

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	30 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	35
Program Memory Size	12KB (4K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic30f2023t-30i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Analog Features:

ADC

- 10-bit resolution
- 2000 Ksps conversion rate
- · Up to 12 input channels
- · "Conversion pairing" allows simultaneous conversion of two inputs (i.e., current and voltage) with a single trigger
- PWM control loop:
 - Up to six conversion pairs available
 - Each conversion pair has up to four PWM and seven other selectable trigger sources
- Interrupt hardware supports up to 1M interrupts per second

COMPARATOR

- Four Analog Comparators:
 - 20 ns response time
 - 10-bit DAC reference generator
 - Programmable output polarity
 - Selectable input source
 - ADC sample and convert capable
- · PWM module interface
 - PWM Duty Cycle Control
 - PWM Period Control
 - PWM Fault Detect
- Special Event Trigger
- PWM-generated ADC Trigger

Special Microcontroller Features:

- · Enhanced Flash program memory:
- 10,000 erase/write cycle (min.) for industrial temperature range, 100k (typical)
- · Self-reprogrammable under software control
- Power-on Reset (POR), Power-up Timer (PWRT) • and Oscillator Start-up Timer (OST)
- · Flexible Watchdog Timer (WDT) with on-chip low power RC oscillator for reliable operation
- Fail-Safe clock monitor operation
- · Detects clock failure and switches to on-chip low power RC oscillator
- Programmable code protection
- In-Circuit Serial Programming[™] (ICSP[™])
- Selectable Power Management modes
 - Sleep, Idle and Alternate Clock modes

CMOS Technology:

- Low-power, high-speed Flash technology
- 3.3V and 5.0V operation (±10%)
- · Industrial and Extended temperature ranges
- Low power consumption

Product	Pins	Packaging	Program Memory (Bytes)	Data SRAM (Bytes)	Timers	Capture	Compare	UART	IdS	I²C™	PWM	ADCs	S&H	A/D Inputs	Analog Comparators	GPIO
dsPIC30F1010	28	SDIP	6K	256	2	0	1	1	1	1	2x2	1	3	6 ch	2	21
dsPIC30F1010	28	SOIC	6K	256	2	0	1	1	1	1	2x2	1	3	6 ch	2	21
dsPIC30F1010	28	QFN-S	6K	256	2	0	1	1	1	1	2x2	1	3	6 ch	2	21
dsPIC30F2020	28	SDIP	12K	512	3	1	2	1	1	1	4x2	1	5	8 ch	4	21
dsPIC30F2020	28	SOIC	12K	512	3	1	2	1	1	1	4x2	1	5	8 ch	4	21
dsPIC30F2020	28	QFN-S	12K	512	3	1	2	1	1	1	4x2	1	5	8 ch	4	21
dsPIC30F2023	44	QFN	12K	512	3	1	2	1	1	1	4x2	1	5	12 ch	4	35
dsPIC30F2023	44	TQFP	12K	512	3	1	2	1	1	1	4x2	1	5	12 ch	4	35

dsPIC30F SWITCH MODE POWER SUPPLY FAMILY

dsPIC30F1010/202X

REGISTER	J-1J. IF CO.						
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
—		CNIP<2:0>		—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	—	—	—	—	
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
bit 15	Unimpleme	nted: Read as '	0'				
bit 14-12	CNIP<2:0>:	Change Notifica	ation Interrupt	t Priority bits			
	111 = Interru	upt is priority 7 (highest priori	ty interrupt)			
	•						
	•						
	•						
		upt is priority 1					
		upt source is dis					
bit 11-0	Unimpleme	nted: Read as '	0'				

REGISTER 5-15: IPC6: INTERRUPT PRIORITY CONTROL REGISTER 6

6.0 I/O PORTS

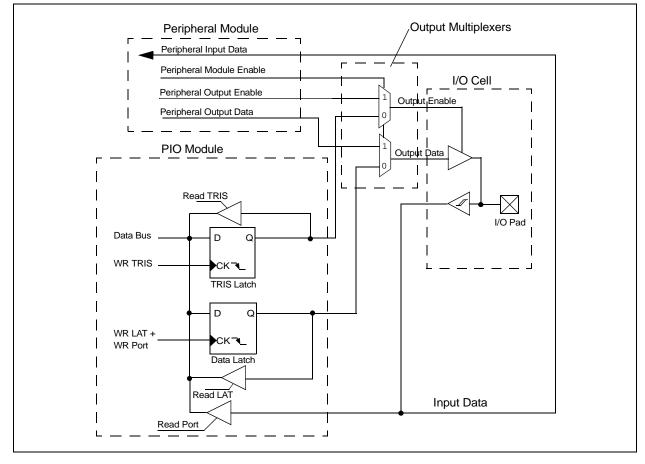
Note: This data sheet summarizes features of this group of dsPIC30F devices and is not intended to be a complete reference source. For more information on the CPU, peripherals, register descriptions and general device functionality, refer to the "*dsPIC30F Family Reference Manual*" (DS70046).

