

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	ST7
Core Size	8-Bit
Speed	8MHz
Connectivity	SCI, SPI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3.8V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/st72f324bk6t6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

57

	12.10	Control	pin characteristics 166	6
		12.10.1	Asynchronous RESET pin166	6
		12.10.2	ICCSEL/VPP pin	8
	12.11	Timer p	eripheral characteristics 168	8
		12.11.1	16-bit timer	8
	12.12	Commu	inication interface characteristics 169	9
		12.12.1	Serial peripheral interface (SPI) 169	9
	12.13	10-bit A	DC characteristics 17 ⁻	1
		12.13.1	Analog power supply and reference pins	3
		12.13.2	General PCB design guidelines 173	3
		12.13.3	ADC accuracy	4
13	Packa	age cha	racteristics	5
	13.1	LQFP4	4 package characteristics 175	5
	13.2	LQFP3	2 package characteristics 176	6
	13.3	Therma	Il characteristics	8
	13.4	Ecopac	k information	8
	13.5	Packag	ing for automatic handling 178	8
14	Devic	e confi	guration and ordering information	9
	14.1	Flash d	evices	9
		14.1.1	Flash configuration	9
		14.1.2	Flash ordering information	2
	14.2	_		
		ROM de	evice ordering information and transfer of customer code 183	3
	14.3		evice ordering information and transfer of customer code 183	
	14.3			7
	14.3	Develop	oment tools	7 7
	14.3	Develop 14.3.1	oment tools	7 7 7
	14.3	Develop 14.3.1 14.3.2	oment tools 187 Introduction 187 Evaluation tools and starter kits 187	7 7 7 7
	14.3	Develop 14.3.1 14.3.2 14.3.3	oment tools 187 Introduction 187 Evaluation tools and starter kits 187 Development and debugging tools 187	7 7 7 7
	14.3	Develop 14.3.1 14.3.2 14.3.3 14.3.4 14.3.5	Dement tools 187 Introduction 187 Evaluation tools and starter kits 187 Development and debugging tools 187 Programming tools 187	7 7 7 7 8
15	14.4	Develop 14.3.1 14.3.2 14.3.3 14.3.4 14.3.5 ST7 Ap	oment tools 187 Introduction 187 Evaluation tools and starter kits 187 Development and debugging tools 187 Programming tools 187 Socket and emulator adapter information 187	7 7 7 7 8
15	14.4	Develop 14.3.1 14.3.2 14.3.3 14.3.4 14.3.5 ST7 Ap m limita	oment tools 187 Introduction 187 Evaluation tools and starter kits 187 Development and debugging tools 187 Programming tools 187 Socket and emulator adapter information 188 plication notes 188	7 7 7 7 8 8 9
15	14.4 Know	Develop 14.3.1 14.3.2 14.3.3 14.3.4 14.3.5 ST7 Ap m limita	oment tools 187 Introduction 187 Evaluation tools and starter kits 187 Development and debugging tools 187 Programming tools 187 Socket and emulator adapter information 188 plication notes 188 Ntions 188	7 7 7 7 8 8 9 9
15	14.4 Know	Develop 14.3.1 14.3.2 14.3.3 14.3.4 14.3.5 ST7 Ap n limita All Flas	oment tools 187 Introduction 187 Evaluation tools and starter kits 187 Development and debugging tools 187 Programming tools 187 Socket and emulator adapter information 188 plication notes 188 Ations 188 h and ROM devices 189	7 7 7 7 8 8 9 9 9

Doc	ID13466	Rev	4
-----	---------	-----	---

1

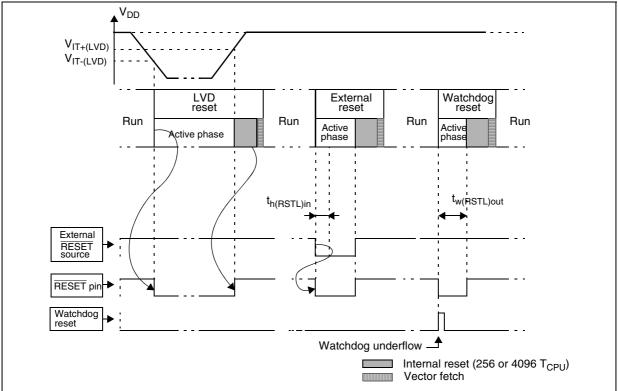
6	Revis	ion hist	ory	195
		15.3.2	I/O Port A and F configuration	. 193
		15.3.1	Readout protection with LVD	. 193
	15.3	8/16 Kb	yte ROM devices only	193
		15.2.2	Negative current injection on pin PB0	. 193
		15.2.1	39-pulse ICC entry mode	. 193
	15.2	8/16 Kb	yte Flash devices only	193
		15.1.7	SCI wrong break duration	. 192
		15.1.6	TIMD set simultaneously with OC interrupt	. 192
		15.1.5	16-bit timer PWM mode	. 192
		15.1.4	Clearing active interrupts outside interrupt routine	. 191
		15.1.3	Unexpected reset fetch	. 191

		Pin		Le	vel			Рог	rt						
N	о.		e				Ir	nput		Out	put	Main function			
LQFP44	LQFP32	Name	Type	Input	Output	float	ndm	int	ana	QO	РР	(after reset)	Alternate function		
26	11	PC3 (HS)/ICAP1_B	I/O	CT	HS	x	х			х	х	Port C3	Timer B inpu	it capture 1	
27	12	PC4/MISO/ICCD ATA	I/O	CT		x	х			x	x	Port C4	SPI master in/slave out data	ICC data input	
28	13	PC5/MOSI /AIN14	I/O	CT		x	х		х	x	x	Port C5	SPI master out/slave in data	ADC analog input 14	
29	14	PC6/SCK /ICCCLK	I/O	CT		х	х			х	х	Port C6	SPI serial clock	ICC clock output	
30	15	PC7/SS/AIN15	I/O	CT		x	х		x	x	x	Port C7	SPI slave select (active low)	ADC analog input 15	
31	16	PA3 (HS)	I/O	CT	HS	X		ei0		Х	Х	Port A3			
32	-	V _{DD_1} ⁽¹⁾	S									Digital ma	in supply volta	age	
33	-	V _{SS_1} ⁽¹⁾	S									Digital gro	und voltage		
34	17	PA4 (HS)	I/O	C_{T}	HS	Х	Х			Х	х	Port A4			
35	-	PA5 (HS)	I/O	C_T	HS	Х	Х			Х	Х	Port A5			
36	18	PA6 (HS)	I/O	C_T	HS	Х				Т		Port A6 ⁽²⁾			
37	19	PA7 (HS)	I/O	C_{T}	HS	Х				Т		Port A7 ⁽²⁾			
38	20	V _{PP} /ICCSEL	I									programm the progra See <u>Sectio</u> High voltag	Must be tied low. In the Flash programming mode, this pin acts as the programming voltage input V_{PP} See <i>Section 12.10.2</i> for more details. High voltage must not be applied to ROM devices.		
39	21	RESET	I/O	CT								Top priority	y non-maskat	ole interrupt	
40	22	V _{SS_2} ⁽¹⁾	S									Digital gro	und voltage		
41	23	OSC2 ⁽³⁾	0									Resonator	oscillator inv	erter output	
42	24	OSC1 ⁽³⁾	I										External clock input or resonator oscillator inverter input		
43	25	V _{DD_2} ⁽¹⁾	S									Digital ma	in supply volta	age	
44	26	PE0/TDO	I/O	CT		х	Х			Х	Х	Port E0	SCI transmit	data out	
1	27	PE1/RDI	I/O	C _T		X	Х			Х	Х	Port E1	SCI receive	data in	

Table 2. Device pin description (continued)

Address	Block	Register label	Register name	Reset status ⁽¹⁾	Remarks ⁽¹⁾		
0041h 0042h 0043h 0043h 0045h 0046h 0047h 0048h 0049h 004Ah 004Bh 004Ch 004Ch 004Ch 004Eh 004Fh	Timer B	TBCR2 TBCR1 TBCSR TBIC1HR TBIC1LR TBOC1HR TBOC1LR TBCHR TBCLR TBACHR TBACLR TBIC2HR TBIC2LR TBOC2HR TBOC2LR	Timer B control register 2 Timer B control register 1 Timer B control/status register Timer B input capture 1 high register Timer B output compare 1 high register Timer B output compare 1 low register Timer B counter high register Timer B counter low register Timer B alternate counter high register Timer B alternate counter low register Timer B alternate counter low register Timer B input capture 2 high register Timer B output compare 2 low register Timer B output compare 2 low register	00h 00h xxxx x0xxb xxh 80h 00h FFh FCh FCh FCh xxh xxh 80h 00h	R/W R/W Read only Read only R/W R/W Read only Read only Read only Read only Read only Read only Read only Read only Read only R/W		
0050h 0051h 0052h 0053h 0054h 0055h 0056h 0057h	SCI	SCISR SCIDR SCIBRR SCICR1 SCICR2 SCIERPR SCIETPR	SCI status register SCI data register SCI baud rate register SCI control register 1 SCI control register 2 SCI extended receive prescaler register Reserved area SCI extended transmit prescaler register	C0h xxh 00h x000 0000b 00h 00h 00h	Read only R/W R/W R/W R/W R/W R/W		
0058h to 006Fh			Reserved area (24 bytes)				
0070h 0071h 0072h	ADC	ADCCSR ADCDRH ADCDRL	Control/status register Data high register Data low register	00h 00h 00h	R/W Read only Read only		
0073h 007Fh	Reserved area (13 bytes)						

Table 3. Hardware register map (continued)


1. Legend: x = undefined, R/W = read/write.

2. The bits associated with unavailable pins must always keep their reset value.

3. The contents of the I/O port DR registers are readable only in output configuration. In input configuration, the values of the I/O pins are returned instead of the DR register contents.

