E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, Cap Sense, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	83
Program Memory Size	384KB (384K x 8)
Program Memory Type	FLASH
EEPROM Size	12К х 8
RAM Size	48K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 25x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l152vdt6x

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

1 Introduction	8
2 Description	9
2.1 Device overview	
2.2 Ultra-low-power device continuum	
2.2.1 Performance	
2.2.2 Shared peripherals	
2.2.3 Common system strategy	
2.2.4 Features	11
3 Functional overview	12
3.1 Low-power modes	13
3.2 ARM [®] Cortex [®] -M3 core with MPU	
3.3 Reset and supply management	
3.3.1 Power supply schemes	
3.3.2 Power supply supervisor	
3.3.3 Voltage regulator	
3.3.4 Boot modes	
3.4 Clock management	20
3.5 Low-power real-time clock and backup registers	22
3.6 GPIOs (general-purpose inputs/outputs)	
3.7 Memories	
3.8 DMA (direct memory access)	
3.9 LCD (liquid crystal display)	
3.10 ADC (analog-to-digital converter)	
3.10.1 Temperature sensor	
3.10.2 Internal voltage reference (V _{REFINT})	
3.11 DAC (digital-to-analog converter)	25
3.12 Operational amplifier	
3.13 Ultra-low-power comparators and reference voltage	
3.14 System configuration controller and routing interface	
3.15 Touch sensing	

DocID027267 Rev 3

2.1 Device overview

Table 1. Ultra-low-power STM32L151VD-X and STM32L152VD-X device features and peripheral counts

Periphe	eral	STM32L151VD-X STM32L152VD-X
Flash (Kbytes)		384
Data EEPROM (K	(bytes)	16
RAM (Kbytes)		80
32 bit		1
Timers	General- purpose	6
	Basic	2
	SPI	8(3) ⁽¹⁾
	l ² S	2
Communication interfaces	l ² C	2
	USART	5
	USB	1
GPIOs		83
Operational amp	lifiers	2
12-bit synchroniz Number of chanr		1 25
12-bit DAC Number of chanr	nels	2 2
LCD ⁽²⁾ COM x SEG		1 4x44 or 8x40
Comparators		2
Capacitive sensi	ng channels	23
Max. CPU freque	ncy	32 MHz
Operating voltage		1.8 V to 3.6 V (down to 1.65 V at power-down) with BOR option 1.65 V to 3.6 V without BOR option
Operating tempe	ratures	Ambient operating temperature: -40 °C to 85 °C / -40 °C to 105 °C Junction temperature: -40 to + 110 °C
Packages		LQFP100, WLCSP104

1. 5 SPIs are USART configured in synchronous mode emulating SPI master.

2. STM32L152VD-X device only.

Functionalities depending on the operating power supply range								
Operating power supply range	DAC and ADC operation	USB	Dynamic voltage scaling range	I/O operation				
$V_{DD} = V_{DDA} = 2.0$ to 2.4 V	Conversion time up to 500 Ksps	Functional ⁽²⁾	Range 1, Range 2 or Range 3	Full speed operation				
$V_{DD} = V_{DDA} = 2.4 \text{ to } 3.6 \text{ V}$	Conversion time up to 1 Msps	Functional ⁽²⁾	Range 1, Range 2 or Range 3	Full speed operation				

Table 2. Functionalities depending on the operating power supply range (continued)

 CPU frequency changes from initial to final must respect "F_{CPU} initial < 4*F_{CPU} final" to limit V_{CORE} drop due to current consumption peak when frequency increases. It must also respect 5 μs delay between two changes. For example to switch from 4.2 MHz to 32 MHz, the user can switch from 4.2 MHz to 16 MHz, wait 5 μs, then switch from 16 MHz to 32 MHz.

2. Should be USB compliant from I/O voltage standpoint, the minimum $\rm V_{DD}$ is 3.0 V.

CPU frequency range	Dynamic voltage scaling range
16 MHz to 32 MHz (1ws) 32 kHz to 16 MHz (0ws)	Range 1
8 MHz to 16 MHz (1ws) 32 kHz to 8 MHz (0ws)	Range 2
2.1MHz to 4.2 MHz (1ws) 32 kHz to 2.1 MHz (0ws)	Range 3

Table 3. CPU frequency range depending on dynamic voltage scaling

power ramp-up should guarantee that 1.65 V is reached on V_{DD} at least 1 ms after it exits the POR area.

