to this register resets the counter. An access to this register after an access to CSR register does not clear the TOF bit in the CSR register.

Input Capture 2 High Register (IC2HR)

This is an 8-bit register that contains the high part of the counter value (transferred by the Input Capture 2 event).

Input Capture 2 Low Register (IC2LR)

This is an 8-bit register that contains the low part of the counter value (transferred by the Input Capture 2 event).

1C2LR						Reset value	e: undefined
7	6	5	4	3	2	1	0
MSB							LSB
RO	RO	RO	RO	RO	RO	RO	RO

Address (Hex.)	Register label	7	6	5	4	3	2	1	0
Timer A: 32	CR1	ICIE	OCIE	TOIE	FOLV2	FOLV1	OLVL2	IEDG1	OLVL1
Timer B: 42	Reset value	0	0	0	0	0	0	0	0
Timer A: 31	CR2	OC1E	OC2E	OPM	PWM	CC1	CC0	IEDG2	EXEDG
Timer B: 41	Reset value	0	0	0	0	0	0	0	0
Timer A: 33	CSR	ICF1	OCF1	TOF	ICF2	OCF2	TIMD	-	-
Timer B: 43	Reset value	x	x	x	x	x	0	X	X
Timer A: 34 Timer B: 44	IC1HR Reset value	MSB x	x	x	x	x	x	x	LSB x

Bit	Name	Function
2	СРНА	 Clock Phase This bit is set and cleared by software. 0: The first clock transition is the first data capture edge. 1: The second clock transition is the first capture edge. Note: The slave must have the same CPOL and CPHA settings as the master.
1:0	SPR[1:0]	Serial clock frequency These bits are set and cleared by software. Used with the SPR2 bit, they select the baud rate of the SPI serial clock SCK output by the SPI in master mode (see <i>Table 56</i>). <i>Note: These 2 bits have no effect in slave mode.</i>

Table 55.	SPICR registe	er description	(continued)
-----------	---------------	----------------	-------------

Table 56. SPI master mode SCK frequency

Serial clock	SPR2	SPR1	SPR0
f _{CPU} /4	1	0	0
f _{CPU} /8	0	0	0
f _{CPU} /16	0	0	1
f _{CPU} /32	1	1	0
f _{CPU} /64	0	1	0
f _{CPU} /128	0	1	1

SPI Control/Status Register (SPICSR)

SPICSR					Rese	et value: 0000	0000 (00h)
7	6	5	4	3	2	1	0
SPIF	WCOL	OVR	MODF	Reserved	SOD	SSM	SSI
RO	RO	RO	RO	-	R/W	R/W	R/W

10.6.3 Functional description

The conversion is monotonic, meaning that the result never decreases if the analog input does not increase.

If the input voltage (V_{AIN}) is greater than V_{AREF} (high-level voltage reference) then the conversion result is FFh in the ADCDRH register and 03h in the ADCDRL register (without overflow indication).

If the input voltage (V_{AIN}) is lower than V_{SSA} (low-level voltage reference) then the conversion result in the ADCDRH and ADCDRL registers is 00 00h.

The A/D converter is linear and the digital result of the conversion is stored in the ADCDRH and ADCDRL registers. The accuracy of the conversion is described in the Electrical Characteristics Section.

 R_{AIN} is the maximum recommended impedance for an analog input signal. If the impedance is too high, this will result in a loss of accuracy due to leakage and sampling not being completed in the allotted time.

A/D converter configuration

The analog input ports must be configured as input, no pull-up, no interrupt. Refer to *Section 9: I/O ports*. Using these pins as analog inputs does not affect the ability of the port to be read as a logic input.

In the ADCCSR register:

Select the CS[3:0] bits to assign the analog channel to convert.

Starting the conversion

In the ADCCSR register:

Set the ADON bit to enable the A/D converter and to start the conversion. From this time on, the ADC performs a continuous conversion of the selected channel.

When a conversion is complete:

- the EOC bit is set by hardware
- the result is in the ADCDR registers

A read to the ADCDRH resets the EOC bit.

To read the 10 bits, perform the following steps:

- 1. Poll the EOC bit.
- 2. Read the ADCDRL register
- 3. Read the ADCDRH register. This clears EOC automatically.

Note:

The data is not latched, so both the low and the high data register must be read before the next conversion is complete. Therefore, it is recommended to disable interrupts while reading the conversion result.

To read only 8 bits, perform the following steps:

- 1. Poll the EOC bit.
- 2. Read the ADCDRH register. This clears EOC automatically.

Figure 65. Typical application with a crystal or ceramic resonator (32 Kbyte Flash and ROM devices)

Table 96. OSCRANGE selection for typical resonators

	farr	Typical ceramic resonators ⁽¹⁾			
Supplier	'osc (MHz)	Reference	Recommended OSCRANGE option bit configuration		
Murata	2	CSTCC2M00G56A-R0	MP mode ⁽²⁾		
	4	CSTCR4M00G55B-R0	MS mode		
	8	CSTCE8M00G52A-R0	HS mode		
	16	CSTCE16M0V51A-R0	HS mode		

1. Resonator characteristics given by the ceramic resonator manufacturer.

2. LP mode is not recommended for 2 MHz resonator because the peak to peak amplitude is too small (>0.8V). For more information on these resonators, please consult www.murata.com.

12.6.4 RC oscillators

Table 97. RC oscillators

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f _{OSC (RCINT)}	Internal RC oscillator frequency (see <i>Figure 66</i>)	$T_{A} = 25^{\circ}C, V_{DD} = 5V$	2	3.5	5.6	MHz

Figure 66. Typical f_{OSC(RCINT)} vs T_A

Table	101.	EMS	test	results
-------	------	-----	------	---------

Symbol	Parameter	Conditions	Level/class	
		32 Kbyte Flash or ROM device: $V_{DD} = 5V$, $T_A = +25^{\circ}C$, $f_{OSC} = 8$ MHz conforms to IEC 1000-4-2	3B	
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	/oltage limits to be applied on any I/O pin to nduce a functional disturbance $V_{DD} = 5V$, $T_A = +25^{\circ}C$, $f_{OSC} = 8$ MHz conforms to IEC 1000-4-2		4A
		8 or 16 Kbyte Flash device: $V_{DD} = 5V$, $T_A = +25^{\circ}C$, $f_{OSC} = 8$ MHz conforms to IEC 1000-4-2	4B	
V _{FFTB}	Fast transient voltage burst limits to be applied through 100pF on V_{DD} and V_{DD} pins to induce a functional disturbance	$V_{DD} = 5V$, $T_A = +25^{\circ}C$, $f_{OSC} = 8$ MHz conforms to IEC 1000-4-4	4A	

12.8.2 Electromagnetic interference (EMI)

Based on a simple application running on the product (toggling two LEDs through the I/O ports), the product is monitored in terms of emission. This emission test is in line with the norm SAE J 1752/3 which specifies the board and the loading of each pin.

Symbol	Devemeter	Conditions	Device/peekege ⁽¹⁾	Monitored	Max vs [f _{OSC} /f _{CPU}]		Unit
Symbol	Parameter	Conditions	Device/package(/	frequency band	8/4 MHz	16/8 MHz	Unit
			8/16 Kbyte Flash LQFP32 and LQFP44	0.1 MHz to 30 MHz	12	18	
				30 MHz to 130 MHz	19	25	dBµV
				130 MHz to 1 GHz	15	19 25 dBμV 15 22 dBμV 3 3.5 - 13 14 ABμV 20 25 ABμV 16 21 ABμV 3.0 3.5 - 12 15 ABμV	
				SAE EMI Level	3		-
				0.1 MHz to 30 MHz	13	14	
			32 Kbyte Flash	30 MHz to 130 MHz	20	25	dBµV
	Peak level ⁽²⁾	$V_{DD} = 5V$ $T_A = +25$ °C conforming to SAE J 1752/3	LQFP32 and LQFP44	130 MHz to 1 GHz	16	21	
c				SAE EMI Level	3.0	3.5	-
SEMI			8/16 Kbyte ROM LQFP32 and LQFP44	0.1 MHz to 30 MHz	12	15	
				30 MHz to 130 MHz	23	26	dBµV
				130 MHz to 1 GHz	15]
				SAE EMI Level	3.0		-
				0.1 MHz to 30 MHz	17	21	
			32 Kbyte ROM LQFP32 and LQFP44	30 MHz to 130 MHz	24	30	dBµV
				130 MHz to 1 GHz	18	23	
				SAE EMI Level	3.0	3.5	-

Table 102. EMI emissions

1. Refer to application note AN1709 for data on other package types.

Figure 73. Typical V_{OL} vs. V_{DD} (standard ports)

Figure 75. Typical V_{OH} vs. V_{DD}

12.10 Control pin characteristics

12.10.1 Asynchronous RESET pin

Subject to general operating conditions for V_{DD} , f_{CPU} , and T_A unless otherwise specified.

Table 107. Asynchronous RESET pin

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IL}	Input low level voltage ⁽¹⁾				$0.3 \mathrm{xV}_{\mathrm{DD}}$	V
V _{IH}	Input high level voltage ⁽¹⁾		$0.7 \mathrm{xV}_{\mathrm{DD}}$			
V _{hys}	Schmitt trigger voltage hysteresis ⁽²⁾			2.5		
V _{OL}	Output low level voltage ⁽³⁾	$V_{DD} = 5V, I_{IO} = +2mA$		0.2	0.5	V
I _{IO}	Driving current on RESET pin			2		mA
R _{ON}	Weak pull-up equivalent resistor	V _{DD} = 5V	20	30	120	kΩ
t _{w(RSTL)out}	Generated reset pulse duration	Internal reset sources	20	30	42 ⁽⁴⁾	μs
t _{h(RSTL)in}	External reset pulse hold time ⁽⁵⁾		2.5			μs
t _{g(RSTL)in}	Filtered glitch duration ⁽⁶⁾			200		ns

1. Data based on characterization results, not tested in production.

2. Hysteresis voltage between Schmitt trigger switching levels.

3. The I_{IO} current sunk must always respect the absolute maximum rating specified in *Section 12.2.2* and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VSS}.

4. Data guaranteed by design, not tested in production.

5. To guarantee the reset of the device, a minimum pulse has to be applied to the $\overline{\text{RESET}}$ pin. All short pulses applied on the $\overline{\text{RESET}}$ pin with a duration below $t_{h(\text{RSTL})in}$ can be ignored.

6. The reset network (the resistor and two capacitors) protects the device against parasitic resets, especially in noisy environments.

Bit	Name	Function
OPT5	-	Reserved, must be kept at default value.
OPT4:3	VD[1:0]	Voltage detection These option bits enable the voltage detection block (LVD and AVD) with a selected threshold for the LVD and AVD. 00: Selected LVD = Highest threshold (V_{DD} ~4V). 01: Selected LVD = Medium threshold (V_{DD} ~3.5V). 10: Selected LVD = Lowest threshold (V_{DD} ~3V). 11: LVD and AVD off Caution: If the medium or low thresholds are selected, the detection may occur outside the specified operating voltage range. Below 3.8V, device operation is not guaranteed. For details on the AVD and LVD threshold levels refer to Section 12.4.1 on page 149.
OPT2:1	-	Reserved, must be kept at default value
OPT0	FMP_R	 Flash memory readout protection Readout protection, when selected, provides a protection against program memory content extraction and against write access to Flash memory. Erasing the option bytes when the FMP_R option is selected causes the whole user memory to be erased first, afterwhich the device can be reprogrammed. Refer to Section 4.3.1 on page 23 and the ST7 Flash Programming Reference Manual for more details. 0: Readout protection enabled 1: Readout protection disabled

Table 117. Option byte 0 bit description (continued)

Table 118. Option byte 1 bit description
--

Bit	Name	Function
OPT7	PKG1	Pin package selection bit This option bit selects the package (see <i>Table 119</i>). Note: On the chip, each I/O port has eight pads. Pads that are not bonded to external pins are in input pull-up configuration after reset. The configuration of these pads must be kept at reset state to avoid added current consumption.
OPT6	RSTC	 Reset clock cycle selection This option bit selects the number of CPU cycles applied during the reset phase and when exiting Halt mode. For resonator oscillators, it is advised to select 4096 due to the long crystal stabilization time. 0: Reset phase with 4096 CPU cycles 1: Reset phase with 256 CPU cycles
OPT5:4	OSCTYPE[1:0]	Oscillator type These option bits select the ST7 main clock source type. 00: Clock source = Resonator oscillator 01: Reserved 10: Clock source = Internal RC oscillator 11: Clock source = External source

14.2 ROM device ordering information and transfer of customer code

Customer code is made up of the ROM/FASTROM contents and the list of the selected options (if any). The ROM/FASTROM contents are to be sent with the S19 hexadecimal file generated by the development tool. All unused bytes must be set to FFh. Complete the appended ST72324B-Auto Microcontroller FASTROM/ROM Option List on page 185 to communicate the selected options to STMicroelectronics.

Refer to application note AN1635 for information on the counter listing returned by ST after code has been transferred.

The following *Figure 91: ST72P324Bxx-Auto FastROM commercial product structure* and *Figure 92: ST72324Bxx-Auto ROM commercial product structure* serve as guides for ordering. The STMicroelectronics Sales Organization will be pleased to provide detailed information on contractual points.

Caution: The readout protection binary value is inverted between ROM and Flash products. The option byte checksum differs between ROM and Flash.