Figure 13. RESET sequences

6.5 System integrity management (SI)

The system integrity management block contains the LVD and auxiliary voltage detector (AVD) functions. It is managed by the SICSR register.

6.5.1 LVD (low voltage detector)

The LVD function generates a static reset when the V_{DD} supply voltage is below a V_{IT}-reference value. This means that it secures the power-up as well as the power-down keeping the ST7 in reset.

The V_{IT} reference value for a voltage drop is lower than the V_{IT+} reference value for poweron in order to avoid a parasitic reset when the MCU starts running and sinks current on the supply (hysteresis).

The LVD reset circuitry generates a reset when V_{DD} is below:

- V_{IT+} when V_{DD} is rising
- V_{IT}- when V_{DD} is falling

The LVD function is illustrated in Figure 13.

The voltage threshold can be configured by option byte to be low, medium or high.

No.	Source block	Description	Register label	Priority order	Exit from Halt/Active Halt	Address vector
	Reset	Reset	N/A		yes	FFFEh-FFFFh
	TRAP	Software interrupt	IN/A		no	FFFCh-FFFDh
0		Not used				FFFAh-FFFBh
1	MCC/RTC	Main clock controller time base interrupt	MCCSR	Higher priority	yes	FFF8h-FFF9h
2	ei0	External interrupt port A30			yes	FFF6h-FFF7h
3	ei1	External interrupt port F20			yes	FFF4h-FFF5h
4	ei2	External interrupt port B30	N/A		yes	FFF2h-FFF3h
5	ei3	External interrupt port B74			yes	FFF0h-FFF1h
6		Not used				FFEEh-FFEFh
7	SPI	SPI peripheral interrupts	SPICSR		yes	FFECh-FFEDh
8	Timer A	Timer A peripheral interrupts	TASR		no	FFEAh-FFEBh
9	Timer B	Timer B peripheral interrupts	TBSR	┥	no	FFE8h-FFE9h
10	SCI	SCI peripheral interrupts	SCISR	Lower	no	FFE6h-FFE7h
11	AVD	Auxiliary voltage detector interrupt	SICSR	priority	no	FFE4h-FFE5h

Table 25. Interrupt mapping

8.4 Active Halt and Halt modes

Active Halt and Halt modes are the two lowest power consumption modes of the MCU. They are both entered by executing the 'HALT' instruction. The decision to enter either in Active Halt or Halt mode is given by the MCC/RTC interrupt enable flag (OIE bit in the MCCSR register).

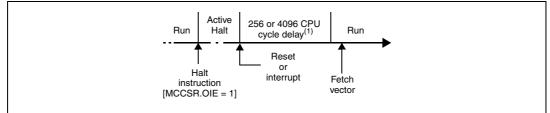
Table 26. MCC/RTC low power mode selection

MCCSR OIE bit	Power saving mode entered when HALT instruction is executed
0	Halt mode
1	Active Halt mode

8.4.1 Active Halt mode

Active Halt mode is the lowest power consumption mode of the MCU with a real-time clock available. It is entered by executing the 'HALT' instruction when the OIE bit of the Main Clock Controller Status register (MCCSR) is set (see *Section 10.2: Main clock controller with real-time clock and beeper (MCC/RTC) on page 69* for more details on the MCCSR register).

The MCU can exit Active Halt mode on reception of either an MCC/RTC interrupt, a specific interrupt (see *Table 25: Interrupt mapping*) or a reset. When exiting Active Halt mode by means of an interrupt, no 256 or 4096 CPU cycle delay occurs. The CPU resumes operation by servicing the interrupt or by fetching the reset vector which woke it up (see *Figure 25*).

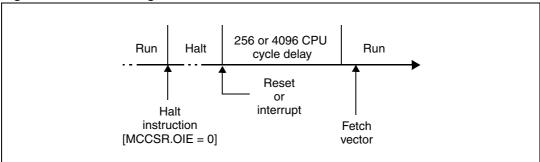

When entering Active Halt mode, the I[1:0] bits in the CC register are forced to '10b' to enable interrupts. Therefore, if an interrupt is pending, the MCU wakes up immediately.

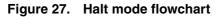
In Active Halt mode, only the main oscillator and its associated counter (MCC/RTC) are running to keep a wake-up time base. All other peripherals are not clocked except those which get their clock supply from another clock generator (such as external or auxiliary oscillator).

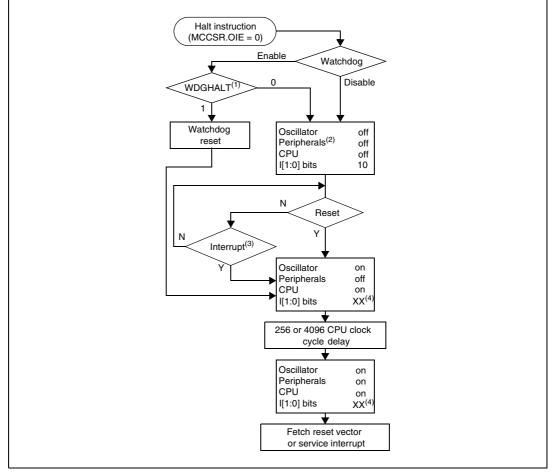
The safeguard against staying locked in Active Halt mode is provided by the oscillator interrupt.

- Note: As soon as the interrupt capability of one of the oscillators is selected (MCCSR.OIE bit set), entering Active Halt mode while the Watchdog is active does not generate a reset. This means that the device cannot spend more than a defined delay in this power saving mode.
- **Caution:** When exiting Active Halt mode following an interrupt, OIE bit of MCCSR register must not be cleared before t_{DELAY} after the interrupt occurs ($t_{DELAY} = 256$ or 4096 t_{CPU} delay depending on option byte). Otherwise, the ST7 enters Halt mode for the remaining t_{DELAY} period.

Figure 24. Active Halt timing overview




1. This delay occurs only if the MCU exits Active Halt mode by means of a reset.


Doc ID13466 Rev 4

- 1. WDGHALT is an option bit. See *Section 14.1 on page 179* for more details.
- 2. Peripheral clocked with an external clock source can still be active.
- 3. Only some specific interrupts can exit the MCU from Halt mode (such as external interrupt). Refer to *Table 25: Interrupt mapping* for more details.
- Before servicing an interrupt, the CC register is pushed on the stack. The I[1:0] bits of the CC register are set to the current software priority level of the interrupt routine and recovered when the CC register is popped.

Table 31.	I/O port interrupt co	ontrol/wake-up capability
-----------	-----------------------	---------------------------

Interrupt event	Event flag	Enable Control bit	Exit from WAIT	Exit from HALT
External interrupt on selected external event	-	DDRx, ORx	Yes	Yes

9.5.1 I/O port implementation

The I/O port register configurations are summarized Table 32.

Table 32.Port configuration

Port	Pin name	Input (D)DR = 0)	Output (DDR = 1)			
FOIL	Fininanie	OR = 0	OR = 1	OR = 0	OR = 1		
	PA7:6	Floa	ating	True open-dra	ain (high sink)		
Port A	PA5:4	Floating	Pull-up	Open drain	Push-pull		
	PA3 Floating		Floating interrupt	Open drain	Push-pull		
Port B	PB3 Floating		Floating interrupt	Open drain	Push-pull		
FULD	PB4, PB2:0	Floating	Pull-up	Open drain	Push-pull		
Port C	PC7:0	Floating	Pull-up	Open drain	Push-pull		
Port D	PD5:0	Floating	Pull-up	Open drain	Push-pull		
Port E	PE1:0	Floating	Pull-up	Open drain	Push-pull		
Port F	PF7:6, 4	Floating	Pull-up	Open drain	Push-pull		
FUILE	PF2:0	Floating	Pull-up	Open drain	Push-pull		

Table 33. I/O port register map and reset values

Address (Hex.)	Register label	7	6	5	4	3	2	1	0
Reset value of all	I/O port registers	0	0	0	0	0	0	0	0
0000h	PADR								
0001h	PADDR	MSB							LSB
0002h	PAOR								
0003h	PBDR								
0004h	PBDDR	MSB							LSB
0005h	PBOR								
0006h	PCDR								
0007h	PCDDR	MSB							LSB
0008h	PCOR								
0009h	PDDR								
000Ah	PDDDR	MSB							LSB
000Bh	PDOR								

16-bit read sequence

The 16-bit read sequence (from either the Counter register or the Alternate Counter register) is illustrated in the following *Figure 35*.

Figure 35. 16-bit read sequence

The user must first read the MSB, afterwhich the LSB value is automatically buffered.

This buffered value remains unchanged until the 16-bit read sequence is completed, even if the user reads the MSB several times.

After a complete reading sequence, if only the CLR register or ACLR register are read, they return the LSB of the count value at the time of the read.

