

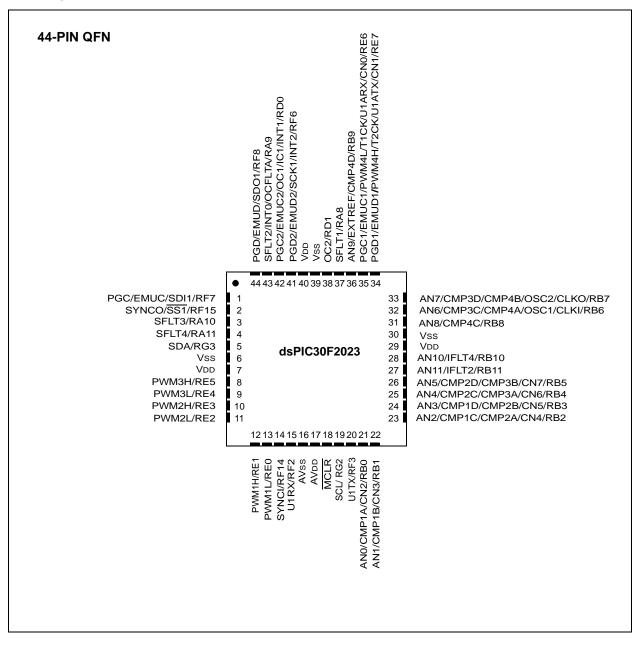
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

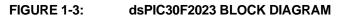
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

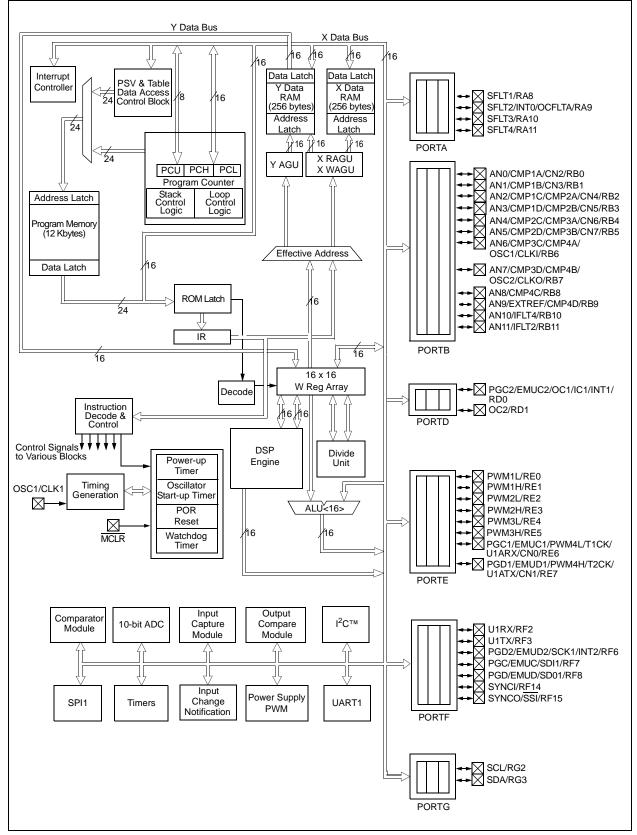
Details


E·XFI

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	20 MIPS
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	6KB (2K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 6x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic30f1010-20e-so

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


Pin Diagrams

1.0 DEVICE OVERVIEW

Note: This data sheet summarizes features of this group of dsPIC30F devices and is not intended to be a complete reference source. For more information on the CPU, peripherals, register descriptions and general device functionality, refer to the "*dsPIC30F Family Reference Manual*" (DS70046). For more information on the device instruction set and programming, refer to the "*dsPIC30F/ 33F Programmer's Reference Manual*" (DS70157). This document contains device specific information for the dsPIC30F1010/202X SMPS devices. These devices contain extensive Digital Signal Processor (DSP) functionality within a high-performance 16-bit microcontroller (MCU) architecture, as reflected in the following block diagrams. Figure 1-1 and Table 1-1 describe the dsPIC30F1010 SMPS device, Figure 1-2 and Table 1-2 describe the dsPIC30F2020 device and Figure 1-3 and Table 1-3 describe the dsPIC30F2023 SMPS device.

TABLE 1-3: PINOUT I/O DESCRIPTIONS FOR dsPIC30F2023 (CONTINUED)

Pin Name	9	Pin Type	Buffer Type	Description				
PGD		I/O	ST	In-Circuit Serial Programming™ data input/output pin.				
PGC		Ι	ST	In-Circuit Serial Programming clock input pin.				
PGD1		I/O	ST	In-Circuit Serial Programming data input/output pin 1.				
PGC1		I	ST	In-Circuit Serial Programming clock input pin 1.				
PGD2		I/O	ST	In-Circuit Serial Programming data input/output pin 2.				
PGC2		I	ST	In-Circuit Serial Programming clock input pin 2.				
RA8-RA11		I/O	ST	PORTA is a bidirectional I/O port.				
RB0-RB11		I/O	ST	PORTB is a bidirectional I/O port.				
RD0,RD1		I/O	ST	PORTD is a bidirectional I/O port.				
RE0-RE7		I/O	ST	PORTE is a bidirectional I/O port.				
RF2, RF3, RF6-RF8, RF RF15	14,	I/O	ST	PORTF is a bidirectional I/O port.				
RG2, RG3		I/O	ST	PORTG is a bidirectional I/O port.				
SCK1		I/O	ST	Synchronous serial clock input/output for SPI #1.				
SDI1		Ι	ST	SPI #1 Data In.				
SDO1		0	—	SPI #1 Data Out.				
SS1		I	ST	SPI #1 Slave Synchronization.				
SCL		I/O	ST	Synchronous serial clock input/output for I ² C.				
SDA		I/O	ST	Synchronous serial data input/output for I ² C.				
T1CK T2CK		1	ST ST	Timer1 external clock input. Timer2 external clock input.				
U1RX		I	ST	UART1 Receive.				
U1TX		ò	_	UART1 Transmit.				
U1ARX		I	ST	Alternate UART1 Receive.				
U1ATX		ò	_	Alternate UART1 Transmit				
CMP1A		I	Analog	Comparator 1 Channel A				
CMP1B		Ι	Analog	Comparator 1 Channel B				
CMP1C		Ι	Analog	Comparator 1 Channel C				
CMP1D		Ι	Analog	Comparator 1 Channel D				
CMP2A		I	Analog	Comparator 2 Channel A				
CMP2B		I	Analog	Comparator 2 Channel B				
CMP2C		I	Analog	Comparator 2 Channel C				
CMP2D		Ì	Analog	Comparator 2 Channel D				
CMP3A		i	Analog	Comparator 3 Channel A				
CMP3B			Analog	Comparator 3 Channel B				
CMP3C		I	Analog	Comparator 3 Channel C				
CMP3D		I	Analog	Comparator 3 Channel D				
CMP4A			Analog	Comparator 4 Channel A				
CMP4B		i	Analog	Comparator 4 Channel B				
CMP4C		1	Analog	Comparator 4 Channel C				
CMP4C CMP4D		I	Analog	Comparator 4 Channel D				
CN0-CN7		I	ST	Input Change notification inputs Can be software programmed for internal weak pull-ups on all inputs.				
Vdd		Р	—	Positive supply for logic and I/O pins.				
Vss		Р	_	Ground reference for logic and I/O pins.				
EXTREF		I	Analog					
Legend: C	MOS	-	-	atible input or output Analog = Analog input				
S		= 5	Schmitt Trigg	er input with CMOS levels O = Output				
I		=	nput	P = Power				

NOTES:

3.2.2 DATA SPACES

The X data space is used by all instructions and supports all Addressing modes. There are separate read and write data buses. The X read data bus is the return data path for all instructions that view data space as combined X and Y address space. It is also the X address space data path for the dual operand read instructions (MAC class). The X write data bus is the only write path to data space for all instructions.

The X data space also supports modulo addressing for all instructions, subject to Addressing mode restrictions. Bit-Reversed Addressing is only supported for writes to X data space.

The Y data space is used in concert with the X data space by the MAC class of instructions (CLR, ED, EDAC, MAC, MOVSAC, MPY, MPY.N and MSC) to provide two concurrent data read paths. No writes occur across the Y bus. This class of instructions dedicates two W register pointers, W10 and W11, to always address Y data space, independent of X data space, whereas W8 and W9 always address X data space. Note that during accumulator write back, the data address space is considered a combination of X and Y data spaces, so the write occurs across the X bus. Consequently, the write can be to any address in the entire data space.

The Y data space can only be used for the data prefetch operation associated with the MAC class of instructions. It also supports modulo addressing for automated circular buffers. Of course, all other instructions can access the Y data address space through the X data path, as part of the composite linear space.

The boundary between the X and Y data spaces is defined as shown in Figure 3-6 and is not user programmable. Should an EA point to data outside its own assigned address space, or to a location outside physical memory, an all-zero word/byte will be returned. For example, although Y address space is visible by all non-MAC instructions using any Addressing mode, an attempt by a MAC instruction to fetch data from that space, using W8 or W9 (X space pointers), will return 0x0000.

TABLE 3-2: EFFECT OF INVALID MEMORY ACCESSES

Attempted Operation	Data Returned
EA = an unimplemented address	0x0000
W8 or W9 used to access Y data space in a MAC instruction	0x0000
W10 or W11 used to access X data space in a MAC instruction	0x0000

All effective addresses are 16 bits wide and point to bytes within the data space. Therefore, the data space address range is 64 Kbytes or 32K words.

3.2.3 DATA SPACE WIDTH

The core data width is 16 bits. All internal registers are organized as 16-bit wide words. Data space memory is organized in byte addressable, 16-bit wide blocks.

3.2.4 DATA ALIGNMENT

To help maintain backward compatibility with PIC® MCU devices and improve data space memory usage efficiency, the dsPIC30F instruction set supports both word and byte operations. Data is aligned in data memory and registers as words, but all data space EAs resolve to bytes. Data byte reads will read the complete word, which contains the byte, using the LSb of any EA to determine which byte to select. The selected byte is placed onto the LSB of the X data path (no byte accesses are possible from the Y data path as the MAC class of instruction can only fetch words). That is, data memory and registers are organized as two parallel byte-wide entities with shared (word) address decode, but separate write lines. Data byte writes only write to the corresponding side of the array or register which matches the byte address.

As a consequence of this byte accessibility, all effective address calculations (including those generated by the DSP operations, which are restricted to word sized data) are internally scaled to step through word-aligned memory. For example, the core would recognize that Post-Modified Register Indirect Addressing mode, [Ws++], will result in a value of Ws + 1 for byte operations and Ws + 2 for word operations.

All word accesses must be aligned to an even address. Misaligned word data fetches are not supported, so care must be taken when mixing byte and word operations, or translating from 8-bit MCU code. Should a misaligned read or write be attempted, an address error trap will be generated. If the error occurred on a read, the instruction underway is completed, whereas if it occurred on a write, the instruction will be executed but the write will not occur. In either case, a trap will then be executed, allowing the system and/or user to examine the machine state prior to execution of the address fault.

FIGURE 3-8: DATA ALIGNMENT

,	15 MSB	8 7	LSB	0	
0001	Byte 1		Byte 0		0000
0003	Byte 3		Byte 2		0002
0005	Byte 5		Byte 4		0004

All byte loads into any W register are loaded into the LSB. The MSB is not modified.

A Sign-Extend (SE) instruction is provided to allow users to translate 8-bit signed data to 16-bit signed values. Alternatively, for 16-bit unsigned data, users can clear the MSB of any W register by executing a Zero-Extend (ZE) instruction on the appropriate address.

Although most instructions are capable of operating on word or byte data sizes, it should be noted that some instructions, including the DSP instructions, operate only on words.

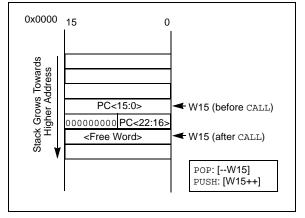
3.2.5 NEAR DATA SPACE

An 8 Kbyte 'near' data space is reserved in X address memory space between 0x0000 and 0x1FFF, which is directly addressable via a 13-bit absolute address field within all memory direct instructions. The remaining X address space and all of the Y address space is addressable indirectly. Additionally, the whole of X data space is addressable using MOV instructions, which support memory direct addressing with a 16-bit address field.

3.2.6 SOFTWARE STACK

The dsPIC DSC device contains a software stack. W15 is used as the Stack Pointer.

The Stack Pointer always points to the first available free word and grows from lower addresses towards higher addresses. It pre-decrements for stack pops and post-increments for stack pushes, as shown in Figure 3-9. Note that for a PC push during any CALL instruction, the MSB of the PC is zero-extended before the push, ensuring that the MSB is always clear.


Note: A PC push during exception processing will concatenate the SRL register to the MSB of the PC prior to the push.

There is a Stack Pointer Limit register (SPLIM) associated with the Stack Pointer. SPLIM is uninitialized at Reset. As is the case for the Stack Pointer, SPLIM<0> is forced to '0', because all stack operations must be word-aligned. Whenever an Effective Address (EA) is generated using W15 as a source or destination pointer, the address thus generated is compared with the value in SPLIM. If the contents of the Stack Pointer (W15) and the SPLIM register are equal and a push operation is performed, a stack error trap will not occur. The stack error trap will occur on a subsequent push operation. Thus, for example, if it is desirable to cause a stack error trap when the stack grows beyond address 0x2000 in RAM, initialize the SPLIM with the value, 0x1FFE.

Similarly, a Stack Pointer Underflow (stack error) trap is generated when the Stack Pointer address is found to be less than 0x0800, thus preventing the stack from interfering with the Special Function Register (SFR) space.

A write to the SPLIM register should not be immediately followed by an indirect read operation using W15.

FIGURE 3-9: CALL STACK FRAME

3.2.7 DATA RAM PROTECTION

The dsPIC30F1010/202X devices support data RAM protection features which enable segments of RAM to be protected when used in conjunction with Boot Code Segment Security. BSRAM (Secure RAM segment for BS) is accessible only from the Boot Segment Flash code when enabled. See Table 3-3 for the BSRAM SFR.

REGISTER	J-1J. IF CO.							
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0	
—		CNIP<2:0>		—	—	—	—	
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
_	—	—	—	—	—	—		
bit 7							bit 0	
Legend:								
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'		
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown		
bit 15	Unimpleme	nted: Read as '	0'					
bit 14-12	CNIP<2:0>:	Change Notifica	ation Interrupt	t Priority bits				
	111 = Interru	upt is priority 7 (highest priori	ty interrupt)				
	•							
	•							
	•							
		upt is priority 1						
		upt source is dis						
bit 11-0	Unimpleme	nted: Read as '	0'					

REGISTER 5-15: IPC6: INTERRUPT PRIORITY CONTROL REGISTER 6

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
_			_		ILR	R<3:0>	
bit 15							bit
U-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
—				VECNUM<6:0	>		
bit 7							bit
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-12	Unimpleme	ented: Read as '	0'				
bit 11-8	ILR: New C	PU Interrupt Price	ority Level bits	6			
	1111 = CP	J Interrupt Priori	ty Level is 15				
	•						
	•						
	•						
		J Interrupt Priori	•				
		U Interrupt Priori	•				
bit 7	Unimpleme	ented: Read as '	0'				
bit 6-0	VECNUM:	Vector Number o	f Pending Inte	errupt bits			
	0111111 =	Interrupt Vector	pending is nu	mber 135			
	•						
	•						
	-						
	000001 =	Interrupt Vector	pending is nu	mber 9			

REGISTER 5-20: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER

12.23.1 FAULT INTERRUPTS

The FLTIENx bits in the PWMCONx registers determine if an interrupt will be generated when the FLTx input is asserted high. The FLTMOD bits in the FCL-CONx register determines how the PWM generator and its outputs respond to the selected Fault input pin. The FLTDAT<1:0> bits in the IOCONx registers supply the data values to be assigned to the PWMxH,L pins in the advent of a Fault.

The Fault pin logic can operate separately from the PWM logic as an external interrupt pin. If the faults are disabled from affecting the PWM generators in the FCLCONx register, then the Fault pin can be used as a general purpose interrupt pin.

12.23.2 FAULT STATES

The IOCONx register has two bits that determine the state of each PWMx I/O pin when they are overridden by a Fault input. When these bits are cleared, the PWM I/O pin is driven to the inactive state. If the bit is set, the PWM I/O pin is driven to the active state. The active and inactive states are referenced to the polarity defined for each PWM I/O pin (HPOL and LPOL polarity control bits).

12.23.3 FAULT INPUT MODES

The Fault input pin has two modes of operation:

- Latched Mode: When the Fault pin is asserted, the PWM outputs go to the states defined in the FLTDAT bits in the IOCONx registers. The PWM outputs remain in this state until the Fault pin is deasserted AND the corresponding interrupt flag has been cleared in software. When both of these actions have occurred, the PWM outputs return to normal operation at the beginning of the next PWM cycle boundary. If the FLTSTAT bit is cleared before the Fault condition ends, the PWM module waits until the Fault pin is no longer asserted to restore the outputs. Software can clear the FLTSTAT bit by writing a zero to the FLTIEN bit.
- Cycle-by-Cycle Mode: When the Fault input pin is asserted, the PWM outputs remain in the deasserted PWM state for as long as the Fault pin is asserted. For Complementary Output modes, PWMH is low (deasserted) and PWML is high (asserted). After the Fault pin is driven high, the PWM outputs return to normal operation at the beginning of the following PWM cycle.

The operating mode for each Fault input pin is selected using the FLTMOD<1:0> control bits in the FCLCONx register.

12.23.4 FAULT ENTRY

The response of the PWM pins to the Fault input pins is always asynchronous with respect to the device clock signals. That is, the PWM outputs should immediately go to the states defined in the FLTDAT register bits without any interaction from the dsPIC DSC device or software.

Refer to Section 12.28 "Fault and Current-Limit Override Issues with Dead-Time Logic" for information regarding data sensitivity and behavior in response to current-limit or Fault events.

12.23.5 FAULT EXIT

The restoration of the PWM signals after a Fault condition has ended must occur at a PWM cycle boundary to ensure proper synchronization of PWM signal edges and manual signal overrides. The next PWM cycle begins when the PTMRx value is zero.

12.23.6 FAULT EXIT WITH PTMR DISABLED

There is a special case for exiting a Fault condition when the PWM time base is disabled (PTEN = 0). When a Fault input is programmed for Cycle-by-Cycle mode, the PWM outputs are immediately restored to normal operation when the Fault input pin is deasserted. The PWM outputs should return to their default programmed values. (The time base is disabled, so there is no reason to wait for the beginning of the next PWM cycle.)

When a Fault input is programmed for Latched mode, the PWM outputs are restored immediately when the Fault input pin is deasserted AND the FSTAT bit has been cleared in software.

12.23.7 FAULT PIN SOFTWARE CONTROL

The Fault pin can be controlled manually in software. Since the Fault input is shared with a PORT I/O pin, the PORT pin can be configured as an output by clearing the corresponding TRIS bit. When the PORT bit for the pin is cleared, the Fault input will be activated.

Note: The user should use caution when controlling the Fault inputs in software. If the TRIS bit for the Fault pin is cleared and the PORT bit is set high, then the Fault input cannot be driven externally.

14.5 Automatic Clock Stretch

In the Slave modes, the module can synchronize buffer reads and write to the master device by clock stretching.

14.5.1 TRANSMIT CLOCK STRETCHING

Both 10-bit and 7-bit Transmit modes implement clock stretching by asserting the SCLREL bit after the falling edge of the ninth clock if the TBF bit is cleared, indicating the buffer is empty.

In Slave Transmit modes, clock stretching is always performed, irrespective of the STREN bit.

Clock synchronization takes place following the ninth clock of the transmit sequence. If the device samples an ACK on the falling edge of the ninth clock, and if the TBF bit is still clear, then the SCLREL bit is automatically cleared. The SCLREL being cleared to '0' will assert the SCL line low. The user's ISR must set the SCLREL bit before transmission is allowed to continue. By holding the SCL line low, the user has time to service the ISR and load the contents of the I2CTRN before the master device can initiate another transmit sequence.

- Note 1: If the user loads the contents of I2CTRN, setting the TBF bit before the falling edge of the ninth clock, the SCLREL bit will not be cleared and clock stretching will not occur.
 - **2:** The SCLREL bit can be set in software, regardless of the state of the TBF bit.

14.5.2 RECEIVE CLOCK STRETCHING

The STREN bit in the I2CCON register can be used to enable clock stretching in Slave Receive mode. When the STREN bit is set, the SCL pin will be held low at the end of each data receive sequence.

14.5.3 CLOCK STRETCHING DURING 7-BIT ADDRESSING (STREN = 1)

When the STREN bit is set in Slave Receive mode, the SCL line is held low when the buffer register is full. The method for stretching the SCL output is the same for both 7 and 10-bit Addressing modes.

Clock stretching takes place following the ninth clock of the receive sequence. On the falling edge of the ninth clock at the end of the ACK sequence, if the RBF bit is set, the SCLREL bit is automatically cleared, forcing the SCL output to be held low. The user's ISR must set the SCLREL bit before reception is allowed to continue. By holding the SCL line low, the user has time to service the ISR and read the contents of the I2CRCV before the master device can initiate another receive sequence. This will prevent buffer overruns from occurring.

- Note 1: If the user reads the contents of the I2CRCV, clearing the RBF bit before the falling edge of the ninth clock, the SCLREL bit will not be cleared and clock stretching will not occur.
 - 2: The SCLREL bit can be set in software, regardless of the state of the RBF bit. The user should be careful to clear the RBF bit in the ISR before the next receive sequence in order to prevent an Overflow condition.

14.5.4 CLOCK STRETCHING DURING 10-BIT ADDRESSING (STREN = 1)

Clock stretching takes place automatically during the addressing sequence. Because this module has a register for the entire address, it is not necessary for the protocol to wait for the address to be updated.

After the address phase is complete, clock stretching will occur on each data receive or transmit sequence as was described earlier.

14.6 Software Controlled Clock Stretching (STREN = 1)

When the STREN bit is '1', the SCLREL bit may be cleared by software to allow software to control the clock stretching. The logic will synchronize writes to the SCLREL bit with the SCL clock. Clearing the SCLREL bit will not assert the SCL output until the module detects a falling edge on the SCL output and SCL is sampled low. If the SCLREL bit is cleared by the user while the SCL line has been sampled low, the SCL output will be asserted (held low). The SCL output will remain low until the SCLREL bit is set, and all other devices on the I²C bus have deasserted SCL. This ensures that a write to the SCLREL bit will not violate the minimum high time requirement for SCL.

If the STREN bit is '0', a software write to the SCLREL bit will be disregarded and have no effect on the SCLREL bit.

14.7 Interrupts

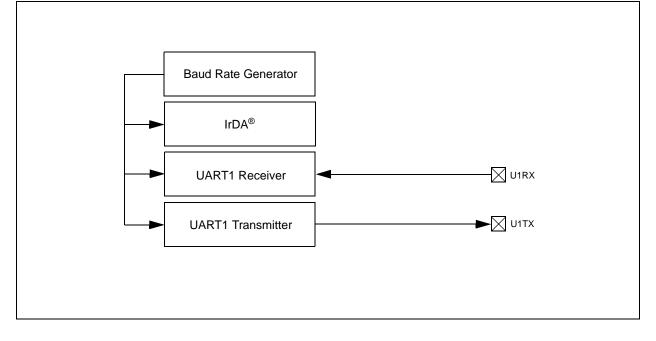
The l^2C module generates two interrupt flags, MI2CIF (l^2C Master Interrupt Flag) and SI2CIF (l^2C Slave Interrupt Flag). The MI2CIF interrupt flag is activated on completion of a master message event. The SI2CIF interrupt flag is activated on detection of a message directed to the slave.

15.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART) MODULE

Note: This data sheet summarizes features of this group of dsPIC30F devices and is not intended to be a complete reference source. For more information on the CPU, peripherals, register descriptions and general device functionality, refer to the "*dsPIC30F Family Reference Manual*" (DS70046).

The Universal Asynchronous Receiver Transmitter (UART) module is one of the serial I/O modules available in the dsPIC30F1010/202X device family. The UART is a full-duplex asynchronous system that can communicate with peripheral devices, such as personal computers, LIN, RS-232 and RS-485 interfaces. The module also includes an IrDA encoder and decoder.

The primary features of the UART module are:


- Full-Duplex 8 or 9-bit Data Transmission through the U1TX and U1RX pins
- Even, Odd or No Parity Options (for 8-bit data)
- · One or Two Stop bits
- Fully Integrated Baud Rate Generator with 16-bit Prescaler

- Baud Rates Ranging from 1 Mbps to 15 bps at 16 MIPS
- 4-Deep First-In-First-Out (FIFO) Transmit Data Buffer
- 4-Deep FIFO Receive Data Buffer
- Parity, Framing and Buffer Overrun Error Detection
- Support for 9-bit mode with Address Detect (9th bit = 1)
- Transmit and Receive Interrupts
- Loopback mode for Diagnostic Support
- Support for Sync and Break Characters
- Supports Automatic Baud Rate Detection
- IrDA Encoder and Decoder Logic
- 16x Baud Clock Output for IrDA Support

A simplified block diagram of the UART is shown in Figure 15-1. The UART module consists of these key important hardware elements:

- Baud Rate Generator
- Asynchronous Transmitter
- Asynchronous Receiver

FIGURE 15-1: UART SIMPLIFIED BLOCK DIAGRAM

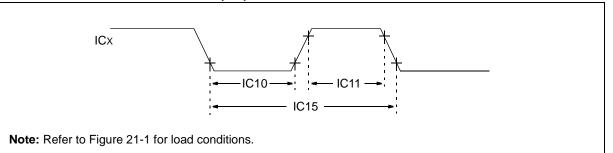

TABI	LE 19-2:	INSTR	INSTRUCTION SET OVERVIEW (CONTINUED)									
Base Instr #	Assembly Mnemonic	Assembly Syntax		Description	# of word s	# of cycles	Status Flags Affected					
11	BTSS	BTSS	f,#bit4	Bit Test f, Skip if Set	1	1 (2 or 3)	None					
		BTSS Ws, #bit4 Bit Test Ws, Skip if Set		Bit Test Ws, Skip if Set	1	1 (2 or 3)	None					
12	BTST	BTST	f,#bit4	Bit Test f	1	1	Z					
		BTST.C	Ws,#bit4	Bit Test Ws to C	1	1	С					
		BTST.Z	Ws,#bit4	Bit Test Ws to Z	1	1	Z					
		BTST.C	Ws,Wb	Bit Test Ws <wb> to C</wb>	1	1	С					
		BTST.Z	Ws,Wb	Bit Test Ws <wb> to Z</wb>	1	1	Z					
13	BTSTS	BTSTS	f,#bit4	Bit Test then Set f	1	1	Z					
		BTSTS.C	Ws,#bit4	Bit Test Ws to C, then Set	1	1	С					
		BTSTS.Z	Ws,#bit4	Bit Test Ws to Z, then Set	1	1	Z					
14	CALL	CALL	lit23	Call subroutine	2	2	None					
		CALL	Wn	Call indirect subroutine	1	2	None					
15	CLR	CLR	f	f = 0x0000	1	1	None					
		CLR	WREG	WREG = 0x0000	1	1	None					
		CLR	Ws	Ws = 0x0000	1	1	None					
		CLR	Acc,Wx,Wxd,Wy,Wyd,AWB	Clear Accumulator	1	1	OA,OB,SA,SB					
16	CLRWDT	CLRWDT		Clear Watchdog Timer	1	1	WDTO,Sleep					
17	COM	COM	f	$f = \overline{f}$	1	1	N,Z					
		COM	f,WREG	WREG = f	1	1	N,Z					
		COM	Ws,Wd	$Wd = \overline{Ws}$	1	1	N,Z					
18	CP	CP	f	Compare f with WREG	1	1	C,DC,N,OV,Z					
		CP	Wb,#lit5	Compare Wb with lit5	1	1	C,DC,N,OV,Z					
		CP	Wb,Ws	Compare Wb with Ws (Wb – Ws)	1	1	C,DC,N,OV,Z					
19	CPO	CP0	f	Compare f with 0x0000	1	1	C,DC,N,OV,Z					
		CP0	Ws	Compare Ws with 0x0000		1	C,DC,N,OV,Z					
20	CPB	CPB	f	Compare f with WREG, with Borrow	1	1	C,DC,N,OV,Z					
		CPB	Wb,#lit5	Compare Wb with lit5, with Borrow	1	1	C,DC,N,OV,Z					
		CPB	Wb,Ws	Compare Wb with Ws, with Borrow (Wb – Ws – C)	1	1	C,DC,N,OV,Z					
21	CPSEQ	CPSEQ	Wb, Wn	Compare Wb with Wn, skip if =	1	1 (2 or 3)	None					
22	CPSGT	CPSGT	Wb, Wn	Compare Wb with Wn, skip if >	1	1 (2 or 3)	None					
23	CPSLT	CPSLT	Wb, Wn	Compare Wb with Wn, skip if <	1	1 (2 or 3)	None					
24	CPSNE	CPSNE	Wb, Wn	Compare Wb with Wn, skip if \neq	1	1 (2 or 3)	None					
25	DAW	DAW	Wn	Wn = decimal adjust Wn	1	1	С					
26	DEC	DEC	f	f = f - 1	1	1	C,DC,N,OV,Z					
		DEC	f,WREG	WREG = $f - 1$	1	1	C,DC,N,OV,Z					
		DEC	Ws,Wd	Wd = Ws - 1	1	1	C,DC,N,OV,Z					
27	DEC2	DEC2	f	f = f - 2	1	1	C,DC,N,OV,Z					
		DEC2	f,WREG	WREG = f - 2	1	1	C,DC,N,OV,Z					
		DEC2	Ws,Wd	Wd = Ws - 2	1	1	C,DC,N,OV,Z					
28	DISI	DISI	#lit14	Disable Interrupts for k instruction cycles	1	1	None					
29	DIV	DIV.S	Wm,Wn	Signed 16/16-bit Integer Divide	1	18	N,Z,C, OV					
		DIV.SD	Wm,Wn	Signed 32/16-bit Integer Divide	1	18	N,Z,C, OV					
		DIV.U	Wm,Wn	Unsigned 16/16-bit Integer Divide	1	18	N,Z,C, OV					
		DIV.UD	Wm,Wn	Unsigned 32/16-bit Integer Divide	1	18	N,Z,C, OV					
30	DIVF	DIVF	Wm,Wn	Signed 16/16-bit Fractional Divide	1	18	N,Z,C, OV					
31	DO	DO	<pre>#lit14,Expr</pre>	Do code to PC + Expr, lit14 + 1 times	2	2	None					
<u> </u>		DO	Wn,Expr	Do code to PC + Expr, (Wn) + 1 times	2	2	None					
32	ED	ED	Wm * Wm,Acc,Wx,Wy,Wxd	Euclidean Distance (no accumulate)	1	1	OA,OB,OAB, SA,SB,SAB					
33	EDAC	EDAC	Wm * Wm,Acc,Wx,Wy,Wxd	Euclidean Distance	1	1	OA,OB,OAB, SA,SB,SAB					

TABLE 19-2:	INSTRUCTION SET OVERVIEW	(CONTINUED)	
			/

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of word s	# of cycles	Status Flags Affected
52	NEG	NEG	Acc	Negate Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
		NEG	f	$f = \overline{f} + 1$	1	1	C,DC,N,OV,Z
		NEG	f,WREG	WREG = \overline{f} + 1	1	1	C,DC,N,OV,Z
		NEG	Ws,Wd	$Wd = \overline{Ws} + 1$	1	1	C,DC,N,OV,Z
53	NOP	NOP		No Operation	1	1	None
		NOPR		No Operation	1	1	None
54	POP	POP	f	Pop f from Top-of-Stack (TOS)	1	1	None
		POP	Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None
		POP.D	Wnd	Pop from Top-of-Stack (TOS) to W(nd):W(nd + 1)	1	2	None
		POP.S		Pop Shadow Registers	1	1	All
55	PUSH	PUSH	f	Push f to Top-of-Stack (TOS)	1	1	None
		PUSH	Wso	Push Wso to Top-of-Stack (TOS)	1	1	None
		PUSH.D	Wns	Push W(ns):W(ns + 1) to Top-of-Stack (TOS)	1	2	None
		PUSH.S		Push Shadow Registers	1	1	None
56	PWRSAV	PWRSAV	#lit1	Go into Sleep or Idle mode	1	1	WDTO,Sleep
57	RCALL	RCALL	Expr	Relative Call	1	2	None
		RCALL	Wn	Computed Call	1	2	None
58	REPEAT	REPEAT	#lit14	Repeat Next Instruction lit14 + 1 times	1	1	None
		REPEAT	Wn	Repeat Next Instruction (Wn) + 1 times	1	1	None
59	RESET	RESET		Software device Reset	1	1	None
60	RETFIE	RETFIE		Return from interrupt	1	3 (2)	None
61	RETLW	RETLW	#lit10,Wn	Return with literal in Wn	1	3 (2)	None
62	RETURN	RETURN			1	3 (2)	None
63	RLC	RLC	f	f = Rotate Left through Carry f	1	1	C,N,Z
		RLC	f,WREG	WREG = Rotate Left through Carry f	1	1	C,N,Z
		RLC	Ws,Wd	Wd = Rotate Left through Carry Ws	1	1	C,N,Z
64	RLNC	RLNC	f	f = Rotate Left (No Carry) f	1	1	N,Z
		RLNC	f,WREG	WREG = Rotate Left (No Carry) f	1	1	N,Z
		RLNC	Ws,Wd	Wd = Rotate Left (No Carry) Ws	1	1	N,Z
65	RRC	RRC	f	f = Rotate Right through Carry f	1	1	C,N,Z
		RRC	f,WREG	WREG = Rotate Right through Carry f	1	1	C,N,Z
		RRC	Ws,Wd	Wd = Rotate Right through Carry Ws	1	1	C,N,Z
66	RRNC	RRNC	f	f = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	f,WREG	WREG = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	Ws,Wd	Wd = Rotate Right (No Carry) Ws	1	1	N,Z
67	SAC	SAC	Acc,#Slit4,Wdo	Store Accumulator	1	1	None
		SAC.R	Acc,#Slit4,Wdo	Store Rounded Accumulator	1	1	None
68	SE	SE	Ws,Wnd	Wnd = sign extended Ws	1	1	C,N,Z
69	SETM	SETM	f	f = 0xFFFF	1	1	None
		SETM	WREG	WREG = 0xFFFF	1	1	None
		SETM	Ws	Ws = 0xFFFF	1	1	None
70	SFTAC	SFTAC	Acc,Wn	Arithmetic Shift Accumulator by (Wn)	1	1	OA,OB,OAB, SA,SB,SAB
		SFTAC	Acc,#Slit6	Arithmetic Shift Accumulator by Slit6	1	1	OA,OB,OAB, SA,SB,SAB
71	SL	SL	f	f = Left Shift f	1	1	C,N,OV,Z
		SL	f,WREG	WREG = Left Shift f	1	1	C,N,OV,Z
		SL	Ws,Wd	Wd = Left Shift Ws	1	1	C,N,OV,Z
		SL	Wb,Wns,Wnd	Wnd = Left Shift Wb by Wns	1	1	N,Z
		SL	Wb,#lit5,Wnd	Wnd = Left Shift Wb by lit5	1	1	N,Z

TABLE 19-2: INSTRUCTION SET OVERVIEW (CONTINUED)

FIGURE 21-7: INPUT CAPTURE x (ICx) TIMING CHARACTERISTICS

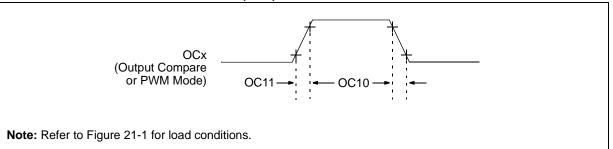
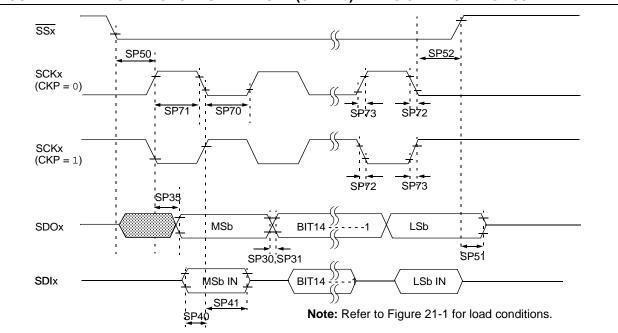


TABLE 21-23: INPUT CAPTURE x TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operati (unless otherwis Operating temper	e stated) rature -40°C ≤ T4	3V and 5.0 A ≤ +85°C fo A ≤ +125°C	or Industr	ial
Param No.	Symbol	Characte	ristic ⁽¹⁾	Min	Мах	Units	Conditions
IC10	TccL	ICx Input Low Time	No Prescaler	0.5 Tcy + 20		ns	
			With Prescaler	10	_	ns	
IC11	TccH	ICx Input High Time	No Prescaler	0.5 Tcy + 20	_	ns	
		With Prescaler	10	_	ns		
IC15	TccP	ICx Input Period	•	(2 Tcy + 40)/N	_	ns	N = Prescale value (1, 4, 16)

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 21-8: OUTPUT COMPARE x (OCx) MODULE TIMING CHARACTERISTICS


TABLE 21-24: OUTPUT COMPARE x MODULE TIMING REQUIREMENTS

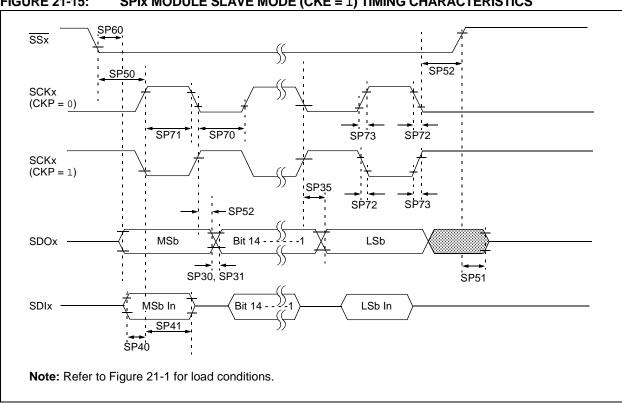
AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.3V and 5.0V (\pm 10\%) \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions		
OC10	TccF	OCx Output Fall Time	—	—	_	ns	See Parameter D032		
OC11	TccR	OCx Output Rise Time	—	_	— ns See Parameter D031				

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 5V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

^{© 2006-2014} Microchip Technology Inc.

FIGURE 21-14: SPIX MODULE SLAVE MODE (CKE = 0) TIMING CHARACTERISTICS


TABLE 21-29: SPIX MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS

АС СН	ARACTERI	STICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.3V and 5.0V (\pm 10\%)} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions	
SP70	TscL	SCKx Input Low Time	30	-	_	ns		
SP71	TscH	SCKx Input High Time	30	_		ns		
SP72	TscF	SCKx Input Fall Time ⁽³⁾		10	25	ns		
SP73	TscR	SCKx Input Rise Time ⁽³⁾		10	25	ns		
SP30	TdoF	SDOx Data Output Fall Time ⁽³⁾	—		_	ns	See Parameter D032	
SP31	TdoR	SDOx Data Output Rise Time ⁽³⁾	—	_	_	ns	See Parameter D031	
SP35	TscH2doV TscL2doV	SDOx Data Output Valid after SCKx Edge	—	_	30	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	20	_	_	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	20	_	_	ns		
SP50	TssL2scH, TssL2scL	\overline{SSx} to SCKx \uparrow or SCKx Input	120	—	—	ns		
SP51	TssH2doZ	SSx↑ to SDOx Output High-Impedance ⁽³⁾	10	—	50	ns		
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 TCY + 40	_		ns		

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 5V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

3: Assumes 50 pF load on all SPIx pins.

FIGURE 21-15: SPIx MODULE SLAVE MODE (CKE = 1) TIMING CHARACTERISTICS

TABLE 21-34:	COMPARATOR OPERATING CONDITIONS
--------------	---------------------------------

Symbol	Characteristic	Min	Тур	Max	Units	Comments		
Vdd	Voltage Range	3.0	—	3.6	V	Operating range of 3.0 V-3.6V		
Vdd	Voltage Range	4.5	—	5.5	V	Operating range of 4.5 V-5.5 V		
Темр	Temperature Range	-40	_	105	°C	Note that junction temperature can exceed +125°C under these ambient conditions		

TABLE 21-35: COMPARATOR AC AND DC SPECIFICATIONS

		Standard Operating Conditions (unless otherwise stated) Operating temperature: -40°C \leq TA \leq +105°C							
Symbol	Characteristic	Min	Typ Max Units C		Comments				
VIOFF	Input offset voltage	—	±5	±15	mV				
VICM	Input Common-Mode Voltage Range	0	—	VDD - 1.5	V				
VGAIN	Open Loop Gain	90	—	—	db				
CMRR	Common-Mode Rejection Ratio	70	—	—	db				
TRESP Large Signal Response		—	20	30	ns	V+ input step of 100 mv, while V- input held at AVDD/2. Delay measured from analog input pin to PWM output pin.			

TABLE 21-36: DAC DC SPECIFICATIONS

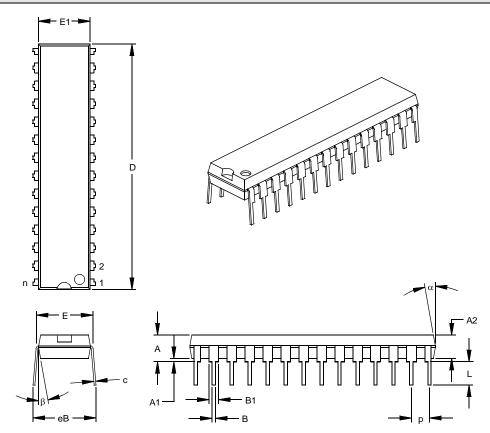

		Standard Operating Conditions (unless otherwise stated) Operating temperature: $-40^{\circ}C \le TA \le +105^{\circ}C$						
Symbol	Characteristic	Min	Тур	Max	Units	Comments		
CVRSRC	Input Reference Voltage	0		AVDD - 1.6	V			
CVRES	Resolution	—	10	—	Bits			
INL DNL	Transfer Function Accuracy Integral Nonlinearity Error Differential Nonlinearity Error Offset Error Gain Error			±1 ±0.8 ±2 ±2.0	LSB LSB LSB LSB	AVDD = 5 V, Dacref = (AVDD/2)V		

TABLE 21-37: DAC AC SPECIFICATIONS

	Standard Operating Conditions (unless otherwise stated) Operating temperature: $-40^{\circ}C \le TA \le +125^{\circ}C$							
Symbol	Characteristic	Min Typ Max Units Comments						
TSET	Settling Time			2.0	μs	Measured when range = 1 (High Range) and CMREF<9:0> transitions from 0x1FF to 0x300		

28-Lead Skinny Plastic Dual In-line (SP) – 300 mil Body (PDIP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES*		MILLIMETERS		
Dimen	MIN	NOM	MAX	MIN	NOM	MAX	
Number of Pins	n		28		28		
Pitch	р		.100			2.54	
Top to Seating Plane	А	.140	.150	.160	3.56	3.81	4.06
Molded Package Thickness	A2	.125	.130	.135	3.18	3.30	3.43
Base to Seating Plane	A1	.015			0.38		
Shoulder to Shoulder Width	E	.300	.310	.325	7.62	7.87	8.26
Molded Package Width	E1	.275	.285	.295	6.99	7.24	7.49
Overall Length	D	1.345	1.365	1.385	34.16	34.67	35.18
Tip to Seating Plane	L	.125	.130	.135	3.18	3.30	3.43
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38
Upper Lead Width	B1	.040	.053	.065	1.02	1.33	1.65
Lower Lead Width	В	.016	.019	.022	0.41	0.48	0.56
Overall Row Spacing	§ eB	.320	.350	.430	8.13	8.89	10.92
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15

* Controlling Parameter

§ Significant Characteristic

Notes:

Dimension D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MO-095

NOTES: