

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Betans	
Product Status	Obsolete
Core Processor	-
Core Size	· ·
Speed	-
Connectivity	· ·
Peripherals	-
Number of I/O	-
Program Memory Size	· ·
Program Memory Type	-
EEPROM Size	-
RAM Size	· ·
Voltage - Supply (Vcc/Vdd)	-
Data Converters	· ·
Oscillator Type	-
Operating Temperature	-
Mounting Type	
Package / Case	· · · · · · · · · · · · · · · · · · ·
Supplier Device Package	· · · · · · · · · · · · · · · · · · ·
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f3640mdfb-uz

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

18.2	Cor	nversion Rate	
18.3	Ext	ended Analog Input Pins	
18.4	Cur	rrent Consumption Reducing Function	
18.5	Ext	ernal Sensor	
19. D/A		nverter	
19.1	Sur	nmary	
20. CR	CO	peration	251
21. Pro	ograr	mmable I/O Ports	253
21.1	Por	t Pi Direction Register (PDi Register, i = 0 to 10)	
21.2	Por	t Pi Register (Pi Register, i = 0 to 10)	
21.3		I-up Control Register 0 to Pull-up Control Register 2 (Registers PL	
21.4		t Control Register (PCR Register)	
22. Fla	sh M	1emory Version	
22.1		mory Map	
22.		Boot Mode	
	1.2	User Boot Function	
22.2		nctions to Prevent Flash Memory from Rewriting	
22.		ROM Code Protect Function	
	2.2	ID Code Check Function	
		Forced Frase Function	
22.	2.4	Standard Serial I/O Mode Disable Function	
22.3		U Rewrite Mode	
22.	3.1	EW0 Mode	
22.	3.2	EW1 Mode	
22.	3.3	Flash Memory Control Register (Registers FMR0, FMR1, FMR2	,
22.	3.4	Precautions on CPU Rewrite Mode	
22.	3.5	Software Commands	
22.	3.6	Data Protect Function	
22.	3.7	Status Register	
22.	3.8	Full Status Check	
22.4	Sta	ndard Serial I/O Mode	

Address

Symbol

After Reset

	- 5	- / · ·	
0060h			
0061h			
0062h			
0063h			
0064h			
0065h			
0066h			
0067h			
0068h			
0069h	DMA2 Interrupt Control Register	DM2IC	XXXXX000b
006Ah	DMA3 Interrupt Control Register	DM3IC	XXXXX000b
006Bh	UART5 BUS Collision Detection Interrupt Control Register	U5BCNIC	XXXXX000b
006Ch	UART5 Transmit Interrupt Control Register	S5TIC	XXXXX000b
006Dh	UART5 Receive Interrupt Control Register	S5RIC	XXXXX000b
006Eh	UART6 BUS Collision Detection Interrupt Control Register	U6BCNIC	XXXXX000b
006Fh	UART6 Transmit Interrupt Control Register	S6TIC	XXXXX000b
0070h	UART6 Receive Interrupt Control Register	S6RIC	XXXXX000b
0071h	UART7 BUS Collision Detection Interrupt Control Register	U7BCNIC	XXXXX000b
0072h	UART7 Transmit Interrupt Control Register	S7TIC	XXXXX000b
0073h	UART7 Receive Interrupt Control Register	S7RIC	XXXXX000b
0074h		0.1.00	7000000
0075h			
0076h			
0077h			
0078h			
0079h			-
007Ah			-
007Bh			-
007Ch			
007Dh			
007Eh			
007Eh			
007FN 0080h			
0080h			
0081h			
0082h			
0083h 0084h			
0085h			
0086h			
0087h			
0088h			
0089h			
008Ah			
008Bh			
008Ch			
008Dh			
008Eh			
008Fh			
0090h			
0091h			
0092h			
0093h			
0094h			
0095h			
0096h		T	Ì
0097h			Ì
0098h			
0099h			1
009Ah			1
009Bh			
000Ch		1	

Register

Table 4.3SFR Information (3) (1)

Note:

009Ch 009Dh 009Eh 009Fh to 015Fh

1. The blank areas are reserved and cannot be accessed by users.

X: Undefined

5.6 Internal Space

Figure 5.3 shows CPU Register Status After Reset. Refer to **4.** "**Special Function Registers (SFRs)**" for SFR states after reset.

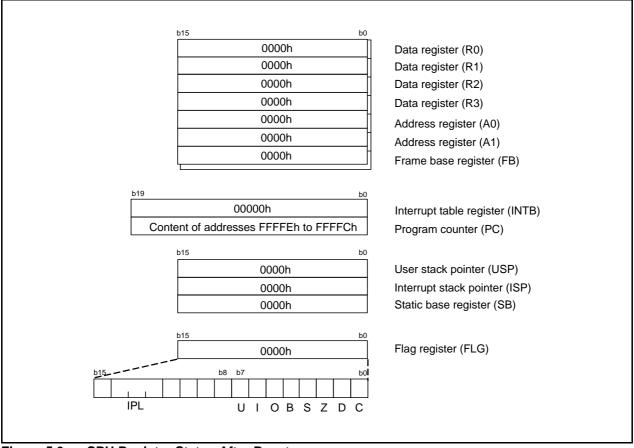
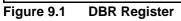
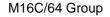
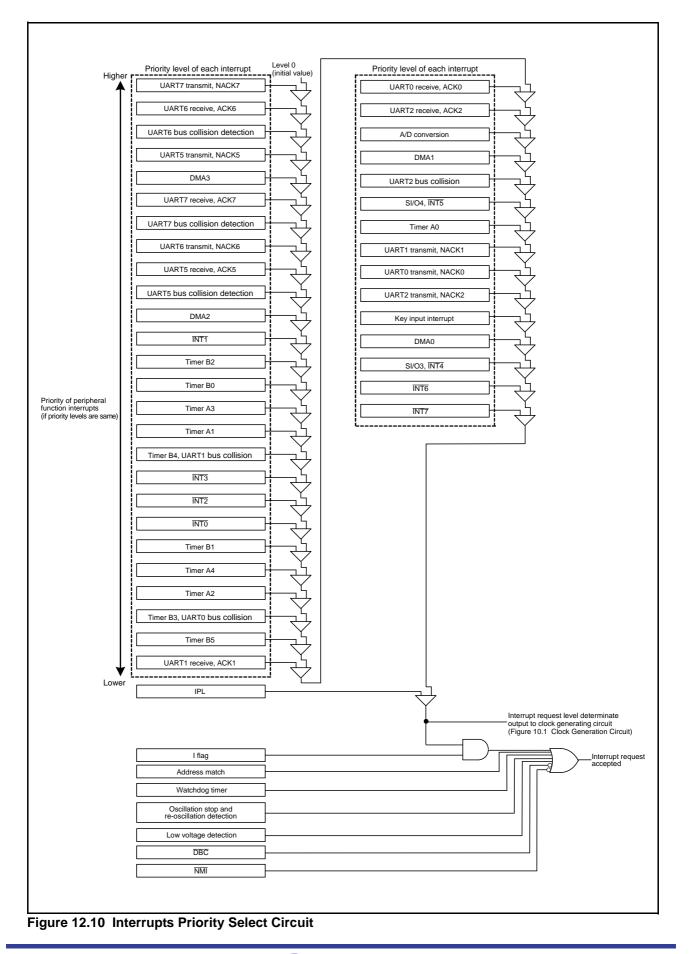
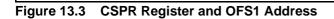
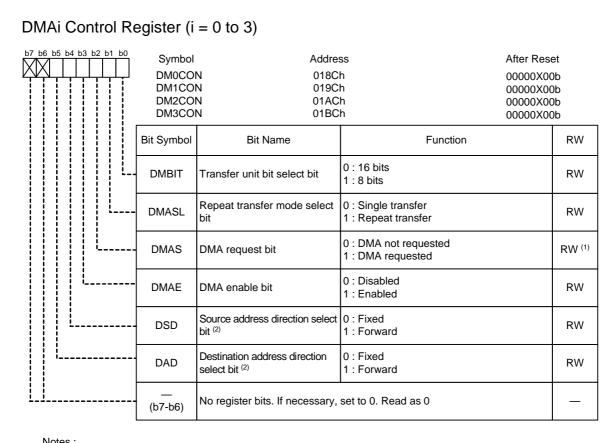





Figure 5.3 CPU Register Status After Reset

	Symbol DBR	Address 000Bh	After Reset 00h	
				_
	Bit Symbol	Bit Name	Function	RW
	(b1-b0)	No register bits. If necessary,	set to 0. Read as 0	_
	OFS	Offset bit	0 : Not offset 1 : Offset	RW
	BSR0		b5 b4 b3 b5 b4 b3	RW
	BSR1	Bank selection bits	0 0 0 : Bank 0 0 0 1 : Bank 1 0 1 0 : Bank 2 0 1 1 : Bank 3 1 0 0 : Bank 4 1 0 1 : Bank 5 1 1 0 : Bank 6 1 1 1 : Bank 7	RW
	BSR2			RW
[]	 (b7-b6)	No register bits. If necessary,	set to 0. Read as 0	




7 b6 b5 b4 b3 b2 b1 b0 0 0 0 0 0 0 0 0 0	Symbol CSPR	Address 037Ch		set ⁽¹⁾
	Bit Symbol	Bit Name	Function	RW
	 (b6-b0)	Reserved bits	Set to 0	RW
	CSPRO	Count source protection mode select bit ⁽²⁾	 0 : Count source protection mode disabled 1 : Count source protection mode enab 	RW
Optional Feature 7 b6 b5 b4 b3 b2 b1 b0	e Select	Address ^(1, 5)	ss Afte	r Reset
	OFS1	FFFF	Fh F	Fh ⁽²⁾
	Bit Symbol	Bit Name	Function	RW
	WDTON	Watchdog timer start select bit ^(3, 4)	 0 : Watchdog timer starts automatically after reset 1 : Watchdog timer is in a stopped state after reset 	RW
	 (b2-b1)	Reserved bits	Set to 1	RW
	ROMCP1	ROM code protection bit	0 : ROM code protection enabled 1 : ROM code protection disabled	RW
<u></u>	 (b6-b4)	Reserved bits	Set to 1	RW
	CSPROINI	After-reset count source protection mode select bit ⁽³⁾	0 : Count source protection mode enabled after reset1 : Count source protection mode disabled after reset	RW

4. This function is also effective in user boot mode.

5. The OFS1 address can be set in single-chip and memory expansion mode.

The OFS1 address cannot be used in micro microprocessor mode. Before using the OFS1 address, clear the internal ROM.

Notes :

1. The DMAS bit can be set to 0 by writing a 0 in a program (This bit remains unchanged even if 1 is written). 2. Set at least either the DAD bit or DSD bit to 0 (address direction fixed).

Figure 14.3 Registers DM0CON, DM1CON, DM2CON, and DM3CON

16. Three-Phase Motor Control Timer Function

Timers A1, A2, A4, and B2 can be used to output three-phase motor drive waveforms. Table 16.1 lists the Three-phase Motor Control Timer Functions Specifications. Figure 16.1 shows the Three-phase Motor Control Timer Functions Block Diagram. Also, the related registers are shown on Figures 16.2 to 16.7.

Item	Specification		
Three-Phase Waveform	Six pins (U, \overline{U} , V, \overline{V} , W, \overline{W})		
Output Pin			
Forced Cutoff Input (1)	Input "L" to the SD pin		
Used Timers	Timer A4, A1, A2 (used in one-shot timer mode)		
	Timer A4: U- and U-phase waveform control		
	Timer A1: V- and V-phase waveform control		
	Timer A2: W- and W-phase waveform control		
	Timer B2 (used in timer mode)		
	Carrier wave cycle control		
	Dead time timer (3 eight-bit timers and shared reload register)		
	Dead time control		
Output Waveform	Triangular wave modulation, sawtooth wave modulation		
	 Enable to output "H" or "L" for one cycle 		
	• Enable to set positive-phase level and negative-phase level independently		
Carrier Wave Cycle	Triangular wave modulation : count source x (m + 1) x 2		
	Sawtooth wave modulation : count source x (m + 1)		
	m: setting value of the TB2 register, 0000h to FFFFh		
	Count source: f1TIMAB, f2TIMAB, f8TIMAB, f32TIMAB, f64TIMAB, fOCO-S,		
	fC32		
Three-Phase PWM Output	Triangular wave modulation: count source x n x 2		
Width	Sawtooth wave modulation: count source x n		
	n: setting value of registers TA4, TA1, and TA2 (of registers TA4, TA41, TA1,		
	TA11, TA2, and TA21 when setting the INV11 bit to 1), 0001h to FFFh		
	Count source: f1TIMAB, f2TIMAB, f8TIMAB, f32TIMAB, f64TIMAB, fOCO-S,		
	fC32		
Dead Time	Count source x p, or no dead time		
	p: setting value of the DTT register, 01h to FFh		
	Count source: f1TIMAB, f2TIMAB, f1TIMAB divided by 2, f2TIMAB divided by 2		
Active Level	Enable to select "H" or "L"		
Positive and Negative-	Positive-and negative-phases concurrent active disable function		
Phase Concurrent Active	Positive-and negative-phases concurrent active detect function		
Disable Function			
Interrupt Frequency	Timer B2 interrupt is generated every q times		
	q: carrier wave cycle-to-cycle basis, 1 to 15		

 Table 16.1
 Three-phase Motor Control Timer Functions Specifications

Notes:

- 1. Forced cutoff with \overline{SD} input is effective when the IVPCR1 bit in the TB2SC register is set to 1 (threephase output forcible cutoff by \overline{SD} input enabled). If an "L" signal is applied to the \overline{SD} pin when the IVPCR1 bit is 1, the related pins go to a high-impedance state regardless of which functions of those pins are being used.
- 2. Related pins: P7_2/CLK2/TA1OUT/V, P7_3/CTS2/RTS2/TA1IN/V, P7_4/TA2OUT/W, P7_5/TA2IN/W, P8_0/TA4OUT/RXD5/SCL5/U, P8_1/TA4IN/CTS5/RTS5/U

17.1.2.6 $\overline{\text{CTS}}$ / $\overline{\text{RTS}}$ Function

The $\overline{\text{CTS}}$ function is used to start transmit operation when "L" is applied to the $\overline{\text{CTSi}}$ / $\overline{\text{RTSi}}$ (i = 0 to 2, 5 to 7) pin. Transmit operation begins when the $\overline{\text{CTSi}}$ / $\overline{\text{RTSi}}$ pin is held "L". If the "L" signal is switched to "H" during a transmit operation, the operation stops after the ongoing transmit / receive operation is completed.

When the RTS function is used, the CTSi / RTSi pin outputs "L" when the microcomputer is ready to receive. The output level becomes "H" when a start bit is detected.

• The CRD bit in the UiC0 register = 1 (disable $\overline{\text{CTS}} / \overline{\text{RTS}}$ function)

CTSi / RTSi pin is programmable I/O function

- The CRD bit = 0, the CRS bit = 0 ($\overline{\text{CTS}}$ function is selected)
- The CRD bit = 0, the CRS bit = 1 ($\overline{\text{RTS}}$ function is selected)

17.1.2.7 CTS / RTS Separate Function (UART0)

This function separates $\overline{\text{CTS0}}$ / $\overline{\text{RTS0}}$, outputs $\overline{\text{RTS0}}$ from the P6_0 pin, and inputs $\overline{\text{CTS0}}$ from the P6_4 pin. To use this function, set the register bits as shown below.

- The CRD bit in the U0C0 register
- The CRS bit in the U0C0 register
- The CRD bit in the U1C0 register
- = 0 (enable $\overline{\text{CTS}}$ / $\overline{\text{RTS}}$ of UART1)
- The CRS bit in the U1C0 register
- = 0 (input $\overline{\text{CTS}}$ of UART1) = 1 (inputs $\overline{\text{CTS0}}$ from the P6_4 pin)

= 1 (output $\overline{\text{RTS}}$ of UARTO)

= 0 (enable $\overline{\text{CTS}} / \overline{\text{RTS}}$ of UART0)

- The RCSP bit in the UCON registerThe CLKMD1 bit in the UCON register
- = 0 (CLKS1 not used)

Note that when using the $\overline{\text{CTS}}$ / $\overline{\text{RTS}}$ separate function, $\overline{\text{CTS}}$ / $\overline{\text{RTS}}$ of UART1 function cannot be used.

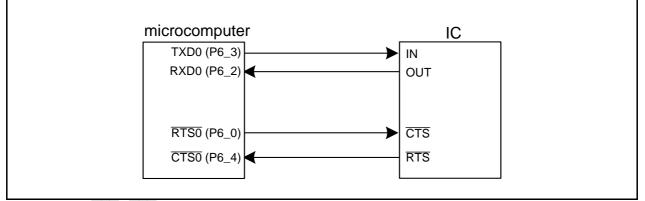


Figure 17.23 CTS / RTS Separate Function

CTSi / RTSi pin is CTS function

CTSi / RTSi pin is RTS function

18.1.2 Repeat Mode

In repeat mode, analog voltage applied to a selected pin is repeatedly converted to a digital code. Table 18.3 shows the Repeat Mode Specifications. Figure 18.5 shows the Registers ADCON0 and ADCON1 (Repeat Mode).

Table 10.5 Repeat Noue Specifications	Table 18.3	Repeat Mode	Specifications
---------------------------------------	------------	--------------------	-----------------------

Item	Specification
Function	Bits CH2 to CH0 in the ADCON0 register and bits ADGSEL1 and ADGSEL0 in the ADCON2 register, or bits ADEX1 and ADEX0 in the ADCON1 register select a pin. Analog voltage applied to this pin is repeatedly converted to a digital code.
A/D Conversion Start Condition	 When the TRG bit in the ADCON0 register is 0 (software trigger) the ADST bit in the ADCON0 register is set to 1 (A/D conversion start) When the TRG bit is 1 (ADTRG trigger) input on the ADTRG pin changes state from high to low after the ADST bit is set to 1 (A/D conversion start)
A/D Conversion Stop Condition	Set the ADST bit to 0 (A/D conversion stop)
Interrupt Request Generation timing	No interrupt requests generated
Analog Input Pin	Select one pin from AN0 to AN7, AN0_0 to AN0_7, AN2_0 to AN2_7, ANEX0, and ANEX1
Reading of Result of A/D Converter	Read one of the registers AD0 to AD7 that corresponds to the selected pin

18.2 Conversion Rate

The conversion rate is defined as follows.

Start dummy time depends on which ϕ AD is selected. Table 18.7 shows Start Dummy Time. When the ADST bit in the ADCON0 register is set to 1 (A/D conversion start), A/D conversion starts after start dummy time elapses. 0 (A/D conversion stop) is read if the ADST bit is read before A/D conversion starts. For multiple pins or A/D conversion repeat mode, for each pin, between-execution dummy time is inserted between A/D conversion execution time and the next A/D conversion execution time.

The ADST bit is set to 0 during the end dummy time, and the last A/D conversion result is set to the ADi register in one-shot mode and single sweep mode.

While in one-shot mode:

Start dummy time + A/D conversion execution time + end dummy time

When two pins are selected while in single sweep mode:

Start dummy time + (A/D conversion execution time + between-execution dummy time + A/D conversion execution time) + end dummy time

Start dummy time: See Table 18.7 "Start Dummy Time"

A/D conversion execution time: 40 ϕ AD cycles per pin Between-execution dummy time: 1 ϕ AD cycle End dummy time: 2 to 3 cycles of fAD

Table 18.7 Start Dummy Time

<pre> \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$</pre>	Start Dummy Time
fAD	1 to 2 cycles of fAD
fAD divided by 2	2 to 3 cycles of fAD
fAD divided by 3	3 to 4 cycles of fAD
fAD divided by 4	3 to 4 cycles of fAD
fAD divided by 6	4 to 5 cycles of fAD
fAD divided by 12	7 to 8 cycles of fAD

18.3 Extended Analog Input Pins

In one-shot and repeat modes, pins ANEX0 and ANEX1 can be used as analog input pins. Use bits ADEX1 and ADEX0 in the ADCON1 register to select whether or not to use ANEX0 and ANEX1. The A/D conversion results of ANEX0 and ANEX1 inputs are stored in registers AD0 and AD1, respectively.

18.4 Current Consumption Reducing Function

When not using the A/D converter, power consumption can be reduced by setting the ADSTBY bit in the ADCON1 register to 0 (A/D operation stopped: standby) to shut off any analog circuit current flow. To use the A/D converter, set the ADSTBY bit to 1 (A/D operation enabled) after operating longer than one cycle of a timer count source, and then set the ADST bit in the ADCON0 register to 1 (A/D conversion start). Do not set bits ADST and ADSTBY to 1 at the same time.

Also, do not set the ADSTBY bit to 0 (A/D operation stopped: standby) during A/D conversion.

22. Flash Memory Version

The flash memory can perform in three rewrite modes: CPU rewrite mode, standard serial I/O mode, and parallel I/O mode. Table 22.1 lists specifications of the flash memory version. See Tables 1.1 and 1.2 Specifications Overview for the items not listed in Table 22.1.

Item		Specification	
Flash Memory Rewrite Mode		3 modes (CPU rewrite, standard serial I/O, parallel I/O)	
Erase Block Program ROM 1		See Figure 22.1 "Flash Memory Block Diagram"	
Program ROM 2		1 block (16 Kbytes)	
Data Flash		2 blocks (4 Kbytes each)	
Program Method		In units of 2 words	
Erase Method		Block erase	
Program and Erase Control Method		Program and erase controlled by software command	
Protect Method		The lock bit protects each block	
Number of Commands		8 commands	
Program and Erase Endurance		100 times ⁽¹⁾	
Data Retention		10 years	
ROM Code Protection		Parallel I/O and standard serial I/O modes are supported	

Table 22.1 Flash Memory Version Specifications

Note:

1. Definition of program and erase endurance

The program and erase endurance refers to the number of per-block erasures.

For example, assume a case where a 4 Kbyte block is programmed in 1,024 operations, writing two words at a time, and erased thereafter. In this case, the block is reckoned as having been programmed and erased once. If the program and erase endurance is 100 times, each block can be erased up to 100 times.

Table 22.2 Flash Memory Rewrite Modes Overview

Flash Memory Rewrite Mode	CPU rewrite Mode ⁽¹⁾	Standard Serial I/O Mode	Parallel I/O Mode
Function	Program ROM 1, program ROM 2, and data flash are rewritten when the CPU executes software commands. EW0 mode: Rewritable in areas other than flash memory ⁽²⁾ EW1 mode: Rewritable in the flash memory	0 1 0	Program ROM 1, program ROM 2 and data flash are rewritten using a dedicated parallel programmer.
Areas Which Can Be Rewritten	Program ROM 1, program ROM 2, and data flash	Program ROM 1, program ROM 2, and data flash	Program ROM 1, program ROM 2, and data flash
Operating Mode	Single-chip mode Memory expansion mode (EW0 mode)	Boot mode	Parallel I/O mode
ROM Programmer	None	Serial programmer	Parallel programmer

Notes:

- The PM13 bit remains set to 1 while the FMR01 bit in the FMR0 register = 1 (CPU rewrite mode enabled). The PM13 bit is reverted to its original value by clearing the FMR01 bit to 0 (CPU rewrite mode disabled). However, if the PM13 bit is changed during CPU rewrite mode, its changed value is not reflected until after the FMR01 bit is cleared to 0.
- 2. In CPU rewrite mode, bits PM10 and PM13 in the PM1 register are set to 1. The rewrite control program can only be executed in the internal RAM or in an external area that is enabled for use when the PM10 bit and PM13 bit are 1. When the PM13 bit = 0 and the flash memory is used in 4-Mbyte mode, the extended accessible area (40000h to BFFFFh) cannot be used.

22.3 CPU Rewrite Mode

In CPU rewrite mode, the flash memory can be rewritten when the CPU executes software commands. Program ROM 1, program ROM 2, and the data flash can be rewritten with the microcomputer mounted on a board without using a ROM programmer.

The program and block erase commands are executed only in each block area of program ROM 1, program ROM 2, and the data flash.

Erase-write 0 (EW0) mode and erase-write 1 (EW1) mode are provided as CPU rewrite mode. Table 22.9 lists differences between erase-write 0 (EW0) and erase-write 1 (EW1) modes.

Item	EW0 Mode	EW1 Mode
Operating Mode	Single-chip modeMemory expansion mode	Single-chip mode
Rewrite Control Program Allocatable	Program ROM 1 Program ROM 2	Program ROM 1 Program ROM 2
Area	External memory area	
Rewrite Control Program Executable Area	The rewrite control program must be transferred to any area other than the flash memory (e.g., RAM) before being executed ⁽²⁾	The rewrite control program can be executed in program ROM 1 and program ROM 2.
Rewritable Area	Program ROM 1Program ROM 2Data flash	Program ROM 1, program ROM 2, and data flash, excluding blocks with the rewrite control program
Software Command Restriction	None	 Program and block erase commands cannot be executed in a block having the rewrite control program. Read status register command cannot be used.
Mode after Program or Erase	Read status register mode	Read array mode
CPU State during Auto Write and Auto Erase	Operating	Maintains hold state (I/O ports maintains the state before the command execution) (1)
Flash Memory Status Detection	 Read bits FMR00, FMR06, and FMR07 in the FMR0 register by program Execute the read status register command to read bits SR7, SR5, and SR4 in the status register. 	Read bits FMR00, FMR06, and FMR07 in the FMR0 register by program

Table 22.9 EW0 Mode and EW1 Mode

Notes:

- 1. Do not generate an interrupt (except $\overline{\text{NMI}}$ interrupt) or start a DMA transfer.
- 2. When in CPU rewrite mode, bits PM10 and PM13 in the PM1 register are set to 1. The rewrite control program can only be executed in the internal RAM or in an external area that is enabled for use when the PM10 bit and PM13 bit are 1. When the PM13 bit = 0 and the flash memory is used in 4-Mbyte mode, the extended accessible area (40000h to BFFFFh) cannot be used.

VCC1=VCC2=5V

Timing Requirements

(VCC1 = VCC2 = 5V, VSS = 0V, at Topr = -20 to 85° C/-40 to 85° C unless otherwise specified)

Table 23.13 Timer A Input (Counter Input in Event Counter Mode)

Symbol	Parameter	Stan	Unit		
Symbol	i alameter	Min.	Max.	Offic	
tc(TA)	TAilN Input Cycle Time	100		ns	
tw(TAH)	TAiIN Input HIGH Pulse Width	40		ns	
tw(TAL)	TAIIN Input LOW Pulse Width	40		ns	

Table 23.14 Timer A Input (Gating Input in Timer Mode)

Symbol	Parameter	Stan	Unit		
Symbol	i alameter	Min.	Max.	Offic	
tc(TA)	TAiIN Input Cycle Time	400		ns	
tw(TAH)	TAiIN Input HIGH Pulse Width	200		ns	
tw(TAL)	TAIIN Input LOW Pulse Width	200		ns	

Table 23.15 Timer A Input (External Trigger Input in One-shot Timer Mode)

Symbol	Parameter	Stan	Unit		
Symbol	i arameter	Min.	Max.	Offic	
tc(TA)	TAIIN Input Cycle Time	200		ns	
tw(TAH)	TAIIN Input HIGH Pulse Width	100		ns	
tw(TAL)	TAIIN Input LOW Pulse Width	100		ns	

Table 23.16 Timer A Input (External Trigger Input in Pulse Width Modulation Mode)

Symbol	Parameter	Stan	Unit		
Symbol			Max.	Offic	
tw(TAH)	TAIIN Input HIGH Pulse Width	100		ns	
tw(TAL)	TAilN Input LOW Pulse Width	100		ns	

Table 23.17 Timer A Input (Two-phase Pulse Input in Event Counter Mode)

Symbol	Parameter	Stan	Unit		
Symbol	T arameter	Min.	Max.	Offic	
tc(TA)	TAiIN Input Cycle Time	800		ns	
tsu(TAIN-TAOUT)	TAiOUT Input Setup Time	200		ns	
tsu(TAOUT-TAIN)	TAilN Input Setup Time	200		ns	

VCC1=VCC2=5V

Switching Characteristics

(VCC1 = VCC2 = 5V, VSS = 0V, at Topr = -20 to 85° C/-40 to 85° C unless otherwise specified)

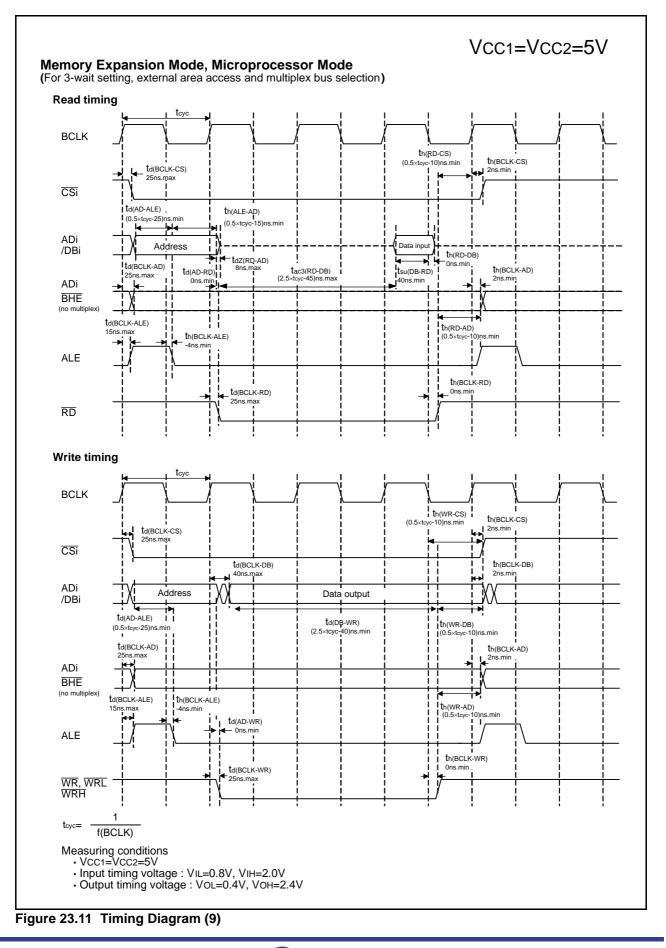
Table 23.26	Memory Expansion and Microprocessor Modes (for 1- to 3-wait setting, external area
	access and multiplex bus selection) ⁽⁵⁾

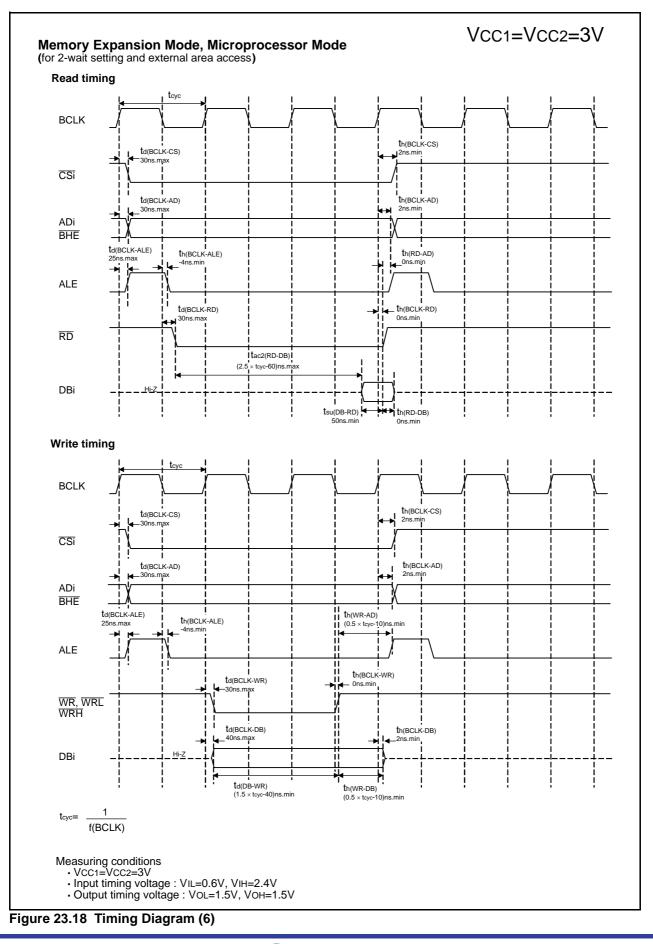
Symphol	Parameter	Measuring	Standard		Unit	
Symbol	Parameter	Condition	Min.	Max.		
td(BCLK-AD)	Address Output Delay Time			25	ns	
th(BCLK-AD)	Address Output Hold Time (in relation to BCLK)		2		ns	
th(RD-AD)	Address Output Hold Time (in relation to RD)		(NOTE 1)		ns	
th(WR-AD)	Address Output Hold Time (in relation to WR)		(NOTE 1)		ns	
td(BCLK-CS)	Chip Select Output Delay Time			25	ns	
th(BCLK-CS)	Chip Select Output Hold Time (in relation to BCLK)		2		ns	
th(RD-CS)	Chip Select Output Hold Time (in relation to RD)		(NOTE 1)		ns	
th(WR-CS)	Chip Select Output Hold Time (in relation to WR)		(NOTE 1)		ns	
td(BCLK-RD)	RD Signal Output Delay Time			25	ns	
th(BCLK-RD)	RD Signal Output Hold Time		0		ns	
td(BCLK-WR)	WR Signal Output Delay Time			25	ns	
th(BCLK-WR)	WR Signal Output Hold Time	See	0		ns	
td(BCLK-DB)	Data Output Delay Time (in relation to BCLK)	Figure 23.2		40	ns	
th(BCLK-DB)	Data Output Hold Time (in relation to BCLK)		2		ns	
td(DB-WR)	Data Output Delay Time (in relation to WR)		(NOTE 2)		ns	
th(WR-DB)	Data Output Hold Time (in relation to WR)		(NOTE 1)		ns	
td(BCLK-HLDA)	HLDA Output Delay Time			40	ns	
td(BCLK-ALE)	ALE Signal Output Delay Time (in relation to BCLK)			15	ns	
th(BCLK-ALE)	ALE Signal Output Hold Time (in relation to BCLK)		-4		ns	
td(AD-ALE)	ALE Signal Output Delay Time (in relation to Address)		(NOTE 3)		ns	
th(AD-ALE)	ALE Signal Output Hold Time (in relation to Address)		(NOTE 4)		ns	
td(AD-RD)	RD Signal Output Delay From the End of Address	1	0		ns	
td(AD-WR)	WR Signal Output Delay From the End of Address		0		ns	
tdz(RD-AD)	Address Output Floating Start Time	1		8	ns	

Notes:

1. Calculated according to the BCLK frequency as follows:

2. Calculated according to the BCLK frequency as follows:


 $\frac{(n-0.5)x10^9}{f(BCLK)} - 40[ns]$ n is "2" for 2-wait setting, "3" for 3-wait setting.


3. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f(BCLK)} - 25[ns]$$

4. Calculated according to the BCLK frequency as follows:

5. When using multiplex bus, set f(BCLK) 12.5MHz or less.

24.6 Protect

Set the PRC2 bit to 1 (write enabled) and then write to given SFR address, and the PRC2 bit will be cleared to 0 (write protected). Change the registers protected by the PRC2 bit in the next instruction after setting the PRC2 bit to 1. Make sure no interrupts or DMA transfers will occur between the instruction in which the PRC2 bit is set to 1 and the next instruction.

24.13.12 Writing

EW0 Mode

 If the power supply voltage drops while rewriting any block in which the rewrite control program is stored, the rewrite control program may not be correctly rewritten and, consequently, the flash memory becomes unable to be rewritten thereafter. In this case, use standard serial I/O or parallel I/O mode.

EW1 Mode

- Avoid rewriting any block in which the rewrite control program is stored.
- When a software command is executed for another block on the flash memory, the software command may not be executed as expected. This may occur when RAM is written by the rewriting program which is executed in EW1 mode.

Example Program (When the program command is executed)

PRG_CMD:					
MOV.W	PRG_ADDR	,	A0	;	
MOV.W	PRG_ADDR+2	,	A1	;	
STE.W	#0041h	,	[A1A0]	;	Program command
STE.W	WR_DATA0	,	[A1A0]	;	The first word data to write
ADD.W	#4	,	PRG_ADDR	;	←Write to RAM (This is acknowledged as the second data to write)
MOV.W	PRG_ADDR	,	A0	;	
STE.W	WR_DATA1	,	[A1A0]	;	The second word data to write (Depending on the value of WR_DATA1, this may be acknowledged as next software command)
	:				
	:				

JMP PRG_CMD

*PRG_ADDR; RAM address (the executing command address to be stored.)

When rewriting flash memory, execute a rewriting program on the area other than flash memory such as RAM or external area in EW0 mode. When using EW1 mode, do not write to RAM in EW1 mode.

24.13.13 DMA transfer

In EW1 mode, make sure that no DMA transfers will occur while the FMR00 bit in the FMR0 register = 0 (during the auto program or auto erase period).

Item	M16C/62P	M16C/64
A/D converter	Operation frequency: 3.3V:f AD = 10MHz(±5LSB)	Operation frequency: 3.0V:f AD =10MHz(±3LSB)
	5.0V: fAD = 12MHz(±3LSB)	3.3V:f AD = 16MHz (±3LSB)
	0.01.1712 - 12.01.12(20202)	5.0V:f AD = 25MHz(±3LSB)
	VREFCUT: Wait 1µs after connecting.	A/D Standby: Start in 1cycle after connecting.
	Selectable 10 bit or 8 bit conversion mode	Fixed 10 bit conversion mode
	Selectable with/without sample and hold function	Fixed sample and hold function
	Available external operational amplifier connection mode	No external operational amplifier connection mode
	Can be used when operating with 2.0V≤VREF≤VCC1	Be sure to use VCC1, AVCC, VREF with same power supply
	ADST bit when using external trigger: After A/ D conversion, ADST bit "1" is maintained.	ADST bit when using external trigger: After A/ D conversion, ADST bit becomes "0".
	The operation after writing "1" in ADST bit: ADST bit set to "1" shortly.	The operation after writing "1" in ADST bit: After the passage of dummy time period, ADST bit is set to "1".
Timer A, B	Operating clocks: • 1, 2, 8, or 32 in f1 clock • fc32	 Operating clocks: 1, 2, 8, 32, or 64 in f1 clock(one frequency circuit in timer A and B and Three-phase timer) fc32 On-chip oscillator (125kHz)
	Fixed PWM output level	PWM output level can be inverted
	Select up count or down count: Selectable with TAjOUT pin (j=0 to 4)	Select up count or down count: Not selectable with TAjout pin (j=0 to 4)
	Timer Bi register (i=0 to 5) in pulse measurement mode / pulse period measurement mode: disable to set the initial value	Timer Bi register (i=0 to 5) in pulse measurement mode / pulse period measurement mode: enable to set the initial value
	Timer B over-flow flag: disable to clear the flag while not counting.	Timer B overflow flag: enable to clear the flag while not counting
	Timer A2 to A4 two-phase pulse signal Processing select bit in up/down flag register is write enable only.	Timer A2 to A4 two-phase pulse signal Processing Select bit in up/down flag register is read and write enable.
Three-phase timer	Three-phase timer output cutoff: NMI pin\	Three-phase timer output cutoff: SD pin
Watchdog timer	Common to start and refresh register	Reset register and Start register are divided. Optional function select address (OFS1) enables select and protect count source.
Serial interface	UART3ch (UART 0 to 2)	UART6ch (UART 0 to 2,5 to 7)
UART	Operating clock: diveded by 1, 2, 8, or 32 in f1 clock	Operating clock: diveded by 1, 2, 8, or 32 (Each UART0 to UART2, UART5 to UART7 has one divider circuit)
SIO	Operating clock: diveded by 1, 2, 8, or 32 in f1 clock	Operating clock: diveded by 1, 2, 8, or 32 in f1 clock (one divider circuit belongs to SI/O3 and SI/ O4)
	SOUT output: high impedance	SOUT output: selectable "high impedance" and "last bit level hold" function.

Table Appendix 2.2 Difference Between M16C/64 and M16C/62P (2)