Five BOR thresholds are available through option bytes, starting from 1.8 V to 3 V. To reduce the power consumption in Stop mode, it is possible to automatically switch off the internal reference voltage (V_{REFINT}) in Stop mode. The device remains in reset mode when V_{DD} is below a specified threshold, $V_{POR/PDR}$ or V_{BOR} , without the need for any external reset circuit.

Note: The start-up time at power-on is typically 3.3 ms when BOR is active at power-up, the startup time at power-on can be decreased down to 1 ms typically for devices with BOR inactive at power-up.

The device features an embedded programmable voltage detector (PVD) that monitors the V_{DD}/V_{DDA} power supply and compares it to the V_{PVD} threshold. This PVD offers 7 different levels between 1.85 V and 3.05 V, chosen by software, with a step around 200 mV. An interrupt can be generated when V_{DD}/V_{DDA} drops below the V_{PVD} threshold and/or when V_{DD}/V_{DDA} is higher than the V_{PVD} threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

3.3.3 Voltage regulator

The regulator has three operation modes: main (MR), low-power (LPR) and power down.

- MR is used in Run mode (nominal regulation)
- LPR is used in the Low-power run, Low-power sleep and Stop modes
- Power down is used in Standby mode. The regulator output is high impedance, the kernel circuitry is powered down, inducing zero consumption but the contents of the registers and RAM are lost except for the standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE crystal 32K osc, RCC_CSR).

3.3.4 Boot modes

At startup, boot pins are used to select one of three boot options:

- Boot from Flash memory
- Boot from System memory
- Boot from embedded RAM

The boot from Flash usually boots at the beginning of the Flash (bank 1). An additional boot mechanism is available through user option byte, to allow booting from bank 2 when bank 2 contains valid code. This dual boot capability can be used to easily implement a secure field software update mechanism.

The boot loader is located in System memory. It is used to reprogram the Flash memory by using USART1, USART2 or USB. See Application note "STM32 microcontroller system memory boot mode" (AN2606) for details.

3.4 Clock management

The clock controller distributes the clocks coming from different oscillators to the core and the peripherals. It also manages clock gating for low-power modes and ensures clock robustness. It features:

- Clock prescaler: to get the best trade-off between speed and current consumption, the clock frequency to the CPU and peripherals can be adjusted by a programmable prescaler.
- **Safe clock switching**: clock sources can be changed safely on the fly in run mode through a configuration register.
- **Clock management**: to reduce power consumption, the clock controller can stop the clock to the core, individual peripherals or memory.
- **System clock source**: three different clock sources can be used to drive the master clock SYSCLK:
 - 1-24 MHz high-speed external crystal (HSE), that can supply a PLL
 - 16 MHz high-speed internal RC oscillator (HSI), trimmable by software, that can supply a PLL
 - Multispeed internal RC oscillator (MSI), trimmable by software, able to generate 7 frequencies (65 kHz, 131 kHz, 262 kHz, 524 kHz, 1.05 MHz, 2.1 MHz, 4.2 MHz).
 When a 32.768 kHz clock source is available in the system (LSE), the MSI frequency can be trimmed by software down to a ±0.5% accuracy.
- **Auxiliary clock source**: two ultra-low-power clock sources that can be used to drive the LCD controller and the real-time clock:
 - 32.768 kHz low-speed external crystal (LSE)
 - 37 kHz low-speed internal RC (LSI), also used to drive the independent watchdog. The LSI clock can be measured using the high-speed internal RC oscillator for greater precision.
- **RTC and LCD clock sources:** the LSI, LSE or HSE sources can be chosen to clock the RTC and the LCD, whatever the system clock.
- **USB clock source:** the embedded PLL has a dedicated 48 MHz clock output to supply the USB interface.
- **Startup clock:** after reset, the microcontroller restarts by default with an internal 2 MHz clock (MSI). The prescaler ratio and clock source can be changed by the application program as soon as the code execution starts.
- Clock security system (CSS): this feature can be enabled by software. If a HSE clock failure occurs, the master clock is automatically switched to HSI and a software interrupt is generated if enabled.
- **Clock-out capability (MCO: microcontroller clock output):** it outputs one of the internal clocks for external use by the application.

Several prescalers allow the configuration of the AHB frequency, each APB (APB1 and APB2) domains. The maximum frequency of the AHB and the APB domains is 32 MHz. See *Figure 2* for details on the clock tree.

3.7 Memories

The STM32L151VD-X and STM32L152VD-X devices have the following features:

- 80 Kbytes of embedded RAM accessed (read/write) at CPU clock speed with 0 wait states. With the enhanced bus matrix, operating the RAM does not lead to any performance penalty during accesses to the system bus (AHB and APB buses).
- The non-volatile memory is divided into three arrays:
 - 384 Kbytes of embedded Flash program memory
 - 16 Kbytes of data EEPROM
 - Options bytes

Flash program and data EEPROM are divided into two banks, this enables writing in one bank while running code or reading data in the other bank.

The options bytes are used to write-protect or read-out protect the memory (with 4 Kbytes granularity) and/or readout-protect the whole memory with the following options:

- Level 0: no readout protection
- Level 1: memory readout protection, the Flash memory cannot be read from or written to if either debug features are connected or boot in RAM is selected
- Level 2: chip readout protection, debug features (ARM Cortex-M3 JTAG and serial wire) and boot in RAM selection disabled (JTAG fuse)

The whole non-volatile memory embeds the error correction code (ECC) feature.

3.8 DMA (direct memory access)

The flexible 12-channel, general-purpose DMA is able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. The DMA controller supports circular buffer management, avoiding the generation of interrupts when the controller reaches the end of the buffer.

Each channel is connected to dedicated hardware DMA requests, with software trigger support for each channel. Configuration is done by software and transfer sizes between source and destination are independent.

The DMA can be used with the main peripherals: SPI, I²C, USART, general-purpose timers, DAC and ADC.

Pi						2VD-X pin definitions (Pin functio	•
LQFP100	WLCSP104	Pin name	Pin Type ⁽¹⁾	I / O structure	Main function ⁽²⁾ (after reset)	Alternate functions	Additional functions
31	H6	PA6	I/O	FT	PA6	TIM3_CH1/TIM10_CH1/S PI1_MISO/ LCD_SEG3	ADC_IN6/ COMP1_INP/ OPAMP2_VINP
32	К7	PA7	I/O	FT	PA7	TIM3_CH2/TIM11_CH1/ SPI1_MOSI/ LCD_SEG4	ADC_IN7/ COMP1_INP/ OPAMP2_VINM
33	L7	PC4	I/O	FT	PC4	LCD_SEG22	ADC_IN14/ COMP1_INP
34	M7	PC5	I/O	FT	PC5	LCD_SEG23	ADC_IN15/ COMP1_INP
35	J6	PB0	I/O	тс	PB0	TIM3_CH3/LCD_SEG5	ADC_IN8/ COMP1_INP/ OPAMP2_VOUT/ VREF_OUT
36	K6	PB1	I/O	FT	PB1	TIM3_CH4/LCD_SEG6	ADC_IN9/ COMP1_INP/ VREF_OUT
37	M6	PB2	I/O	FT	PB2/ BOOT1	BOOT1	ADC_IN0b
38	L6	PE7	I/O	тс	PE7	-	ADC_IN22/ COMP1_INP
39	M5	PE8	I/O	тс	PE8	-	ADC_IN23/ COMP1_INP
40	M4	PE9	I/O	тс	PE9	TIM2_CH1_ETR	ADC_IN24/ COMP1_INP
41	J5	PE10	I/O	тс	PE10	TIM2_CH2	ADC_IN25/ COMP1_INP
42	L5	PE11	I/O	FT	PE11	TIM2_CH3	-
43	M3	PE12	I/O	FT	PE12	TIM2_CH4/SPI1_NSS	-
44	K5	PE13	I/O	FT	PE13	SPI1_SCK	-
45	L4	PE14	I/O	FT	PE14	SPI1_MISO	-
46	K4	PE15	I/O	FT	PE15	SPI1_MOSI	-
47	M2	PB10	I/O	FT	PB10	TIM2_CH3/I2C2_SCL/ USART3_TX/ LCD_SEG10	-

Table 7. STM32L151VD-X and STM32L152VD-X pin definitions (continued)

P
Б
ð
ß
õ
Ē
ĕ
0
su

			Tat	ole 8. Alte	rnate fur	nction inp	ut/output	t (continued	l)					
		Digital alternate function number												
	AFIO0	AFIO1	AFIO2	AFIO3	AFIO4	AFIO5	AFIO6	AFIO7	AFIO8	•	AFIO11		AFIO14	AFIO15
Port name		Alternate function												
	SYSTEM	TIM2	TIM3/4/ 5	TIM9/ 10/11	I2C1/2	SPI1/2	SPI3	USART1/2/ 3	UART4/ 5	-	LCD	-	CPRI	SYSTEM
PG12	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
PG13	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
PG14	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
PG15	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
PH0OSC_IN	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PH1OSC_OUT	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PH2	-	-	-	-	-	-	-	-	-	-	-	-	-	-

48/118

DocID027267 Rev 3

6.1.6 Power supply scheme

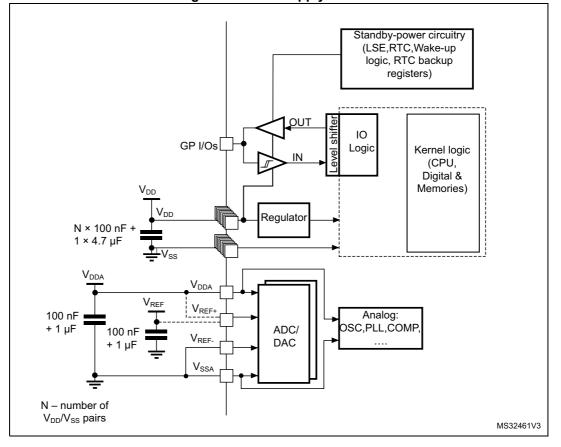


Figure 8. Power supply scheme

- Positive current injection is not possible on these I/Os. A negative injection is induced by V_{IN}<V_{SS}. I_{INJ(PIN)} must never be exceeded. Refer to *Table 9* for maximum allowed input voltage values.
- A positive injection is induced by V_{IN} > V_{DD} while a negative injection is induced by V_{IN} < V_{SS}. I_{INJ(PIN)} must never be exceeded. Refer to *Table 9: Voltage characteristics* for the maximum allowed input voltage values.
- When several inputs are submitted to a current injection, the maximum ΣI_{INJ(PIN)} is the absolute sum of the positive and negative injected currents (instantaneous values).

Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	–65 to +150	°C
TJ	Maximum junction temperature	150	°C

Table 11. Thermal characteristics

6.3 Operating conditions

6.3.1 General operating conditions

Symbol	Parameter	Conditions	Min	Max	Unit	
f _{HCLK}	Internal AHB clock frequency	-	0	32		
f _{PCLK1}	Internal APB1 clock frequency	-	0	32	MHz	
f _{PCLK2}	Internal APB2 clock frequency	-	0	32		
		BOR detector disabled	1.65	3.6		
V _{DD}	Standard operating voltage	BOR detector enabled, at power on	1.8	3.6	V	
		BOR detector disabled, after power on	1.65	3.6		
V _{DDA} ⁽¹⁾	Analog operating voltage (ADC and DAC not used)	Must be the same voltage as	1.65	3.6	V	
VDDA` ∕	Analog operating voltage (ADC or DAC used)	V _{DD} ⁽²⁾	1.8	3.6	v	
		FT pins; 2.0 V ⊴V _{DD}	-0.3	5.5 ⁽³⁾		
V		FT pins; V _{DD} < 2.0 V	-0.3	5.25 ⁽³⁾	v	
V _{IN}	I/O input voltage	BOOT0 pin	0	5.5	v	
		Any other pin	-0.3	V _{DD} +0.3		
Р	Power dissipation at TA = 85 °C for	LQFP100 package	-	465	mW	
P _D	suffix 6 or TA = 105 °C for suffix $7^{(4)}$	WLCSP104 package	-	435	11100	
Та	Ambient temperature for 6 suffix version	Maximum power dissipation ⁽⁵⁾	-40	85	°C	
IA	Ambient temperature for 7 suffix version	Maximum power dissipation	-40	105		
TJ	Junction temperature range	6 suffix version	-40	105	J°	
IJ		7 suffix version	-40	110		

Table 12. General operating conditions

1. When the ADC is used, refer to Table 54: ADC characteristics.

Symbol	Parameter	Cond	litions	f _{HCLK}	Тур	Max ⁽¹⁾	Unit
					-		•
			Range 3, V _{CORE} =1.2	1 MHz	225	500	
			V VOS[1:0] = 11	2 MHz	420	750	μA
				4 MHz	780	1200	
		f _{HSE} = f _{HCLK} up to 16 MHz included,		4 MHz	0.98	1.6	
		f _{HSE} = f _{HCLK} /2	Range 2, V _{CORE} =1.5 V VOS[1:0] = 10	8 MHz	1.85	2.9	mA
	Supply current in Run mode, code	nt in mode, uted		16 MHz	3.6	5.2	
I _{DD}			Range 1, V _{CORE} =1.8 V VOS[1:0] = 01	8 MHz	2.2	3.5	
(Run from				16 MHz	4.4	6.5	
Flash)	executed			32 MHz	8.6	12	
from FI	from Flash		Range 2, V _{CORE} =1.5 V VOS[1:0] = 10	16 MHz	3.6	5.2	
			Range 1, V _{CORE} =1.8 V VOS[1:0] = 01	32 MHz	8.7	12.3	
		MSI clock, 65 kHz	_	65 kHz	42	145	
		MSI clock, 524 kHz	Range 3, V _{CORE} =1.2 V VOS[1:0] = 11	524 kHz	135	250	μA
		MSI clock, 4.2 MHz		4.2 MHz	820	1200	

Table 16. Current consumption in Run mode, code with data processing running from Flash

1. Guaranteed by characterization results, unless otherwise specified.

2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).

Symbol	Parameter	Conc	Conditions			Max ⁽¹⁾	Unit
			Range 3,	1 MHz	51	220	
			V _{CORE} =1.2 V	2 MHz	81	300	
			VOS[1:0] = 11	4 MHz	140	380	-
		$f_{HSE} = f_{HCLK}$ up to	Banga 2	4 MHz	175	500	
		16 MHz included, f _{HSE} = f _{HCLK} /2	Range 2, V _{CORE} =1.5 V	8 MHz	330	700	
		above 16 MHz (PLL ON) ⁽²⁾	VOS[1:0] = 10	16 MHz	625	1100	
			Panga 1	8 MHz	395	800	
	Supply current		Range 1, V _{CORE} =1.8 V	16 MHz	760	1250	
	in Sleep mode, Flash		VOS[1:0] = 01	32 MHz	1700	2700	
	OFF	HSI clock source	Range 2, V _{CORE} =1.5 V VOS[1:0] = 10	16 MHz	670	1100	-
		(16 MHz)	Range 1, V _{CORE} =1.8 V VOS[1:0] = 01	32 MHz	1750	2700	
		MSI clock, 65 kHz	Range 3, V _{CORE} =1.2 V	65 kHz	19	92	
		MSI clock, 524 kHz		524 kHz	33	110	
(Clean)		MSI clock, 4.2 MHz	VOS[1:0] = 11	4.2 MHz	150	273	
{DD} (Sleep)		$f{HSE} = f_{HCLK}$ up to 16 MHz included, $f_{HSE} = f_{HCLK}/2$ above 16 MHz (PLL ON) ⁽²⁾	Range 3, V _{CORE} =1.2 V VOS[1:0] = 11	1 MHz	63	250	- μΑ - -
				2 MHz	93	300	
				4 MHz	155	380	
			Range 2, V _{CORE} =1.5 V VOS[1:0] = 10	4 MHz	190	500	
				8 MHz	340	700	
	Supply current			16 MHz	640	1120	
	in Sleep		Range 1,	8 MHz	410	800	
	mode, Flash ON		V _{CORE} =1.8 V	16 MHz	770	1300	
			VOS[1:0] = 01	32 MHz	1750	2700	
		HSI clock source	Range 2, V _{CORE} =1.5 V VOS[1:0] = 10	16 MHz	690	1160	
		(16 MHz)	Range 1, V _{CORE} =1.8 V VOS[1:0] = 01	32 MHz	1750	2800	
	Supply current	MSI clock, 65 kHz	Range 3,	65 kHz	31	105	1
	in Sleep mode, Flash	MSI clock, 524 kHz	V _{CORE} =1.2V	524 kHz	45	125	1
	ON	MSI clock, 4.2 MHz	VOS[1:0] = 11	4.2 MHz	160	290	1

1. Guaranteed by characterization results, unless otherwise specified.

2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register)

6.3.6 **External clock source characteristics**

High-speed external user clock generated from an external source

In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO.The external clock signal has to respect the I/O characteristics in Section 6.3.12. However, the recommended clock input waveform is shown in Figure 11.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f	User external clock source	CSS is on or PLL is used	1	8	32	MHz
f _{HSE_ext}	requency	CSS is off, PLL not used	0	8	32	MHz
V _{HSEH}	OSC_IN input pin high level voltage		$0.7V_{DD}$	-	V _{DD}	v
V _{HSEL}	OSC_IN input pin low level voltage		V _{SS}	-	$0.3V_{\text{DD}}$	v
t _{w(HSEH)} t _{w(HSEL)}	OSC_IN high or low time	-	12	-	-	ns
t _{r(HSE)} t _{f(HSE)}	OSC_IN rise or fall time		-	-	20	113
C _{in(HSE)}	OSC_IN input capacitance		-	2.6	-	pF

1. Guaranteed by design.

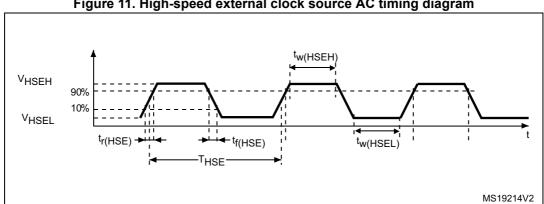


Figure 11. High-speed external clock source AC timing diagram

Low-speed external user clock generated from an external source

The characteristics given in the following table result from tests performed using a low-speed external clock source, and under the conditions summarized in *Table 12*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{LSE_ext}	User external clock source frequency		1	32.768	1000	kHz
V _{LSEH}	OSC32_IN input pin high level voltage		0.7V _{DD}	-	V _{DD}	v
V _{LSEL}	OSC32_IN input pin low level voltage	-	V _{SS}	-	0.3V _{DD}	v
t _{w(LSEH)} t _{w(LSEL)}	OSC32_IN high or low time		465	-	-	ns
t _{r(LSE)} t _{f(LSE)}	OSC32_IN rise or fall time		-	-	10	115
C _{IN(LSE)}	OSC32_IN input capacitance	-	-	0.6	-	pF

 Table 26. Low-speed external user clock characteristics⁽¹⁾

1. Guaranteed by design.

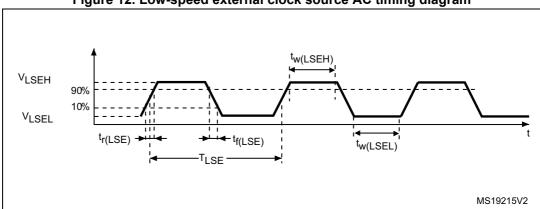


Figure 12. Low-speed external clock source AC timing diagram

High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be supplied with a 1 to 24 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in *Table 27*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

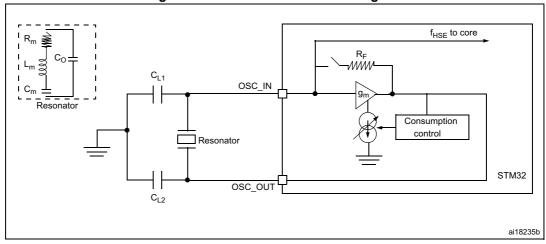


Figure 13. HSE oscillator circuit diagram

1. R_{EXT} value depends on the crystal characteristics.

Low-speed external clock generated from a crystal/ceramic resonator

The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in *Table 28*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

r								
Symbol	Parameter	Conditions	Min	Тур	Max	Unit		
f _{LSE}	Low speed external oscillator frequency	-	-	32.768	-	kHz		
R _F	Feedback resistor -		-	1.2	-	MΩ		
C ⁽²⁾	Recommended load capacitance versus equivalent serial resistance of the crystal $(R_S)^{(3)}$	R _S = 30 kΩ	-	8	-	pF		
I _{LSE}	LSE driving current	V_{DD} = 3.3 V, V_{IN} = V_{SS}	-	-	1.1	μA		
		V _{DD} = 1.8 V	-	450	-			
I _{DD (LSE)}	LSE oscillator current consumption	V _{DD} = 3.0 V	-	600	-	nA		
		V _{DD} = 3.6V	-	750	-			
9 _m	Oscillator transconductance	-	3	-	-	µA/V		
$t_{SU(LSE)}^{(4)}$	Startup time	V_{DD} is stabilized	-	1	-	S		

Table 28. LSE oscillator characterist	ics (f _{LSE} = 32.768 kHz) ⁽¹⁾
---------------------------------------	--

1. Guaranteed by characterization results.

2. Refer to the note and caution paragraphs below the table, and to the application note AN2867 "Oscillator design guide for ST microcontrollers".

 The oscillator selection can be optimized in terms of supply current using an high quality resonator with small R_S value for example MSIV-TIN32.768kHz. Refer to crystal manufacturer for more details.

Driver characteristics ⁽¹⁾							
Symbol Parameter Conditions Min Max							
t _{rfm}	Rise/ fall time matching	t _r /t _f	90	110	%		
V _{CRS}	Output signal crossover voltage		1.3	2.0	V		

Table 51. USB: full speed electrical characteristics (continued)

1. Guaranteed by design.

2. Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB Specification - Chapter 7 (version 2.0).

I2S characteristics

Symbol	Parameter	Conditions	Min	Max	Unit
f _{MCK}	I2S Main Clock Output		256 x 8K	256xFs ⁽¹⁾	MHz
£	120 alask fraguerau	Master data: 32 bits	-	64xFs	N 41 I
f _{CK}	I2S clock frequency	Slave data: 32 bits	-	64xFs	MHz
D _{CK}	I2S clock frequency duty cycle Slave receiver, 48KH		30	70	%
t _{r(CK)}	I2S clock rise time	Consoltive load CL = 20nE		8	
t _{f(CK)}	I2S clock fall time	Capacitive load CL=30pF	-	8	
t _{v(WS)}	WS valid time	Master mode	4	24	
t _{h(WS)}	WS hold time	Master mode	0	-	
t _{su(WS)}	WS setup time	Slave mode	15	-	
t _{h(WS)}	WS hold time	Slave mode	0	-	
$t_{su(SD_MR)}$	Data input setup time	Master receiver	8	-	
$t_{su(SD_SR)}$	Data input setup time	Slave receiver	9	-	
t _{h(SD_MR)}	Data input hold time	Master receiver	5	-	ns
t _{h(SD_SR)}		Slave receiver	4	-	
t _{v(SD_ST)}	Data output valid time	Slave transmitter (after enable edge)	-	64	
t _{h(SD_ST)}	Data output hold time	Slave transmitter (after enable edge)	22	-	
t _{v(SD_MT)}	Data output valid time	Master transmitter (after enable edge)	-	12	
t _{h(SD_MT)}	Data output hold time	Master transmitter (after enable edge)	8	-	

Table 52. I2S characteristics

1. The maximum for 256xFs is 8 MHz

Note: Refer to the I2S section of the product reference manual for more details about the sampling frequency (Fs), f_{MCK} , f_{CK} and D_{CK} values. These values reflect only the digital peripheral behavior, source clock precision might slightly change them. DCK depends mainly on the

6.3.18 DAC electrical specifications

Data guaranteed by design, unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{DDA}	Analog supply voltage	-	1.8	-	3.6	
V _{REF+}	Reference supply voltage	V _{REF+} must always be below V _{DDA}	1.8	-	3.6	V
V _{REF-}	Lower reference voltage	-		V _{SSA}		
. (1)	Current consumption on	No load, middle code (0x800)	-	130	220	
I _{DDVREF+} ⁽¹⁾	V _{REF+} supply V _{REF+} = 3.3 V	No load, worst code (0x000)	-	220	350	
. (1)	Current consumption on	No load, middle code (0x800)	-	210	320	μA
I _{DDA} ⁽¹⁾	V _{DDA} supply V _{DDA} = 3.3 V	No load, worst code (0xF1C)	-	320	520	
$R_L^{(2)}$	Resistive load		5	-	-	kΩ
C _L ⁽²⁾	Capacitive load	DAC output buffer ON	-	-	50	pF
R _O	Output impedance	DAC output buffer OFF	12	16	20	kΩ
V _{DAC_OUT}	Voltage on DAC_OUT output	DAC output buffer ON	0.2	-	V _{DDA} – 0.2	v
		DAC output buffer OFF	0.5	-	V _{REF+} – 1LSB	mV
DNL ⁽¹⁾		$C_L \le 50 \text{ pF}, \text{ R}_L \ge 5 \text{ k}\Omega$ DAC output buffer ON	-	1.5	3	
	linearity ⁽³⁾	No R _L , C _L \leq 50 pF DAC output buffer OFF	-	1.5	3	
INL ⁽¹⁾	Integral non linearity ⁽⁴⁾	$C_L \le 50 \text{ pF}, R_L \ge 5 \text{ k}\Omega$ DAC output buffer ON	-	2	4	
	integral non intearity.	No R _L , C _L ≤50 pF DAC output buffer OFF	-	2	4	LSB
Offset ⁽¹⁾	Offset error at code	$C_{L} \le 50 \text{ pF}, R_{L} \ge 5 \text{ k}\Omega$ DAC output buffer ON	-	±10	±25	
Unset /	0x800 ⁽⁵⁾	No R _L , C _L \leq 50 pF DAC output buffer OFF	-	±5	±8	
Offset1 ⁽¹⁾	Offset error at code 0x001 ⁽⁶⁾	No R_L , $C_L \le 50 \text{ pF}$ DAC output buffer OFF	-	±1.5	±5	

7 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

7.1 LQFP100, 14 x 14 mm, 100-pin low-profile quad flat package information

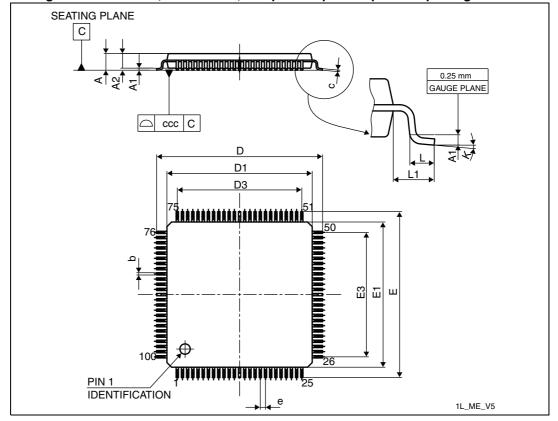


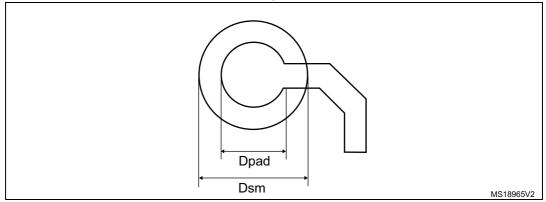
Figure 28. LQFP100, 14 x 14 mm, 100-pin low-profile quad flat package outline

1. Drawing is not to scale.

Symbol		millimeters			inches ⁽¹⁾	
Symbol	Min	Тур	Max	Min	Тур	Max
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571

DocID027267 Rev 3

0k.al		millimeters		inches ⁽¹⁾			
Symbol	Min	Тур	Max	Min	Тур	Max	
А	0.525	0.555	0.585	0.0207	0.0219	0.023	
A1	-	0.175	-	-	0.0069	-	
A2	-	0.38	-	-	0.015	-	
A3 ⁽²⁾	-	0.025	-	-	0.001	-	
ø b ⁽³⁾	0.22	0.25	0.28	0.0087	0.0098	0.011	
D	4.06	4.095	4.13	0.1598	0.1612	0.1626	
E	5.059	5.094	5.129	0.1992	0.2006	0.2019	
е	-	0.4	-	-	0.0157	-	
e1	-	3.2	-	-	0.126	-	
e2	-	4.4	-	-	0.1732	-	
F	-	0.447	-	-	0.0176	-	
G	-	0.347	-	-	0.0137	-	
aaa	-	-	0.1	-	-	0.0039	
bbb	-	-	0.1	-	-	0.0039	
CCC	-	-	0.1	-	-	0.0039	
ddd	-	-	0.05	-	-	0.002	
eee	-	-	0.05	-	-	0.002	


 Table 65. WLCSP104, 0.4 mm pitch wafer level chip scale package mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

2. Back side coating.

3. Dimension is measured at the maximum bump diameter parallel to primary datum Z.

Figure 32. WLCSP104, 0.4 mm pitch wafer level chip scale package recommended footprint

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics – All rights reserved

DocID027267 Rev 3