Whatever the timer mode used (input capture, output compare, one pulse mode or PWM mode) an overflow occurs when the counter rolls over from FFFFh to 0000h then:

- The TOF bit of the SR register is set.
- A timer interrupt is generated if:
 - TOIE bit of the CR1 register is set and
 - I bit of the CC register is cleared.

If one of these conditions is false, the interrupt remains pending to be issued as soon as they are both true.

Clearing the overflow interrupt request is done in two steps:

- 1. Reading the SR register while the TOF bit is set.
- 2. An access (read or write) to the CLR register.

Note: The TOF bit is not cleared by access to the ACLR register. The advantage of accessing the ACLR register rather than the CLR register is that it allows simultaneous use of the overflow function and reading the free running counter at random times (for example, to measure elapsed time) without the risk of clearing the TOF bit erroneously.

The timer is not affected by Wait mode.

In Halt mode, the counter stops counting until the mode is exited. Counting then resumes from the previous count (MCU awakened by an interrupt) or from the reset count (MCU awakened by a reset).

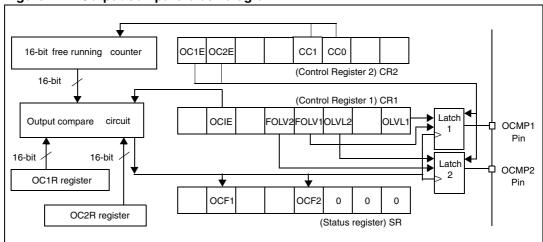
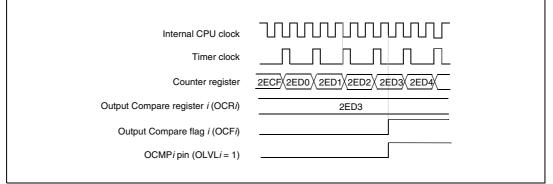
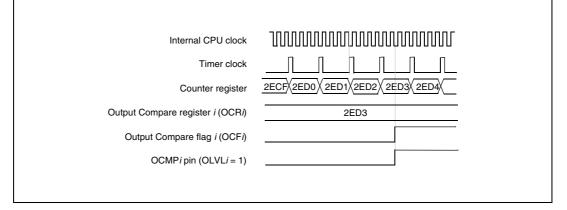
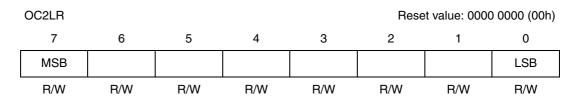
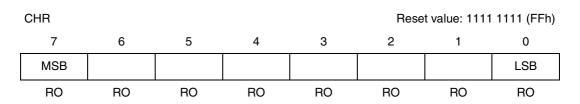
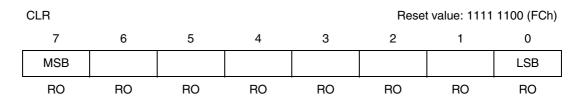




Figure 41. Output compare block diagram

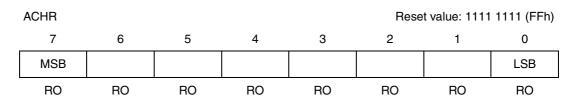



Output Compare 2 Low Register (OC2LR)

This is an 8-bit register that contains the low part of the value to be compared to the CLR register.


Counter High Register (CHR)

This is an 8-bit register that contains the high part of the counter value.


Counter Low Register (CLR)

This is an 8-bit register that contains the low part of the counter value. A write to this register resets the counter. An access to this register after accessing the CSR register clears the TOF bit.

Alternate Counter High Register (ACHR)

This is an 8-bit register that contains the high part of the counter value.

Table 57. SPICSR register description				
Bit	Name	Function		
7	SPIF	 Serial Peripheral data transfer flag This bit is set by hardware when a transfer has been completed. An interrupt is generated if SPIE = 1 in the SPICR register. It is cleared by a software sequence (an access to the SPICSR register followed by a write or a read to the SPIDR register). 0: Data transfer is in progress or the flag has been cleared 1: Data transfer between the device and an external device has been completed. <i>Note: While the SPIF bit is set, all writes to the SPIDR register are inhibited until the SPICSR register is read.</i> 		
6	WCOL	 Write Collision status This bit is set by hardware when a write to the SPIDR register is done during a transmit sequence. It is cleared by a software sequence (see <i>Figure 53</i>). 0: No write collision occurred 1: A write collision has been detected. 		
5	OVR	 SPI Overrun error This bit is set by hardware when the byte currently being received in the shift register is ready to be transferred into the SPIDR register while SPIF = 1 (see Overrun condition (OVR) on page 103). An interrupt is generated if SPIE = 1 in SPICR register. The OVR bit is cleared by software reading the SPICSR register. 0: No overrun error 1: Overrun error detected 		
4	MODF	 Mode Fault flag This bit is set by hardware when the SS pin is pulled low in master mode (see <i>Master mode fault (MODF) on page 103</i>). An SPI interrupt can be generated if SPIE = 1 in the SPICSR register. This bit is cleared by a software sequence (An access to the SPICR register while MODF = 1 followed by a write to the SPICR register). 0: No master mode fault detected 1: A fault in master mode has been detected. 		
3	-	Reserved, must be kept cleared.		
2	SOD	 SPI Output Disable This bit is set and cleared by software. When set, it disables the alternate function of the SPI output (MOSI in master mode / MISO in slave mode). 0: SPI output enabled (if SPE = 1). 1: SPI output disabled. 		
1	SSM	 SS Management This bit is set and cleared by software. When set, it disables the alternate function of the SPI SS pin and uses the SSI bit value instead. See <i>Slave Select management on page 99</i>. 0: Hardware management (SS managed by external pin). 1: Software management (internal SS signal controlled by SSI bit. External SS pin free for general-purpose I/O). 		
0	SSI	 SS Internal mode This bit is set and cleared by software. It acts as a 'chip select' by controlling the level of the SS slave select signal when the SSM bit is set. 0: Slave selected. 1: Slave deselected. 		

Table 57. SPICSR register description

Changing the conversion channel

The application can change channels during conversion. When software modifies the CH[3:0] bits in the ADCCSR register, the current conversion is stopped, the EOC bit is cleared, and the A/D converter starts converting the newly selected channel.

10.6.4 Low power modes

Note: The A/D converter may be disabled by resetting the ADON bit. This feature allows reduced power consumption when no conversion is needed.

Table 70. Effect of low power modes on ADC

Mode	Description			
Wait	No effect on A/D converter			
Halt	A/D converter disabled. After wake-up from Halt mode, the A/D converter requires a stabilization time t _{STAB} (see <i>Section 12: Electrical characteristics</i>) before accurate conversions can be performed.			

10.6.5 Interrupts

None.

10.6.6 ADC registers

ADC Control/Status Register (ADCCSR)

	ADCCSR					Rese	t value: 0000	0000 (00h)
	7	6	5	4	3	2	1	0
	EOC	SPEED	ADON	Reserved		CH	[3:0]	
-	RO	R/W	RW	-		R	W	

Table 71. ADCCSR register description

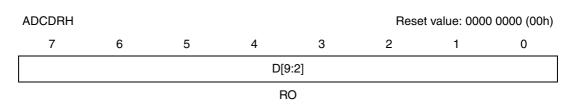

Bit	Name	Function
7	EOC	End of Conversion This bit is set by hardware. It is cleared by hardware when software reads the ADCDRH register or writes to any bit of the ADCCSR register. 0: Conversion is not complete 1: Conversion complete
6	SPEED	ADC clock selection This bit is set and cleared by software. 0: $f_{ADC} = f_{CPU}/4$ 1: $f_{ADC} = f_{CPU}/2$

Table 71. ADCUSR register description				
Bit	Name	Function		
5	ADON	A/D Converter onThis bit is set and cleared by software.0: Disable ADC and stop conversion1: Enable ADC and start conversion		
4	-	Reserved, must be kept cleared.		
3:0	CH[3:0]	Channel selection These bits are set and cleared by software. They select the analog input to convert. 0000: Channel pin = AIN0 0001: Channel pin = AIN1 0010: Channel pin = AIN2 0011: Channel pin = AIN3 0100: Channel pin = AIN4 0101: Channel pin = AIN5 0110: Channel pin = AIN6 0111: Channel pin = AIN7 1000: Channel pin = AIN7 1000: Channel pin = AIN8 1001: Channel pin = AIN9 1010: Channel pin = AIN10 1011: Channel pin = AIN12 1101: Channel pin = AIN12 1101: Channel pin = AIN13 1110: Channel pin = AIN15 Note: The number of channels is device dependent. Refer to Section 2: Pin description.		

Table 71. ADCCSR register description

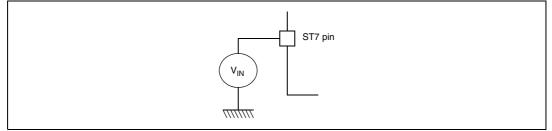
ADC Data Register High (ADCDRH)

Table 72. ADCDRH register description

Bit	Name	Function	
7:0	D[9:2]	MSB of Converted Analog Value	

able 82. Instruction set overview (continued)										
Mnemo	Description	Function/example	Dst	Src	ľ	н	10	Ν	z	C
JRUGT	Jump if $(C + Z = 0)$	Unsigned >								
JRULE	Jump if $(C + Z = 1)$	Unsigned <=								
LD	Load	dst <= src	reg, M	M, reg				Ν	Ζ	
MUL	Multiply	X,A = X * A	A, X, Y	X, Y, A		0				0
NEG	Negate (2's compl)	neg \$10	reg, M					Ν	Z	С
NOP	No Operation									
OR	OR operation	A = A + M	А	М				Ν	Z	
DOD	Dan from the Otack	pop reg	reg	М						
POP	Pop from the Stack	pop CC	СС	М	Ŀ	Н	10	Ν	Z	С
PUSH	Push onto the Stack	push Y	М	reg, CC						
RCF	Reset carry flag	C = 0								0
RIM	Enable Interrupts	11:0 = 10 (level 0)			1		0			
RLC	Rotate Left true C	C <= A <= C	reg, M					Ν	Ζ	С
RRC	Rotate Right true C	$C \Rightarrow A \Rightarrow C$	reg, M					Ν	Z	С
RSP	Reset Stack Pointer	S = Max allowed								
SBC	Subtract with Carry	A = A - M - C	А	М				Ν	Z	С
SCF	Set CARRY FLAG	C = 1								1
SIM	Disable Interrupts	11:0 = 11 (level 3)			1		1			
SLA	Shift Left Arithmetic	C <= A <= 0	reg, M					Ν	Z	С
SLL	Shift Left Logic	C <= A <= 0	reg, M					Ν	Z	С
SRL	Shift Right Logic	0 => A => C	reg, M					0	Z	С
SRA	Shift Right Arithmetic	A7 => A => C	reg, M					Ν	Z	С
SUB	Subtraction	A = A - M	А	М				Ν	Z	С
SWAP	SWAP nibbles	A7-A4 <=> A3-A0	reg, M				1	Ν	Z	1
TNZ	Test for Neg and Zero	tnz lbl1						Ν	Z	
TRAP	S/W TRAP	S/W interrupt			1		1			
WFI	WAIT for Interrupt				1		0			
XOR	Exclusive OR	A = A XOR M	A	М			1	Ν	Z	

Table 82. Instruction set overview (continued)	Table 82.	Instruction set overview (continued)
--	-----------	--------------------------------------



12.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in *Figure 61*.

Figure 61. Pin input voltage

12.2 Absolute maximum ratings

Stresses above those listed as "absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

12.2.1 Voltage characteristics

Table 83.Voltage characteristics

Symbol	Ratings	Maximum value	Unit
V _{DD} - V _{SS}	Supply voltage	6.5	
V _{PP} - V _{SS}	Programming voltage	13	
	Input voltage on true open drain pin	V _{SS} - 0.3 to 6.5	V
V _{IN} ⁽¹⁾⁽²⁾	Input voltage on any other pin	V _{SS} - 0.3 to V _{DD} + 0.3	
$ \Delta V_{DDx} $ and $ \Delta V_{SSx} $	Variations between different digital power pins	50	mV
IV _{SSA} - V _{SSx} I	Variations between digital and analog ground pins	50	IIIV
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model) see Section		3 on
V _{ESD(MM)}	Electrostatic discharge voltage (machine model)	page 160	

 Directly connecting the RESET and I/O pins to V_{DD} or V_{SS} could damage the device if an unintentional internal reset is generated or an unexpected change of the I/O configuration occurs (for example, due to a corrupted program counter). To guarantee safe operation, this connection has to be done through a pull-up or pull-down resistor (typical: 4.7kΩ for RESET, 10kΩ for I/Os). For the same reason, unused I/O pins must not be directly tied to V_{DD} or V_{SS}.

2. $I_{INJ(PIN)}$ must never be exceeded. This is implicitly ensured if V_{IN} maximum is respected. If V_{IN} maximum cannot be respected, the injection current must be limited externally to the $I_{INJ(PIN)}$ value. A positive injection is induced by $V_{IN} > V_{DD}$ while a negative injection is induced by $V_{IN} < V_{SS}$. For true open-drain pads, there is no positive injection current, and the corresponding V_{IN} maximum must always be respected.

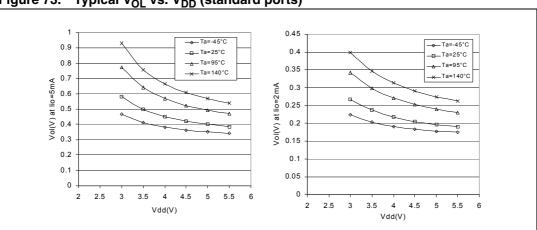


Figure 73. Typical V_{OL} vs. V_{DD} (standard ports)

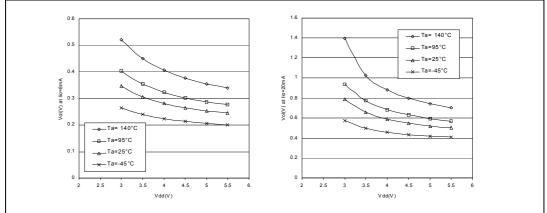
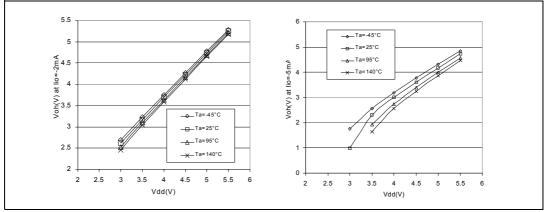



Figure 75. Typical V_{OH} vs. V_{DD}

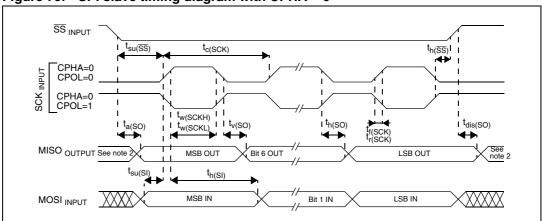


Figure 79. SPI slave timing diagram with CPHA = $0^{(1)}$

- 1. Measurement points are done at CMOS levels: 0.3xV_{DD} and 0.7xV_{DD}.
- When no communication is on-going the data output line of the SPI (MOSI in master mode, MISO in slave mode) has its alternate function capability released. In this case, the pin status depends on the I/O port configuration.

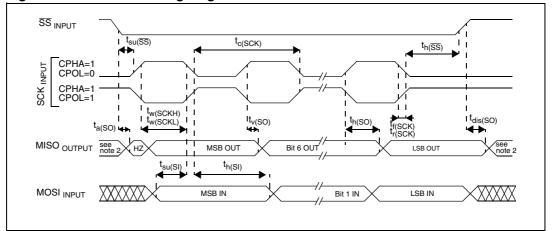


Figure 80. SPI slave timing diagram with CPHA = $1^{(1)}$

- 1. Measurement points are done at CMOS levels: $0.3xV_{DD}$ and $0.7xV_{DD}$.
- When no communication is on-going the data output line of the SPI (MOSI in master mode, MISO in slave mode) has its alternate function capability released. In this case, the pin status depends on the I/O port configuration.

Bit	Name	Function
OPT5	-	Reserved, must be kept at default value.
OPT4:3VD[1:0]with a selected threshold for the LVD and AVD. 00: Selected LVD = Highest threshold $(V_{DD} \sim 4V)$. 01: Selected LVD = Medium threshold $(V_{DD} \sim 3.5V)$. 10: Selected LVD = Lowest threshold $(V_{DD} \sim 3.5V)$. 11: LVD and AVD off Caution: If the medium or low thresholds are selected may occur outside the specified operating voltage redevice operation is not guaranteed. For details on the selected selected is not guaranteed.		These option bits enable the voltage detection block (LVD and AVD) with a selected threshold for the LVD and AVD. 00: Selected LVD = Highest threshold (V_{DD} ~4V). 01: Selected LVD = Medium threshold (V_{DD} ~3.5V). 10: Selected LVD = Lowest threshold (V_{DD} ~3V).
OPT2:1	-	Reserved, must be kept at default value
OPT0	FMP_R	 Flash memory readout protection Readout protection, when selected, provides a protection against program memory content extraction and against write access to Flash memory. Erasing the option bytes when the FMP_R option is selected causes the whole user memory to be erased first, afterwhich the device can be reprogrammed. Refer to Section 4.3.1 on page 23 and the ST7 Flash Programming Reference Manual for more details. 0: Readout protection enabled 1: Readout protection disabled

Table 117. Option byte 0 bit description (continued)

Table 118. Option byte 1 bit desc	ription
-----------------------------------	---------

Bit	Name	Function				
OPT7	PKG1	Pin package selection bit This option bit selects the package (see <i>Table 119</i>). Note: On the chip, each I/O port has eight pads. Pads that are no bonded to external pins are in input pull-up configuration after re The configuration of these pads must be kept at reset state to av added current consumption.				
OPT6	RSTC	 Reset clock cycle selection This option bit selects the number of CPU cycles applied during the reset phase and when exiting Halt mode. For resonator oscillators, it is advised to select 4096 due to the long crystal stabilization time. 0: Reset phase with 4096 CPU cycles 1: Reset phase with 256 CPU cycles 				
OPT5:4	OSCTYPE[1:0]	Oscillator type These option bits select the ST7 main clock source type. 00: Clock source = Resonator oscillator 01: Reserved 10: Clock source = Internal RC oscillator 11: Clock source = External source				