All of the device pins (except VDD, VSS, MCLR and OSC1/CLKI) are shared between the peripherals and the parallel I/O ports.

All I/O input ports feature Schmitt Trigger inputs for improved noise immunity.

6.1 Parallel I/O (PIO) Ports

When a peripheral is enabled and the peripheral is actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin may be read, but the output driver for the parallel port bit will be disabled. If a peripheral is enabled, but the peripheral is not actively driving a pin, that pin may be driven by a port.


All port pins have three registers directly associated with the operation of the port pin. The data direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a '1', then the pin

is an input. All port pins are defined as inputs after a Reset. Reads from the latch (LATx), read the latch. Writes to the latch, write the latch (LATx). Reads from the port (PORTx), read the port pins, and writes to the port pins, write the latch (LATx).

Any bit and its associated data and control registers that are not valid for a particular device will be disabled. That means the corresponding LATx and TRISx registers and the port pin will read as zeros.

When a pin is shared with another peripheral or function that is defined as an input only, it is nevertheless regarded as a dedicated port because there is no other competing source of outputs.

A Parallel I/O (PIO) port that shares a pin with a peripheral is, in general, subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pad cell. Figure 6-1 shows how ports are shared with other peripherals, and the associated I/O cell (pad) to which they are connected. Table 6-1 and Table 6-2 show the register formats for the shared ports, PORTA through PORTF, for the dsPIC30F1010/2020 and PORTA through PORTG for the dsPIC30F2023 device, respectively.

FIGURE 6-1: BLOCK DIAGRAM OF A SHARED PORT STRUCTURE

6.2 Configuring Analog Port Pins

The use of the ADPCFG and TRIS registers control the operation of the A/D port pins. The port pins that are desired as analog inputs must have their corresponding TRIS bit set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

When reading the PORT register, all pins configured as analog input channel will read as cleared (a low level).

Pins configured as digital inputs will not convert an analog input. Analog levels on any pin that is defined as a digital input (including the ANx pins), may cause the input buffer to consume current that exceeds the device specifications.

6.2.1 I/O PORT WRITE/READ TIMING

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically this instruction would be a NOP.

EXAMPLE 6-1: PORT WRITE/READ EXAMPLE

MOV 0xFF00, W0; Configure PORTB<15:8>
 ; as inputs
MOV W0, TRISBB; and PORTB<7:0> as outputs
NOP ; Delay 1 cycle
BTSS PORTB, #13; Next Instruction

6.3 Input Change Notification

The input change notification function of the I/O ports allows the dsPIC30F1010/202X devices to generate interrupt requests to the processor in response to a change-of-state on selected input pins. This feature is capable of detecting input change-of-states even in Sleep mode, when the clocks are disabled. There are 8 external signals (CN0 through CN7) that can be selected (enabled) for generating an interrupt request on a change-of-state.

There are two control registers associated with the CN module. The CNEN1 register contain the CN interrupt enable (CNxIE) control bits for each of the CN input pins. Setting any of these bits enables a CN interrupt for the corresponding pins.

Each CN pin also has a weak pull-up connected to it. The pull-ups act as a current source that is connected to the pin and eliminate the need for external resistors when push button or keypad devices are connected. The pull-ups are enabled separately using the CNPU1 register, which contain the weak pull-up enable (CNx-PUE) bits for each of the CN pins. Setting any of the control bits enables the weak pull-ups for the corresponding pins.

Note: Pull-ups on change notification pins should always be disabled whenever the port pin is configured as a digital output.

8.0 TIMER1 MODULE

Note: This data sheet summarizes features of this group of dsPIC30F devices and is not intended to be a complete reference source. For more information on the CPU, peripherals, register descriptions and general device functionality, refer to the "*dsPIC30F Family Reference Manual*" (DS70046).

This section describes the 16-bit General Purpose Timer1 module and associated operational modes. Figure 8-1 depicts the simplified block diagram of the 16-bit Timer1 Module.

Note: Timer1 is a 'Type A' timer. Please refer to the specifications for a Type A timer in Section 21.0 "Electrical Characteristics" of this document.

The following sections provide a detailed description of the operational modes of the timers, including setup and control registers along with associated block diagrams.

The Timer1 module is a 16-bit timer which can serve as the time counter for the real-time clock, or operate as a free running interval timer/counter. The 16-bit timer has the following modes:

- 16-bit Timer
- 16-bit Synchronous Counter
- 16-bit Asynchronous Counter

Further, the following operational characteristics are supported:

- Timer gate operation
- Selectable prescaler settings
- Timer operation during CPU Idle and Sleep modes
- Interrupt on 16-bit period register match or falling edge of external gate signal

These operating modes are determined by setting the appropriate bit(s) in the 16-bit SFR, T1CON. Figure 8-1 presents a block diagram of the 16-bit timer module.

16-bit Timer Mode: In the 16-bit Timer mode, the timer increments on every instruction cycle up to a match value, preloaded into the period register PR1, then resets to 0 and continues to count.

When the CPU goes into the Idle mode, the timer will stop incrementing, unless the TSIDL (T1CON<13>) bit = 0. If TSIDL = 1, the timer module logic will resume the incrementing sequence upon termination of the CPU Idle mode.

16-bit Synchronous Counter Mode: In the 16-bit Synchronous Counter mode, the timer increments on the rising edge of the applied external clock signal, which is synchronized with the internal phase clocks. The timer counts up to a match value preloaded in PR1, then resets to 0 and continues.

When the CPU goes into the Idle mode, the timer will stop incrementing, unless the respective TSIDL bit = 0. If TSIDL = 1, the timer module logic will resume the incrementing sequence upon termination of the CPU Idle mode.

16-bit Asynchronous Counter Mode: In the 16-bit Asynchronous Counter mode, the timer increments on every rising edge of the applied external clock signal. The timer counts up to a match value preloaded in PR1, then resets to '0' and continues.

When the timer is configured for the Asynchronous mode of operation and the CPU goes into the Idle mode, the timer will stop incrementing if TSIDL = 1.

10.1 Simple Capture Event Mode

The simple capture events in the dsPIC30F product family are:

- Capture every falling edge
- · Capture every rising edge
- Capture every 4th rising edge
- Capture every 16th rising edge
- · Capture every rising and falling edge

These simple Input Capture modes are configured by setting the appropriate bits ICM<2:0> (ICxCON<2:0>).

10.1.1 CAPTURE PRESCALER

There are four input capture prescaler settings, specified by bits ICM<2:0> (ICxCON<2:0>). Whenever the capture channel is turned off, the prescaler counter will be cleared. In addition, any Reset will clear the prescaler counter.

10.1.2 CAPTURE BUFFER OPERATION

Each capture channel has an associated FIFO buffer, which is four 16-bit words deep. There are two status flags, which provide status on the FIFO buffer:

- ICBFNE Input Capture Buffer Not Empty
- ICOV Input Capture Overflow

The ICBFNE will be set on the first input capture event and remain set until all capture events have been read from the FIFO. As each word is read from the FIFO, the remaining words are advanced by one position within the buffer.

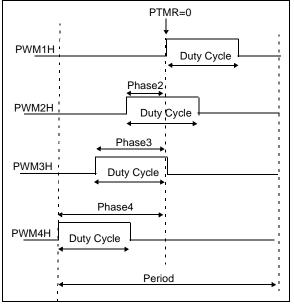
In the event that the FIFO is full with four capture events and a fifth capture event occurs prior to a read of the FIFO, an Overflow condition will occur and the ICOV bit will be set to a logic '1'. The fifth capture event is lost and is not stored in the FIFO. No additional events will be captured until all four events have been read from the buffer.

If a FIFO read is performed after the last read and no new capture event has been received, the read will yield indeterminate results.

10.1.3 TIMER2 AND TIMER3 SELECTION MODE

The input capture module consists of up to 8 input capture channels. Each channel can select between one of two timers for the time base, Timer2 or Timer3.

Selection of the timer resource is accomplished through SFR bit ICTMR (ICxCON<7>). Timer3 is the default timer resource available for the input capture module.


10.1.4 HALL SENSOR MODE

When the input capture module is set for capture on every edge, rising and falling, ICM<2:0> = 001, the following operations are performed by the input capture logic:

- The input capture interrupt flag is set on every edge, rising and falling.
- The Interrupt on Capture mode setting bits, ICI<1:0>, are ignored, since every capture generates an interrupt.
- A Capture Overflow condition is not generated in this mode.

12.4.4 MULTI-PHASE PWM MODE

Multi-Phase PWM, as shown in Figure 12-6, uses phase-shift values in the Phase registers to shift the PWM outputs relative to the primary time base. Because the phase-shift values are added to the primary time base, the phase-shifted outputs occur earlier than a PWM channel that specifies zero phase shift. In Multi-Phase mode, the specified phase shift is fixed by the application's design.

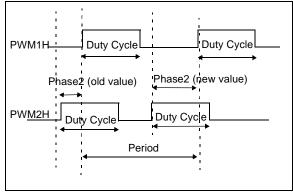
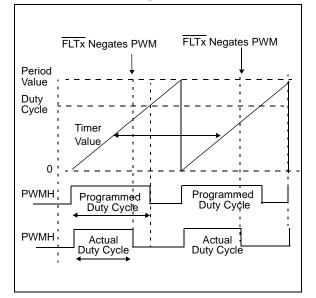


FIGURE 12-6: MULTI-PHASE PWM

12.4.5 VARIABLE PHASE PWM MODE

Figure 12-7 shows the waveforms for Variable Phase-Shift PWM. Power-converter circuits constantly change the phase shift among PWM channels as a means to control the flow of power, in contrast to most PWM circuits that vary the duty cycle of PWM signals to control power flow. Often, in variable phase applications, the PWM duty cycle is maintained at 50%. The phase-shift value should be updated when the PWM signal is not asserted. Complementary outputs are available in Variable Phase-Shift mode.


FIGURE 12-7: VARIABLE PHASE PWM

12.4.6 CURRENT-LIMIT PWM MODE

Figure 12-8 shows Cycle-by-Cycle Current-Limit mode. This mode truncates the asserted PWM signal when the selected external Fault signal is asserted. The PWM output values are specified by the Fault override bits (FLTDAT<1:0>) in the IOCONx register. The override output remains in effect until the beginning of the next PWM cycle. This mode is sometimes used in Power Factor Correction (PFC) circuits where the inductor current controls the PWM on time. This is a constant frequency PWM mode.

FIGURE 12-8: CYCLE-BY-CYCLE CURRENT-LIMIT PWM MODE

12.36 EXTERNAL SYNCHRONIZATION FEATURES

In large power conversion systems, it is often desirable to be able to synchronize multiple power controllers to ensure that "beat frequencies" are not generated within the system, or as a means to ensure "quiet" periods during which current and voltage measurements can be made.

dsPIC30F202X devices (excluding 28-pin packages) have input and/or output pins that provide the capability to either synchronize the SMPS dsPIC DSC device with an external device or have external devices synchronized to the SMPS dsPIC DSC. These synchronizing features are enabled via the SYNCIEN and SYNCOEN bits in the PTCON control register in the PWM module.

The SYNCPOL bit in the PTCON register selects whether the rising edge or the falling edge of the SYNCI signal is the active edge. The SYNCPOL bit in the PTCON register also selects whether the SYNCO output pulse is low active or high active.

The SYNCSRC<2:0> bits in the PTCON register specify the source for the SYNCI signal.

If the SYNCI feature is enabled, the primary time base counter is reset when an active SYNCI edge is detected. If the SYNCO feature is enabled, an output pulse is generated when the primary time base counter rolls over at the end of a PWM cycle.

The recommended SYNCI pulse width should be more than 100 nsec. The expected SYNCO output pulse width will be approximately 100 nsec.

When using the SYNCI feature, it is recommended that the user program the period register with a period value that is slightly longer than the expected period of the external synchronization input signal. This provides protection in case the SYNCI signal is not received due to noise or external component failure. With a reasonable period value programmed into the PTPER register, the local power conversion process should remain operational even if the global synchronization signal is not received.

12.37 CPU LOAD STAGGERING

The SMPS dsPIC DSC has the ability to stagger the individual trigger comparison operations. This feature helps to level the processor's workload to minimize situations where the processor is overloaded.

Assume a situation where there are four PWM channels controlling four independent voltage outputs. Assume further that each PWM generator is operating at 1000 kHz (1 µsec period) and each control loop is operating at 125 kHz (8 µsec). The TRGDIV<2:0> bits in each TRGCONx register will be set to '111', which selects that every 8th trigger comparison match will generate a trigger signal to the ADC to capture data and begin a conversion process.

If the stagger-in-time feature did not exist, all of the requests from all of the PWM trigger registers might occur at the same time. If this "pile-up" were to happen, some data sample might become stale (outdated) by the time the data for all four channels can be processed.

With the stagger-in-time feature, the trigger signals are spaced out over time (during succeeding PWM periods) so that all of the data is processed in an orderly manner.

The ROLL counter is a counter connected to the primary time base counter. The ROLL counter is incremented each time the primary time base counter reaches terminal count (period rollover).

The stagger-in-time feature is controlled by the TRGSTRT<5:0> bits in the TRGCONx registers. The TRGSTRT<5:0> bits specify the count value of the ROLL counter that must be matched before an individual trigger comparison module in each of the PWM generators can begin to count the trigger comparison events as specified by the TRGDIV<2:0> bits in the PWMCONx registers.

So, in our example with the four PWM generators, the first PWM's TRGSTRT<5:0> bits would be '000', the second PWM's TRGSTRT bits would be set to '010', the third PWM's TRGSTRT bits would be set to '100' and the fourth PWM's TRGSTRT bits would be set to '110'. Therefore, over a total of eight PWM cycles, the four separate control loops could be run each with their own 2-µsec time period.

12.38 EXTERNAL TRIGGER BLANKING

Using the LEB<9:3> bits in the LEBCONx registers, the PWM module has the capability to blank (ignore) the external current and Fault inputs for a period of 0 to 1024 nsec. This feature is useful if power transistor turn-on induced transients make current sensing difficult at the start of a PWM cycle.

REGISTER 15-2: U1STA: UART1 STATUS AND CONTROL REGISTER (CONTINUED)

bit 4	RIDLE: Receiver Idle bit (Read-Only)
	1 = Receiver is Idle
	0 = Receiver is active
bit 3	PERR: Parity Error Status bit (Read-Only)
	 1 = Parity error has been detected for the current character (character at the top of the receive FIFO) 0 = Parity error has not been detected
bit 2	FERR: Framing Error Status bit (Read-Only)
	1 = Framing error has been detected for the current character (character at the top of the receive FIFO)
	0 = Framing error has not been detected
bit 1	OERR: Receive Buffer Overrun Error Status bit (Read/Clear-Only)
	1 = Receive buffer has overflowed
	$0 = $ Receive buffer has not overflowed (clearing a previously set OERR bit (1 \rightarrow 0 transition) will reset the receiver buffer and the RSR to the empty state)
bit 0	URXDA: Receive Buffer Data Available bit (Read-Only)
	1 = Receive buffer has data, at least one more character can be read

0 = Receive buffer is empty

REGISTER 16-1: A/D CONTROL REGISTER (ADCON) (CONTINUED)

- bit 2-0 ADCS<2:0>: A/D Conversion Clock Divider Select bits
 - If PLL is enabled (assume 15 MHz external clock as clock source):
 - 111 = FADC/18 = 13.3 MHz @ 30 MIPS
 - 110 = FADC/16 = 15.0 MHz @ 30 MIPS
 - 101 = FADC/14 = 17.1 MHz @ 30 MIPS
 - 100 = FADC/12 = 20.0 MHz @ 30 MIPS
 - 011 = FADC/10 = 24.0 MHz @ 30 MIPS
 - 010 = FADC/8 = 30.0 MHz @ 30 MIPS
 - 001 = FADC/6 = Reserved, defaults to 30 MHz @ 30 MIPS
 - 000 = FADC/4 = Reserved, defaults to 30 MHz @ 30 MIPS

If PLL is disabled (assume 15 MHz external clock as clock source):

- 111 = FADC/18 = 0.83 MHz @ 7.5 MIPS
- 110 = FADC/16 = 0.93 MHz @ 7.5 MIPS
- 101 = FADC/14 = 1.07 MHz @ 7.5 MIPS
- 100 = FADC/12 = 1.25 MHz @ 7.5 MIPS
- 011 = FADC/10 = 1.5 MHz @ 7.5 MIPS
- 010 = FADC/8 = 1.87 MHz @ 7.5 MIPS
- 001 = FADC/6 = 2.5 MHz @ 7.5 MIPS
- 000 = FADC/4 = 3.75 MHz @ 7.5 MIPS

Note: See Figure 18-2 for ADC clock derivation.

EXAMPLE 16-1: ADC BASE REGISTER CODE (CONTINUED)

; The actual pair conversion interrupt handler ; Don't forget to pop the stack when done and return from interrupt ADC_PAIR0_PROC: ; The ADC pair 0 conversion complete handler . . . POP.S ; Restore W0-W3 and SR registers RETFIE ; Return from Interrupt ADC_PAIR1_PROC: ; The ADC pair 1 conversion complete handler . . . POP.S ; Restore W0-W3 and SR registers RETELE ; Return from Interrupt ADC_PAIR2_PROC: ; The ADC pair 2 conversion complete handler . . . POP.S ; Restore W0-W3 and SR registers RETFIE ; Return from Interrupt ADC_PAIR3_PROC: ; The ADC pair 3 conversion complete handler . . . POP.S ; Restore W0-W3 and SR registers RETEIE ; Return from Interrupt ADC_PAIR4_PROC: ; The ADC pair 4 conversion complete handler . . . ; Restore W0-W3 and SR registers POP.S RETEIE ; Return from Interrupt ADC_PAIR5_PROC: ; The ADC pair 5 conversion complete handler . . . ; Restore W0-W3 and SR registers POP.S RETFIE ; Return from Interrupt

16.15 Changing A/D Clock

In general, the ADC cannot accept changes to the ADC clock divisor while ADON = 1. If the user makes A/D clock changes while ADON = 1, the results will be indeterminate.

16.16 Sample and Conversion

The ADC module always assigns two ADC clock periods for the sampling process. When operating at the maximum conversion rate of 2 Msps per channel, the sampling period is:

2 x 41.6 nsec = 83.3 nsec.

Each ADC pair specified in the ADCPCx registers initiates a sample operation when the selected trigger event occurs. The conversion of the sampled analog data occurs as resources become available.

If a new trigger event occurs for a specific channel before a previous sample and convert request for that channel has been processed, the newer request is ignored. It is the user's responsibility not to exceed the conversion rate capability for the module.

The actual conversion process requires 10 additional ADC clocks. The conversion is processed serially, bit 9 first, then bit 8, down to bit 0. The result is stored when the conversion is completed.

File Name	ADR	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CMPCON1	04C0	CMPON	—	CMPSIDL	_		—	_	—	INSEL	_<1:0>	EXTREF	—	CMPSTAT	-	CMPPOL	RANGE	0000
CMPDAC1	04C2	_	_	_	_	_	_		CMREF<9:0>							0000		
CMPCON2	04C4	CMPON	_	CMPSIDL	_	_	_	_	—	INSEL	_<1:0>	EXTREF		CMPSTAT	_	CMPPOL	RANGE	0000
CMPDAC2	04C6	_	_	_	_	_	_					CMRE	F<9:0>					0000
CMPCON3	04C8	CMPON	_	CMPSIDL	_	_	_	-	_	INSEL	_<1:0>	EXTREF	_	CMPSTAT	_	CMPPOL	RANGE	0000
CMPDAC3	04CA	_	_	_	_		_					CMRE	F<9:0>					0000
CMPCON4	04CC	CMPON	_	CMPSIDL	_	_	_	-	_	INSEL	_<1:0>	EXTREF	_	CMPSTAT	_	CMPPOL	RANGE	0000
CMPDAC4	04CE	_	_	_	_	_	_					CMRE	F<9:0>					0000

TABLE 17-1: ANALOG COMPARATOR CONTROL REGISTER MAP

dsPIC30F1010/202X

REGISTER 18-6: FOSC: OSCILLATOR SELECTION CONFIGURATION BITS

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_		—	—	—		—	—
bit 23							bit 16
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_		<u> </u>		—		—	
bit 15							bit 8
R/P	R/P	R/P	U-0	U-0	R/P	R/P	R/P
FCKS	M<1:0>	FRANGE	—	—	OSCIOFNC	POSCI	1D<1:0>
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimple	emented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cl	eared	x = Bit is unki	nown
bit 5	01 = Clock sv 00 = Clock sv FRANGE: Fr Acts like a "G	witching is enal witching is enal equency Rango		lock monitor i lock monitor i C and PLL bi	is disabled is enabled	erate at reduce	ed MIPS at a
	FRANGE Bit Value		Temperature Rating		requency minal)		VCO ninal)
	1 = High Ran	ge	Industrial		55 MHz	466 MHz (48	
	, , , , , , , , , , , , , , , , , , ,	•	Extended	9.7	7 MHz	310 MHz (32) MHz max.)
	0 = Low Rang	ge	Industrial		7 MHz	310 MHz (32	
			Extended	6.4	4 MHz	205 MHz (21	I MHz max.)
bit 4-3	-	ted: Read as '					
bit 3		OSC2 Pin I/O					
	1 = CLKO ou 0 = CLKO ou		ve on the OSC	O pin			
bit 1-0	POSCMD<1:	0>: Primary Os	scillator Mode				
	10 = HS osci 01 = Reserve	Oscillator Disa llator mode sel ed I clock mode se	ected				

dsPIC30F1010/202X

DC CHA	RACTER	ISTICS		otherwi	se stated) erature -) 40°C ≤ [·]	3.3V and 5.0V (±10%) TA \leq +85°C for Industrial TA \leq +125°C for Extended
Param No.	Symbol	Characteristic	Min	Тур ⁽¹⁾	Max	Units	Conditions
	VIL	Input Low Voltage ⁽²⁾					
DI10		I/O Pins: with Schmitt Trigger Buffer	Vss	_	0.2 Vdd	V	
DI15		MCLR	Vss	—	0.2 Vdd	V	
DI16		OSC1 (in HS mode)	Vss	—	0.2 Vdd	V	
DI18		SDA, SCL	Vss	—	0.3 Vdd	V	SMbus disabled
DI19		SDA, SCL	Vss	—	0.2 Vdd	V	SMbus enabled
	Vih	Input High Voltage ⁽²⁾					
DI20		I/O Pins: with Schmitt Trigger Buffer	0.8 Vdd	_	Vdd	V	
DI25		MCLR	0.8 Vdd	_	Vdd	V	
DI26		OSC1 (in HS mode)	0.7 Vdd	_	Vdd	V	
DI28		SDA, SCL	0.7 Vdd	_	Vdd	V	SMbus disabled
DI29		SDA, SCL	0.8 Vdd	—	Vdd	V	SMbus enabled
	lı∟	Input Leakage Current ^(2,3,4)					
DI50		I/O Ports	—	0.01	±1	μA	$\label{eq:VSS} \begin{split} &V{\sf SS} \leq V{\sf PIN} \leq V{\sf DD}, \\ &P{\sf in} \mbox{ at high-impedance } \end{split}$
DI51		Analog Input Pins	—	0.50	—	μΑ	$\label{eq:VSS} \begin{split} &V{\sf SS} \leq V{\sf PIN} \leq V{\sf DD}, \\ &P{\sf in} \mbox{ at high-impedance } \end{split}$
DI55		MCLR	—	0.05	±5	μΑ	$Vss \leq V \text{PIN} \leq V \text{DD}$
DI56		OSC1	_	0.05	±5	μΑ	$\label{eq:VSS} \begin{array}{l} VSS \leq VPIN \leq VDD, \\ HS \mbox{ Oscillator mode} \end{array}$

TABLE 21-8: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

Note 1: Data in "Typ" column is at 5V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: These parameters are characterized but not tested in manufacturing.

3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

4: Negative current is defined as current sourced by the pin.

TABLE 21-18: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER AND TIMING REQUIREMENTS

AC CHA	RACTER	ISTICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions			
SY10	TMCL	MCLR Pulse Width (low)	2	_	_	μS	-40°C to +125°C			
SY11	Tpwrt	Power-up Timer Period	0.75 1.5 3 6 12 24 48 96	1 2 4 8 16 32 64 128	1.25 2.5 5 10 20 40 80 160	ms	-40°C to +125°C, user programmable			
SY12	TPOR	Power-on Reset Delay	3	10	30	μS	-40°C to +125°C			
SY13	Tioz	I/O High-impedance from MCLR Low or Watchdog Timer Reset	—	0.8	1.0	μS				
SY20	Twdt1	Watchdog Timer Time-out Period (No Prescaler)	1.4	2.1	2.8	ms	VDD = 5V, -40°C to +125°C			
	Twdt2		1.4	2.1	2.8	ms	VDD = 3.3V, -40°C to +125°C			
SY30	Tost	Oscillation Start-up Timer Period		1024 Tosc	_	_	Tosc = OSC1 period			
SY35	TFSCM	Fail-Safe Clock Monitor Delay	_	500		μS	-40°C to +125°C			

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 5V, +25°C unless otherwise stated.

TABLE 21-21: TIMER2 EXTERNAL CLOCK TIMING REQUIREMENTS

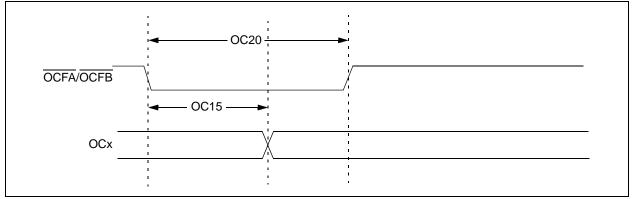

AC CHA	ARACTERIS	TICS	Standard Operating Conditions: 3.3V and 5.0V (±10%) (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended						for Industrial
Param No.	Symbol Characteristic				Min	Тур	Max	Units	Conditions
TB10	ТтхН	T2CK High Time	Synchronous, no prescaler		0.5 TCY + 20			ns	Must also meet Parameter TB15
			Synchronous, with prescaler		10		_	ns	
TB11	ΤτxL	T2CK Low Time	Synchronous, no prescaler		0.5 TCY + 20	—		ns	Must also meet Parameter TB15
			Synchro with pre		10	_	_	ns	
TB15	ΤτχΡ	T2CK Input Period	Synchro no preso		Tcy + 10	—	_	ns	N = Prescale value (1, 8, 64, 256)
			Synchronous, with prescaler		Greater of: 20 ns or (Tcy + 40)/N	_			
TB20	TCKEXTMRL	Delay from Externa Edge to Timer Incre			0.5 TCY		1.5 TCY		

TABLE 21-22: TIMER3 EXTERNAL CLOCK TIMING REQUIREMENTS

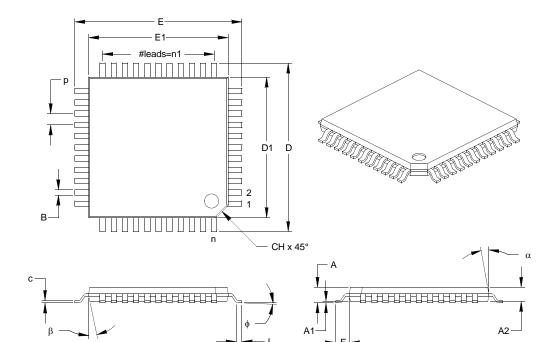
АС СНА	ARACTERIS	TICS	Standard Operating Conditions: 3.3V and 5.0V (\pm 10%)(unless otherwise stated)Operating temperature-40°C \leq TA \leq +85°C for Industria-40°C \leq TA \leq +125°C for Extended					or Industrial	
Param No.	Symbol	Characte	eristic		Min	Тур	Max	Units	Conditions
TC10	ТтхН	T3CK High Time	Synchro	nous	0.5 TCY + 20		_	ns	Must also meet Parameter TC15
TC11	ΤτxL	T3CK Low Time	Synchro	nous	0.5 TCY + 20	_	—	ns	Must also meet Parameter TC15
TC15	ΤτχΡ	T3CK Input Period	Synchro no preso		Tcy + 10	_	—	ns	N = Prescale value (1, 8, 64,
			Synchro with pres		Greater of: 20 ns or (Tcy + 40)/N	_	—	_	256)
TC20	TCKEXTMRL		ay from External T3CK C e to Timer Increment		0.5 TCY		1.5 TCY	—	

dsPIC30F1010/202X

FIGURE 21-9: OCx/PWM MODULE TIMING CHARACTERISTICS

TABLE 21-25: SIMPLE OCx/PWM MODE TIMING REQUIREMENTS

АС СНА	RACTER	ISTICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.3V and 5.0V (\pm 10\%) \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$							
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Typ ⁽²⁾	Max	Units	Co	onditions		
OC15	Tfd	Fault Input to PWM I/O	_	_	25	ns	VDD = 3.3V	-40°C to +85°C		
		Change			TBD	ns	Vdd = 5V			
OC20	TFLT	Fault Input Pulse Width	_		50	ns	VDD = 3.3V -40°C to +85°C			
					TBD	ns	VDD = 5V			


Legend: TBD = To Be Determined

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 5V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

44-Lead Plastic Thin Quad Flatpack (PT) 10x10x1 mm Body, 1.0/0.10 mm Lead Form (TQFP)

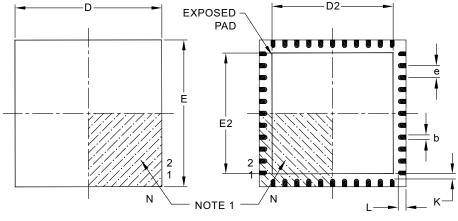
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES		MILLIMETERS*				
Dimension L	imits	MIN	NOM	MAX	MIN	NOM	MAX		
Number of Pins	n		44			44			
Pitch	р		.031			0.8	80		
Pins per Side	n1		11			1 <i>*</i>	1		
Overall Height	Α	.039	.043	.047	1.00	1.10	1.20		
Molded Package Thickness	A2	.037	.039	.041	0.95	1.00	1.05		
Standoff	A1	.002	.004	.006	0.05	0.10	0.15		
Foot Length	L	.018	.024	.030	0.45	0.60	0.75		
Footprint (Reference)	F		039 REF.			1.00 REF.			
Foot Angle	¢	0	3.5	7	0	3.5	7		
Overall Width	Е	.463	.472	.482	11.75	12.00	12.25		
Overall Length	D	.463	.472	.482	11.75	12.00	12.25		
Molded Package Width	E1	.390	.394	.398	9.90	10.00	10.10		
Molded Package Length	D1	.390	.394	.398	9.90	10.00	10.10		
Lead Thickness	С	.004	.006	.008	0.09	0.15	0.20		
Lead Width	В	.012	.015	.017	0.30	0.38	0.44		
Pin 1 Corner Chamfer	CH	.025	.035	.045	0.64	0.89	1.14		
Mold Draft Angle Top	α	5	10	15	5	10	15		
Mold Draft Angle Bottom	β	5	10	15	5	10	15		

* Controlling Parameter

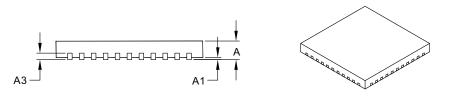
Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. REF: Reference Dimension, usually without tolerance, for information purposes only.


See ASME Y14.5M

JEDEC Equivalent: MS-026 Drawing No. C04-076

Revised 07-22-05


44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body (QFN)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

TOP VIEW

BOTTOM VIEW

Units		MILLIMETERS			
Dimension Limits		MIN	NOM	MAX	
Number of Pins	Ν	44			
Pitch	е	0.65 BSC			
Overall Height	Α	0.80	0.90	1.00	
Standoff	A1	0.00	0.02	0.05	
Contact Thickness	A3	0.20 REF			
Overall Width	Е	8.00 BSC			
Exposed Pad Width	E2	6.30	6.45	6.80	
Overall Length	D		8.00 BSC		
Exposed Pad Length	D2	6.30	6.45	6.80	
Contact Width	b	0.25	0.30	0.38	
Contact Length §	L	0.30	0.40	0.50	
Contact-to-Exposed Pad §	K	0.20	—		

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Package is saw singulated
- Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 REF: Reference Dimension, usually without tolerance, for information purposes only.
- Microchip Technology Drawing No. C04–103, Sept. 8, 2006

dsPIC30F1010/202X

NOTES: