

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	30 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	35
Program Memory Size	12KB (4K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic30f2023-30i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 3-1: PROGRAM SPACE ADDRESS CONSTRUCTION

	Access	Program Space Address						
Access Type	Space	<23>	<22:16>	<15>	<14:1>	<0>		
Instruction Access	User	0	0 PC<22:1>		0			
TBLRD/TBLWT	User (TBLPAG<7> = 0)	TBL	.PAG<7:0>		Data EA <15:0>			
TBLRD/TBLWT	Configuration (TBLPAG<7> = 1)	TBLPAG<7:0>			Data EA <15:0>			
Program Space Visibility	User	0	PSVPAG<	:7:0>	Data EA <	14:0>		

FIGURE 3-2: DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION

5.0 INTERRUPTS

Note: This data sheet summarizes features of this group of dsPIC30F devices and is not intended to be a complete reference source. For more information on the CPU, peripherals, register descriptions and general device functionality, refer to the "*dsPIC30F Family Reference Manual*" (DS70046). For more information on the device instruction set and programming, refer to the "*dsPIC30F/ 33F Programmer's Reference Manual*" (DS70157).

The dsPIC30F1010/202X device has up to 35 interrupt sources and 4 processor exceptions (traps), which must be arbitrated based on a priority scheme.

The CPU is responsible for reading the Interrupt Vector Table (IVT) and transferring the address contained in the interrupt vector to the Program Counter (PC). The interrupt vector is transferred from the program data bus into the Program Counter, via a 24-bit wide multiplexer on the input of the Program Counter.

The Interrupt Vector Table and Alternate Interrupt Vector Table (AIVT) are placed near the beginning of program memory (0x000004). The IVT and AIVT are shown in Figure 5-1.

The interrupt controller is responsible for preprocessing the interrupts and processor exceptions, prior to their being presented to the processor core. The peripheral interrupts and traps are enabled, prioritized and controlled using centralized special function registers:

- IFS0<15:0>, IFS1<15:0>, IFS2<15:0> All interrupt request flags are maintained in these three registers. The flags are set by their respective peripherals or external signals, and they are cleared via software.
- IEC0<15:0>, IEC1<15:0>, IEC2<15:0> All interrupt enable control bits are maintained in these three registers. These control bits are used to individually enable interrupts from the peripherals or external signals.
- IPC0<15:0>... IPC11<7:0> The user-assignable priority level associated with each of these interrupts is held centrally in these twelve registers.
- IPL<3:0> The current CPU priority level is explicitly stored in the IPL bits. IPL<3> is present in the CORCON register, whereas IPL<2:0> are present in the STATUS Register (SR) in the processor core.
- INTCON1<15:0>, INTCON2<15:0> Global interrupt control functions are derived from these two registers. INTCON1 contains the control and status flags for the processor exceptions. The INTCON2 register controls the external interrupt request signal behavior and the use of the alternate vector table.

- The INTTREG register contains the associated interrupt vector number and the new CPU interrupt priority level, which are latched into vector number (VECNUM<6:0>) and Interrupt level (ILR<3:0>) bit fields in the INTTREG register. The new interrupt priority level is the priority of the pending interrupt.
 - Note: Interrupt flag bits get set when an Interrupt condition occurs, regardless of the state of its corresponding enable bit. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

All interrupt sources can be user assigned to one of 7 priority levels, 1 through 7, via the IPCx registers. Each interrupt source is associated with an interrupt vector, as shown in Figure 5-1. Levels 7 and 1 represent the highest and lowest maskable priorities, respectively.

Note: Assigning a priority level of 0 to an interrupt source is equivalent to disabling that interrupt.

If the NSTDIS bit (INTCON1<15>) is set, nesting of interrupts is prevented. Thus, if an interrupt is currently being serviced, processing of a new interrupt is prevented, even if the new interrupt is of higher priority than the one currently being serviced.

Note: The IPL bits become read-only whenever the NSTDIS bit has been set to '1'.

Certain interrupts have specialized control bits for features like edge or level triggered interrupts, interrupt-on-change, etc. Control of these features remains within the peripheral module that generates the interrupt.

The DISI instruction can be used to disable the processing of interrupts of priorities 6 and lower for a certain number of instructions, during which the DISI bit (INTCON2<14>) remains set.

When an interrupt is serviced, the PC is loaded with the address stored in the vector location in Program Memory that corresponds to the interrupt. There are 63 different vectors within the IVT (refer to Figure 5-1). These vectors are contained in locations 0x000004 through 0x0000FE of program memory (refer to Figure 5-1). These locations contain 24-bit addresses, and, in order to preserve robustness, an address error trap will take place should the PC attempt to fetch any of these words during normal execution. This prevents execution of random data as a result of accidentally decrementing a PC into vector space, accidentally mapping a data space address into vector space, or the PC rolling over to 0x000000 after reaching the end of implemented program memory space. Execution of a GOTO instruction to this vector space will also generate an address error trap.

REGISTER 5	·/: IEC1: I	INTERRUPT	ENABLE CO	JNIROL RE	GISTER 1		
R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	U-0
AC3IE	AC2IE	AC1IE	—	CNIE		—	—
bit 15							bit 8
-							
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	PWM4IE	PWM3IE	PWM2IE	PWM1IE	PSEMIE	INT2IE	INT1IE
bit 7						•	bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, read	as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15	AC3IE: Analo	g Comparator	#3 Interrupt E	nable bit			
	1 = Interrupt	request enable	d				
bit 11		request not en	abled	nahla hit			
DIL 14	1 - Interrupt	request enable	#∠ interrupt ⊏ .d	nable bit			
	0 = Interrupt	request enable	abled				
bit 13	AC1IE: Analo	g Comparator	#1 Interrupt E	nable bit			
	1 = Interrupt	request enable	d				
	0 = Interrupt	request not en	abled				
bit 12	Unimplemen	ted: Read as '	כ'				
bit 11	CNIE: Input C	Change Notifica	tion Interrupt	Enable bit			
	1 = Interrupt 0 = Interrupt	request enable request not en	d abled				
bit 10-7	Unimplemen	ted: Read as '	כ'				
bit 6	PWM4IE: Pul	se Width Modu	lation Genera	tor #4 Interrup	ot Enable bit		
	1 = Interrupt	request enable	d				
1.5.5	0 = Interrupt	request not en	abled				
DIT 5	1 - Interrupt	se width wodu	liation Genera	itor #3 interrup	t Enable bit		
	0 = Interrupt	request not en	abled				
bit 4	PWM2IE: Pul	se Width Modu	lation Genera	tor #2 Interrup	ot Enable bit		
	1 = Interrupt	request enable	d	·			
	0 = Interrupt	request not en	abled				
bit 3	PWM1IE: Pul	se Width Modu	lation Genera	tor #1 Interrup	ot Enable bit		
	1 = Interrupt 0 = Interrupt	request enable request not en	d abled				
bit 2	PSEMIE: PW	M Special Eve	nt Match Inter	rupt Enable bit	t		
	1 = Interrupt 0 = Interrupt	request enable request not en	d abled				
bit 1	INT2IE: Exter	nal Interrupt 2	Enable bit				
	1 = Interrupt	request enable	d				
	0 = Interrupt	request not en	abled				
bit 0	INT1IE: Exter	nal Interrupt 1	Enable bit				
	1 = Interrupt	request enable	d				
	0 = Interrupt	request not en	apied				

REGISTER 5	-8: IEC2:	INTERRUPT	ENABLE C	ONTROL RE	GISTER 2		
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
_		—	_	—	ADCP5IE	ADCP4IE	ADCP3IE
bit 15						·	bit 8
R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0
ADCP2IE	ADCP1IE	ADCP0IE	—	—	—	—	AC4IE
bit 7							bit 0
r							
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
			- 1				
bit 15-11	Unimplemen	ted: Read as '	 J,		1.5		
Dit 10	ADCP5IE: AL	JC Pair 5 Conv	ersion done i	nterrupt Enable	e bit		
	1 = Interrupt 0 = Interrupt	request enable	abled				
bit 9	ADCP4IE: A	DC Pair 4 Conv	ersion done l	nterrupt Enable	e bit		
	1 = Interrupt	request enable	d				
	0 = Interrupt	request not ena	abled				
bit 8	ADCP3IE: AI	DC Pair 3 Conv	ersion done l	nterrupt Enable	e bit		
	1 = Interrupt $0 = Interrupt$	request enable request not ena	d abled				
bit 7	ADCP2IE: A	DC Pair 2 Conv	ersion done l	nterrupt Enable	e bit		
	1 = Interrupt	request enable	d				
	0 = Interrupt	request not ena	abled				
bit 6	ADCP1IE: A	DC Pair 1 Conv	ersion done l	nterrupt Enable	e bit		
	1 = Interrupt	request enable	0 abled				
bit 5		C Pair 0 Conv	ersion done l	nterrupt Enable	e bit		
bit o	1 = Interrupt	request enable	d				
	0 = Interrupt	request not en	abled				
bit 4-1	Unimplemen	ted: Read as '	כי				
bit 0	AC4IE: Analo	og Comparator	#4 Interrupt E	Enable bit			
	1 = Interrupt	request enable	d				
	0 = Interrupt	request not ena	abled				

7.6.3 LOADING WRITE LATCHES

Example 7-2 shows a sequence of instructions that can be used to load the 96 bytes of write latches. 32 TBLWTL and 32 TBLWTH instructions are needed to load the write latches selected by the table pointer.

EXAMPLE 7-2: LOADING WRITE LATCHES

```
; Set up a pointer to the first program memory location to be written
; program memory selected, and writes enabled
       MOV
              #0x0000,W0
       MOV
              W0 TBLPAG
                                               ; Initialize PM Page Boundary SFR
             #0x6000,W0
       MOV
                                               ; An example program memory address
; Perform the TBLWT instructions to write the latches
; 0th_program_word
      MOV
            #LOW_WORD_0,W2
                                               ;
      MOV
             #HIGH_BYTE_0,W3
                                               ;
      TBLWTL W2 [W0]
                                               ; Write PM low word into program latch
      TBLWTH W3 [W0++]
                                               ; Write PM high byte into program latch
; lst_program_word
      MOV
            #LOW_WORD_1,W2
                                               ;
       MOV
              #HIGH_BYTE_1,W3
                                               ;
       TBLWTL W2 [W0]
                                               ; Write PM low word into program latch
      TBLWTH W3 [W0++]
                                               ; Write PM high byte into program latch
 2nd_program_word
      MOV #LOW_WORD_2,W2
                                               ;
      MOV
            #HIGH_BYTE_2,W3
                                               ;
       TBLWTL W2, [W0]
                                               ; Write PM low word into program latch
       TBLWTH W3 [W0++]
                                               ; Write PM high byte into program latch
; 31st_program_word
      MOV
            #LOW WORD 31,W2
                                               ;
             #HIGH_BYTE_31,W3
       MOV
                                               ;
       TBLWTL W2 [W0]
                                               ; Write PM low word into program latch
       TBLWTH W3 [W0++]
                                               ; Write PM high byte into program latch
```

Note: In Example 7-2, the contents of the upper byte of W3 have no effect.

7.6.4 INITIATING THE PROGRAMMING SEQUENCE

For protection, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPS.

EXAMPLE 7-3: INITIATING A PROGRAMMING SEQUENCE

DISI	#5	; ;	Block all interrupts with priority <7 for next 5 instructions
MOV	#0x55,W0		
MOV	WONVMKEY	;	Write the 0x55 key
MOV	#0xAA,W1	;	
MOV	W1 NVMKEY	;	Write the OxAA key
BSET	NVMCON, #WR	;	Start the erase sequence
NOP		;	Insert two NOPs after the erase
NOP		;	command is asserted

REGISTER 12-9: ALTDTRx: PWM ALTERNATE DEAD-TIME REGISTER

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			ALTDTI	Rx<13:8>		
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
		ALTDTF	२ <7:2>				—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-2	ALTDTRx<13:2>: Unsigned 12-bit Dead-Time Value bits for PWMx Dead-Time Unit
bit 1-0	Unimplemented: Read as '0'

REGISTER 12-10: TRGCONx: PWM TRIGGER CONTROL REGISTER

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
	TRGDIV<2:0>		—	—	—	—	—
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			TRGST	RT<5:0>		
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-13	TRGDIV<2:0>: Trigger Output Divider bits
	000 = Trigger output for every trigger event
	001 = Trigger output for every 2nd trigger event
	010 = Trigger output for every 3rd trigger event
	011 = Trigger output for every 4th trigger event
	100 = Trigger output for every 5th trigger event
	101 = Trigger output for every 6th trigger event
	110 = Trigger output for every 7th trigger event
	111 = Trigger output for every 8th trigger event
bit 12-6	Unimplemented: Read as '0'
bit 5-0	TRGSTRT<5:0>: Trigger Postscaler Start Enable Select bits
	This value specifies the ROLL counter value needed for a match that will then enable the trigger postscaler logic to begin counting trigger events.

12.34.3 APPLICATION OF PUSH-PULL PWM MODE

Push-Pull PWM mode is typically used in transformer coupled circuits to ensure that no net DC currents flow through the transformer. Push-Pull mode ensures that the same duty cycle PWM pulse is applied to the transformer windings in alternate directions, as shown in Figure 12-24.

FIGURE 12-24: APPLICATIONS OF PUSH-PULL PWM MODE

12.34.4 APPLICATION OF MULTI-PHASE PWM MODE

Multi-Phase PWM mode is often used in DC/DC converters that must handle very fast load current transients and fit into tight spaces. A multi-phase converter is essentially a parallel array of buck converters that are operated slightly out of phase of each other, as shown in Figure 12-25. The multiple phases create an effective switching speed equal to the sum of the individual converters. If a single phase is operating with a 333 KHz PWM frequency, then the effective switching frequency for the circuit is 1 MHz. This high switching frequency greatly reduces output capacitor size requirements and improves load transient response.

TABLE 15-1: UART1 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U1MODE	0220	UARTEN	—	USIDL	IREN	—	ALTIO	—	—	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSE	L<1:0>	STSEL	0000
U1STA	0222	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXIS	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U1TXREG	0224	_	_	-	_	_	_	_	UART Transmit Register								xxxx	
U1RXREG	0226	_	_	-	_	_	_	_	UART Receive Register 0								0000	
U1BRG	0228	Baud Rate Generator Prescaler											0000					

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

REGISTER 16-3: A/D BASE REGISTER (ADBASE)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			ADBAS	SE<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
			ADBASE<7:1:	>			—
bit 7							bit C
Logond:							
R = Readable	bit	W = Writable	hit	II = Unimpler	mented hit read	l as '0'	
-n – Value at F		'1' - Bit is set		0' – Bit is cle	ared	x – Bit is unkr	
					alca		IOWIT
bit 0 Note: As	Note: T Unimplemen an alternative t	he encoding re ted: Read as '	sults are shift o' PBASE Regist	ed left two bits er, the ADCP0-	so bits 1-0 of th	e result are alv	vays zero.
pair	rs. Refer to Sec	ction 16.9 "Ind	lividual Pair I	nterrupts".			
REGISTER 1	6-4: A/D P			REGISTER (A	DPCFG)		
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
	_	_	_	PCFG11	PCFG10	PCFG9	PCFG8
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PCFG7	PCFG6	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0
bit 7							bit 0
Leaend:							

J			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-12 Unimplemented: Read as '0'

bit 11-0 **PCFG<11:0>:** A/D Port Configuration Control bits

1 = Port pin in Digital mode, port read input enabled, A/D input multiplexor connected to AVss

0 = Port pin in Analog mode, port read input disabled, A/D samples pin voltage

16.17 A/D Sample and Convert Timing

The sample and hold circuits assigned to the input pins have their own timing logic that is triggered when an external sample and convert request (from PWM or TMR) is made. The sample and hold circuits have a fixed two clock data sample period. When the sample has been acquired, then the ADC control logic is notified of a pending request, then the conversion is performed as the conversion resources become available.

The ADC module always converts pairs of analog input channels, so a typical conversion process requires 24 clock cycles.

FIGURE 16-3: DETAILED CONVERSION SEQUENCE TIMINGS, SEQSAMP = 0, NOT BUSY

17.0 SMPS COMPARATOR MODULE

Note: This data sheet summarizes features of this group of dsPIC30F devices and is not intended to be a complete reference source. For more information on the CPU, peripherals, register descriptions and general device functionality, refer to the "*dsPIC30F Family Reference Manual*" (DS70046).

The dsPIC30F SMPS Comparator module monitors current and/or voltage transients that may be too fast for the CPU and ADC to capture.

17.1 Features Overview

- 16 comparator inputs
- 10-bit DAC provides reference

- · Programmable output polarity
- Interrupt generation capability
- Selectable Input sources
- DAC has three ranges of operation:
 AVDD/2
 - Internal Reference 1.2V 1%
 - External Reference < (AVDD 1.6V)
- ADC sample and convert trigger capability
- Can be disabled to reduce power consumption
- Functional support for PWM Module:
 - PWM Duty Cycle Control
 - PWM Period Control
 - PWM Fault Detect

17.2 Module Applications

This module provides a means for the SMPS dsPIC DSC devices to monitor voltage and currents in a power conversion application. The ability to detect transient conditions and stimulate the dsPIC DSC processor and/or peripherals without requiring the processor and ADC to constantly monitor voltages or currents frees the dsPIC DSC to perform other tasks.

The Comparator module has a high-speed comparator and an associated 10-bit DAC that provides a programmable reference voltage to one input of the comparator. The polarity of the comparator output is user programmable. The output of the module can be used in the following modes:

- · Generate an interrupt
- · Trigger an ADC sample and convert process
- Truncate the PWM signal (current limit)
- Truncate the PWM period (current minimum)

• Disable the PWM outputs (Fault-latch)

The output of the Comparator module may be used in multiple modes at the same time, such as: (1) generate an interrupt, (2) have the ADC take a sample and convert it and (3) truncate the PWM output in response to a voltage being detected beyond its expected value.

The Comparator module can also be used to wake-up the system from Sleep or Idle mode when the analog input voltage exceeds the programmed threshold voltage.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—			—
bit 23							bit 16
U-0	U-0	U-0	U-0	U-0	U-0 U-0		U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	R/P	R/P
_	_	_	_	_	_	FNOSC1	FNOSC0
bit 7							bit 0

Legend:							
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 23-2 Unimplemented: Read as '0'

bit 1-0 FNOSC<1:0>: Initial Oscillator Group Selection on POR bits

00 = Fast RC Oscillator (FRC)

01 = Fast RC Oscillator (FRC) divided by N, with PLL module

10 = Primary Oscillator (HS,EC)

11 = Primary Oscillator (HS,EC) with PLL module

REGISTER 18-6: FOSC: OSCILLATOR SELECTION CONFIGURATION BITS

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
_		_	_	_		_	_			
bit 23							bit 16			
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
	_	_	_	_	_	_	_			
bit 15							bit 8			
R/P	R/P	R/P	U-0	U-0	R/P	R/P	R/P			
FCKS	vl<1:0>	FRANGE	—	—	OSCIOFNC	POSCM	1D<1:0>			
bit 7			·		·		bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'				
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown			
bit 23-8	Unimplemen	ted: Read as '	0'							
bit 7-6	FCKSM<1:0>	: Clock Switch	ing and Monito	r Selection Co	onfiguration bits					
	1x = Clock sw	vitching is disa	bled, fail-safe c	lock monitor i	s disabled					
	01 = Clock sw 00 = Clock sw	vitching is enat	oled, fail-safe c	lock monitor is	s disabled s enabled					
bit 5	FRANGE: Fre	equency Range	e Select for FR	C and PLL bit						
	Acts like a "G	ear Shift" featu	ire that enables	the dsPIC D	SC device to op	erate at reduce	ed MIPS at a			
	reduced supp	ly voltage (3.3)	V)	1		1				
	FRANGE		Temperature	FRC Fr	requency	PLL	vco			
	Bit Value		Rating	(NO	minal)					
	$\perp = High Rang$	ge	Extended	14.5	5 MHZ ' MHz	466 MHZ (480 310 MHz (320) MHz max.)) MHz max)			
	0 = Low Ranc	1e	Industrial	9.7	' MHz	310 MHz (320) MHz max.)			
)-	Extended	6.4	MHz	205 MHz (211	MHz max.)			
bit 4-3	Unimplemen	ted: Read as '	0'							
bit 3	OSCIOFNC:	OSC2 Pin I/O I	Enable bit							
	1 = CLKO output signal active on the OSCO pin									
	0 = CLKO out	put disabled								
bit 1-0	POSCMD<1:	0>: Primary Os	scillator Mode							
	11 = Primary	Oscillator Disa	ibled							
	01 = Reserve	d	ecieu							
	00 = External	clock mode se	elected							

18.4 PRIMARY OSCILLATOR ON OSC1/ OSC2 PINS:

The primary oscillator uses is shown in Figure 18-3.

FIGURE 18-3: PRIMARY OSCILLATOR

18.5 EXTERNAL CLOCK INPUT

Two of the primary Oscillator modes use an external clock. These modes are EC and EC with IO.

In the EC mode (Figure 18-4), the OSC1 pin can be driven by CMOS drivers. In this mode, the OSC1 pin is high-impedance and the OSC2 pin is the clock output (Fosc/2). This output clock is useful for testing or synchronization purposes.

In the EC with IO mode (Figure 18-5), the OSC1 pin can be driven by CMOS drivers. In this mode, the OSC1 pin is high-impedance and the OSC2 pin becomes a general purpose I/O pin. The feedback device between OSC1 and OSC2 is turned off to save current.

FIGURE 18-4: EXTERNAL CLOCK INPUT OPERATION (EC OSCILLATOR CONFIGURATION)

FIGURE 18-5: EXTERNAL CLOCK INPUT OPERATION (ECIO OSCILLATOR CONFIGURATION)

TABLE 18-8: SYSTEM INTEGRATION REGISTER MAP FOR dsPIC30F202X

SFR Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State
RCON	0740	TRAPR	IOPUWR	_	_	_	_	_	_	EXTR	SWR	SWDTEN	WDTO	SLEEP	IDLE		POR	Depends on type of Reset.
OSCCON	0742	_	co	DSC<2:0>	>	_		NOSC<2:0>	>	CLKLOCK		LOCK	PRCDEN	CF	TSEQEN	_	OSWEN	Depends on Configuration bits.
OSCTUN	0748		TSEQ3<3:0>				TSEQ2<3:0>				TSEC	Q1<3:0>		TUN<3:0>				0000 0000 0000 0000
OSCTUN2	074A		TSEQ7	<3:0>			TSEQ6<	:3:0>			TSEC	Q5<3:0>			TSEQ4	4<3:0>		0000 0000 0000 0000
LFSR	074C						Lr			LFSR<14:0>								0000 0000 0000 0000
PMD1	0770		_	T3MD	T2MD	T1MD	١	PWMMD		I2CMD		U1MD	_	SPI1MD		_	ADCMD	0000 0000 0000 0000
PMD2	0772	_	_	_	_	-			IC1MD	_	I		_	_	_	OC2MD	OC1MD	0000 0000 0000 0000
PMD3	0774	_	_	_	-	CMP_PSMD		-	_	—	-	-	—	_	_	-	_	0000 0000 0000 0000

Note: Refer to the "dsPIC30F Family Reference Manual" (DS70046) for descriptions of register bit fields.

TABLE 18-9: DEVICE CONFIGURATION REGISTER MAP

File Name	Addr.	Bits 23-16	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
FBS	F80000	—		_	_	_	_		_	_	_	_	—	_		BSS<2:0>		BWRP
FGS	F80004	_			_	_	_		_	_	_	_	_	_	_	GSS1	GSS0	GWRP
FOSCSEL	F80006	_			_	_	_		_	_	_	_	_	_	_	_	FNOS	SC<1:0>
FOSC	F80008	_		_	—	_	_		_	_	FCKS	SM<1:0>	FRANGE	_	_	OSCIOFNC	POSC	MD<1:0>
FWDT	F8000A	_		_	—	_	_		_	-	FWDTEN	WWDTEN	_	WDTPRE		WDTPOST	<3:0>	
FPOR	F8000C	_	_	_	_	_	_	_	_	_	_	_	_	_	_	FPV	VRT<2:0	>

Note: Refer to the "dsPIC30F Family Reference Manual" (DS70046) for descriptions of register bit fields.

TABLE 19-2: INSTRUCTION SET OVERVIEW

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of word s	# of cycles	Status Flags Affected
1	ADD	ADD	Acc	Add Accumulators	1	1	OA,OB,SA,SB
		ADD	f	f = f + WREG	1	1	C,DC,N,OV,Z
		ADD	f,WREG	WREG = f + WREG	1	1	C,DC,N,OV,Z
		ADD	#lit10,Wn	Wd = lit10 + Wd	1	1	C,DC,N,OV,Z
		ADD	Wb,Ws,Wd	Wd = Wb + Ws	1	1	C,DC,N,OV,Z
		ADD	Wb,#lit5,Wd	Wd = Wb + lit5	1	1	C,DC,N,OV,Z
		ADD	Wso,#Slit4,Acc	16-bit Signed Add to Accumulator	1	1	OA,OB,SA,SB
2	ADDC	ADDC	f	f = f + WREG + (C)	1	1	C,DC,N,OV,Z
		ADDC	f,WREG	WREG = f + WREG + (C)	1	1	C,DC,N,OV,Z
		ADDC	#lit10,Wn	Wd = lit10 + Wd + (C)	1	1	C,DC,N,OV,Z
		ADDC	Wb,Ws,Wd	Wd = Wb + Ws + (C)	1	1	C,DC,N,OV,Z
		ADDC	Wb,#lit5,Wd	Wd = Wb + lit5 + (C)	1	1	C,DC,N,OV,Z
3	AND	AND	f	f = f .AND. WREG	1	1	N,Z
		AND	f,WREG	WREG = f .AND. WREG	1	1	N,Z
		AND	#lit10,Wn	Wd = lit10 .AND. Wd	1	1	N,Z
		AND	Wb,Ws,Wd	Wd = Wb .AND. Ws	1	1	N,Z
		AND	Wb,#lit5,Wd	Wd = Wb .AND. lit5	1	1	N,Z
4	ASR	ASR	f	f = Arithmetic Right Shift f	1	1	C,N,OV,Z
		ASR	f,WREG	WREG = Arithmetic Right Shift f	1	1	C,N,OV,Z
		ASR	Ws,Wd	Wd = Arithmetic Right Shift Ws	1	1	C,N,OV,Z
		ASR	Wb,Wns,Wnd	Wnd = Arithmetic Right Shift Wb by Wns	1	1	N,Z
		ASR	Wb,#lit5,Wnd	Wnd = Arithmetic Right Shift Wb by lit5	1	1	N,Z
5	BCLR	BCLR	f,#bit4	Bit Clear f	1	1	None
		BCLR	Ws,#bit4	Bit Clear Ws	1	1	None
6	BRA	BRA	C,Expr	Branch if Carry	1	1 (2)	None
		BRA	GE,Expr	Branch if greater than or equal	1	1 (2)	None
		BRA	GEU,Expr	Branch if unsigned greater than or equal	1	1 (2)	None
		BRA	GT,Expr	Branch if greater than	1	1 (2)	None
		BRA	GTU,Expr	Branch if unsigned greater than	1	1 (2)	None
		BRA	LE,Expr	Branch if less than or equal	1	1 (2)	None
		BRA	LEU,Expr	Branch if unsigned less than or equal	1	1 (2)	None
		BRA	LT,Expr	Branch if less than	1	1 (2)	None
		BRA	LTU,Expr	Branch if unsigned less than	1	1 (2)	None
		BRA	N,Expr	Branch if Negative	1	1 (2)	None
		BRA	NC,Expr	Branch if Not Carry	1	1 (2)	None
		BRA	NN,Expr	Branch if Not Negative	1	1 (2)	None
		BRA	NOV,Expr	Branch if Not Overflow	1	1 (2)	None
		BRA	NZ,Expr	Branch if Not Zero	1	1 (2)	None
		BRA	OA,Expr	Branch if accumulator A overflow	1	1 (2)	None
		BRA	OB,Expr	Branch if accumulator B overflow	1	1 (2)	None
		BRA	OV,Expr	Branch if Overflow	1	1 (2)	None
		BRA	SA,Expr	Branch if accumulator A saturated	1	1 (2)	None
		BRA	SB,Expr	Branch if accumulator B saturated	1	1 (2)	None
		BRA	Expr	Branch Unconditionally	1	2	None
		BRA	Z,Expr	Branch if Zero	1	1 (2)	None
		BRA	Wn	Computed Branch	1	2	None
7	BSET	BSET	f,#bit4	Bit Set f	1	1	None
		BSET	Ws,#bit4	Bit Set Ws	1	1	None
8	BSW	BSW.C	Ws,Wb	Write C bit to Ws <wb></wb>	1	1	None
		BSW.Z	Ws,Wb	Write Z bit to Ws <wb></wb>	1	1	None
9	BTG	BTG	f,#bit4	Bit Toggle f	1	1	None
		BTG	Ws,#bit4	Bit Toggle Ws	1	1	None
10	BTSC	BTSC	f,#bit4	Bit Test f, Skip if Clear	1	1 (2 or 3)	None
		BTSC	Ws,#bit4	Bit Test Ws, Skip if Clear	1	1 (2 or 3)	None

IADI	LE 19-2.	INSIK	UCTION SET OVERVIE				
Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of word s	# of cycles	Status Flags Affected
11	BTSS	BTSS	f,#bit4	Bit Test f, Skip if Set	1	1 (2 or 3)	None
		BTSS	Ws,#bit4	Bit Test Ws, Skip if Set	1	1 (2 or 3)	None
12	BTST	BTST	f.#bit4	Bit Test f	1	1	Z
	2101	BTST C	Ws.#bit4	Bit Test Ws to C	1	1	С
		BTST.Z	Ws.#bit4	Bit Test Ws to Z	1	1	Z
		BTST.C	Ws.Wb	Bit Test Ws <wb> to C</wb>	1	1	С
		BTST.Z	Ws.Wb	Bit Test Ws <wb> to Z</wb>	1	1	Z
13	BTSTS	BTSTS	f.#bit4	Bit Test then Set f	1	1	7
	21010	BTSTS C	Ws #bit4	Bit Test Ws to C, then Set	1	1	 C
		BTSTS Z	Ws.#bit4	Bit Test Ws to 7 then Set	1	1	7
14	CALL	CALL	1i+23	Call subroutine	2	2	– None
	CITER	CALL	Wn	Call indirect subroutine	1	2	None
15	CLR	CLR	f	f = 0x0000	1	1	None
10	CHIC	CLR	WREG	WREG = 0x0000	1	1	None
		CLP	We	Ws = 0x0000	1	1	None
		CLR	Acc Wy Wyd Wy Wyd AWB		1	1	
16	CLEWDT	CLRWDT	Acc, WA, WAU, WY, WYU, AWD	Clear Watchdog Timer	1	1	WDTO Sleep
17	COM	COM	f	$f = \overline{f}$	1	1	N Z
17	COM	COM	L E MDEC	1 = 1	1	1	NZ
		COM	L, WREG		1	1	NZ
10	(TD	COM	ws,wa	Compore f with W/REC	1	1	
10	CP	CP		Compare 1 Will WREG	1	1	
		CP	WD,#11t5			1	
40	~ ~ ^	CP	WD,WS				
19	CPO	CPO	I		1	1	
00		CPO	WS	Compare Ws with 0x0000	1	1	C,DC,N,OV,Z
20	CPB	CPB	±	Compare f with WREG, with Borrow	1	1	C,DC,N,OV,Z
		CPB	Wb,#lit5	Compare Wb with lits, with Borrow	1	1	C,DC,N,OV,Z
		СРВ	Wb,Ws	Compare Wb with Ws, with Borrow (Wb – Ws – \overline{C})	1	1	C,DC,N,OV,Z
21	CPSEQ	CPSEQ	Wb, Wn	Compare Wb with Wn, skip if =	1	1 (2 or 3)	None
22	CPSGT	CPSGT	Wb, Wn	Compare Wb with Wn, skip if >	1	1 (2 or 3)	None
23	CPSLT	CPSLT	Wb, Wn	Compare Wb with Wn, skip if <	1	1 (2 or 3)	None
24	CPSNE	CPSNE	Wb, Wn	Compare Wb with Wn, skip if \neq	1	1 (2 or 3)	None
25	DAW	DAW	Wn	Wn = decimal adjust Wn	1	1	С
26	DEC	DEC	f	f = f - 1	1	1	C.DC.N.OV.Z
		DEC	f,WREG	WREG = f –1	1	1	C,DC,N,OV,Z
		DEC	Ws,Wd	Wd = Ws - 1	1	1	C,DC,N,OV,Z
27	DEC2	DEC2	f	f = f - 2	1	1	C.DC.N.OV.Z
	-	DEC2	f,WREG	WREG = $f - 2$	1	1	C.DC.N.OV.Z
		DEC2	Ws,Wd	Wd = Ws - 2	1	1	C.DC.N.OV.Z
28	DIST	DIST	#1it14	Disable Interrupts for k instruction cycles	1	1	None
29	DTV	DTV.S	Wm . Wn	Signed 16/16-bit Integer Divide	1	18	N.Z.C. OV
		DTV SD	Wm Wn	Signed 32/16-bit Integer Divide	1	18	NZC OV
		DTV II	Wm Wn	Unsigned 16/16-bit Integer Divide	1	18	NZC OV
			Wm.Wn	Unsigned 32/16-bit Integer Divide	1	18	N.Z.C. OV
30	DIVE	DIVE	Wm . Wn	Signed 16/16-bit Fractional Divide	1	18	NZC OV
31	DO	DO	#lit14 Expr	Do code to PC + Expr lit14 + 1 times	2	2	None
	20	DO	Wn Expr	Do code to PC + Expr. $(W/n) + 1$ times	2	2	None
32	ED	ED	Wm * Wm Acc Wy Wy Wyd	Fuclidean Distance (no accumulate)	1	1	
02			witt ,ACC, WX, Wy, WXC				SA,SB,SAB
33	EDAC	EDAC	Wm * Wm,Acc,Wx,Wy,Wxd	Euclidean Distance	1	1	OA,OB,OAB, SA,SB,SAB

TABLE 19-2:	INSTRUCTION SET OVERVIEW	(CONTINUED)

FIGURE 21-7: INPUT CAPTURE x (ICx) TIMING CHARACTERISTICS

TABLE 21-23: INPUT CAPTURE x TIMING REQUIREMENTS

AC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.3V and 5.0V (\pm 10\%) \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characte	ristic ⁽¹⁾	Min	Мах	Units	Conditions	
IC10	TccL	ICx Input Low Time	No Prescaler	0.5 TCY + 20		ns		
			With Prescaler	10		ns		
IC11	TccH	ICx Input High Time	No Prescaler	0.5 Tcy + 20		ns		
			With Prescaler	10		ns		
IC15	TccP	ICx Input Period		(2 TCY + 40)/N		ns	N = Prescale value (1, 4, 16)	

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 21-8: OUTPUT COMPARE x (OCx) MODULE TIMING CHARACTERISTICS

TABLE 21-24: OUTPUT COMPARE x MODULE TIMING REQUIREMENTS

AC CHARACTERISTICS		Standard Operating Conditions: 3.3V and 5.0V (\pm 10%)(unless otherwise stated)Operating temperature-40°C \leq TA \leq +85°C for Industrial-40°C \leq TA \leq +125°C for Extended					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions
OC10	TccF	OCx Output Fall Time	_	—		ns	See Parameter D032
OC11	TccR	OCx Output Rise Time	—	—		ns	See Parameter D031

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 5V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

^{© 2006-2014} Microchip Technology Inc.

AC CHARACTERISTICS		Standard Operating Conditions: 3.3V and 5.0V (±10%) (unless otherwise stated)							
		Operating temperature $-40^{\circ}C \le Ta \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le Ta \le +125^{\circ}C$ for Extended							
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions		
			Device Su	ipply					
AD01	AVdd	Module VDD Supply	Greater of: VDD – 0.3 or 2.7		Lesser of: VDD + 0.3 or 5.5	V			
AD02	AVss	Module Vss Supply	Vss – 0.3		Vss + 0.3	V			
	Analog Input								
AD10	VINH-VINL	Full-Scale Input Span	Vss		Vdd	V			
AD11	Vin	Absolute Input Voltage	AVss-0.3		AVDD + 0.3	V			
AD12	_	Leakage Current	_	±0.001	±0.244	μA	VINL = AVSS = 0V, AVDD = 5V, Source Impedance = 1 k Ω		
AD13	—	Leakage Current	—	±0.001	±0.244	μA	VINL = AVSS = 0V, AVDD = 3.3V, Source Impedance = 1 kG		
AD17	Rin	Recommended Impedance of Analog Voltage Source			1K	Ω			
			DC Accu	racy					
AD20	Nr	Resolution	10 data bits		its	bits			
AD21	INL	Integral Nonlinearity	_	±0.5	< ±1	LSb	VINL = AVSS = 0V, AVDD = 5V		
AD21A	INL	Integral Nonlinearity	—	±0.5	< ±1	LSb	VINL = AVSS = 0V, AVDD = 3.3V		
AD22	DNL	Differential Nonlinearity	_	±0.5	< ±1	LSb	VINL = AVSS = 0V, AVDD = 5V		
AD22A	DNL	Differential Nonlinearity	—	±0.5	< ±1	LSb	VINL = AVSS = 0V, AVDD = 3.3V		
AD23	Gerr	Gain Error		±0.75	<±4.0	LSb	VINL = AVSS = 0V, AVDD = 5V		
AD23A	Gerr	Gain Error	_	±0.75	<±3.0	LSb	VINL = AVSS = 0V, AVDD = 3.3V		

TABLE 21-33: 10-BIT HIGH-SPEED A/D MODULE SPECIFICATIONS

Note 1: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures.

2: The A/D conversion result never decreases with an increase in the input voltage, and has no missing codes.