

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2 0 0 0 0 0	
Product Status	Obsolete
Core Processor	R8C
Core Size	16-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SIO, SSU, UART/USART
Peripherals	POR, PWM, Voltage Detect, WDT
Number of I/O	47
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	2.5K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 12x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	52-LQFP
Supplier Device Package	52-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f21356mnfp-v0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.3 **Block Diagram**

Figure 1.2 shows a Block Diagram.

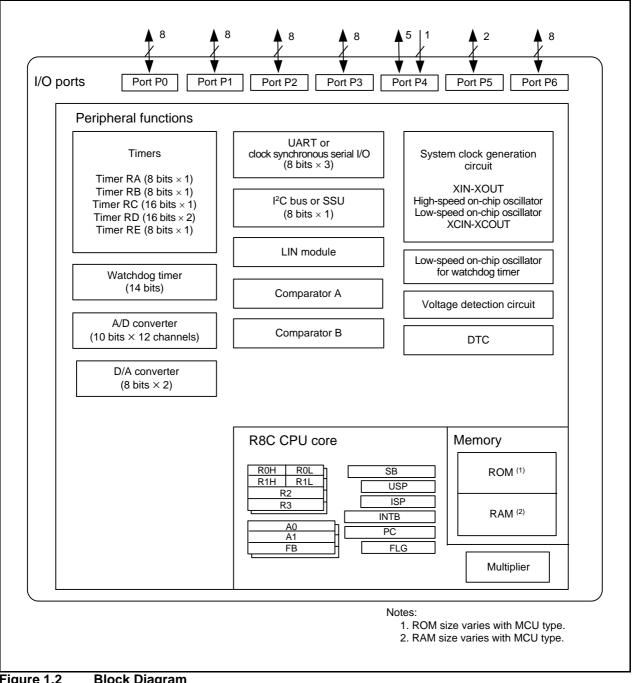


Figure 1.2 **Block Diagram**

				I/O Pin	Functions for	Peripher	al Modu	les
Pin Number	Control Pin	Port	Interrupt	Timer	Serial Interface	SSU	I ² C bus	A/D Converter, D/A Converter, Comparator A, Comparator B
36		P1_2	KI2	(TRCIOB)				AN10/LVREF
37		P1_1	KI1	(TRCIOA/ TRCTRG)				AN9/LVCMP2
38		P1_0	KI0	(TRCIOD)				AN8/LVCMP1
39		P0_7		(TRCIOC)				AN0/DA1
40		P0_6		(TRCIOD)				AN1/DA0
41		P0_5		(TRCIOB)				AN2
42		P0_4		TREO (/TRCIOB)				AN3
43		P0_3		(TRCIOB)	(CLK1)			AN4
44		P0_2		(TRCIOA/ TRCTRG)	(RXD1)			AN5
45		P0_1		(TRCIOA/ TRCTRG)	(TXD1)			AN6
46		P0_0		(TRCIOA/ TRCTRG)				AN7
47		P6_4			(RXD1)			
48		P6_3			(TXD1)			
49		P6_2			(CLK1)			
50		P6_1						
51		P6_0		(TREO)				
52		P5_7						

 Table 1.5
 Pin Name Information by Pin Number (2)

Note:

1. Can be assigned to the pin in parentheses by a program.

2.8.7 Interrupt Enable Flag (I)

The I flag enables maskable interrupts.

Interrupts are disabled when the I flag is set to 0, and are enabled when the I flag is set to 1. The I flag is set to 0 when an interrupt request is acknowledged.

2.8.8 Stack Pointer Select Flag (U)

ISP is selected when the U flag is set to 0; USP is selected when the U flag is set to 1. The U flag is set to 0 when a hardware interrupt request is acknowledged or the INT instruction of software interrupt numbers 0 to 31 is executed.

2.8.9 Processor Interrupt Priority Level (IPL)

IPL is 3 bits wide and assigns processor interrupt priority levels from level 0 to level 7. If a requested interrupt has higher priority than IPL, the interrupt is enabled.

2.8.10 Reserved Bit

If necessary, set to 0. When read, the content is undefined.

Special Function Registers (SFRs) 4.

An SFR (special function register) is a control register for a peripheral function. Tables 4.1 to 4.12 list the special function registers and Table 4.13 lists the ID Code Areas and Option Function Select Area.

Address	Register	Symbol	After Reset
0000h			
0001h			
0002h			
0003h			
0004h	Processor Mode Register 0	PM0	00h
0005h	Processor Mode Register 1	PM1	00h
0006h	System Clock Control Register 0	CM0	00101000b
0007h	System Clock Control Register 1	CM1	0010000b
0008h	Module Standby Control Register	MSTCR	00h
0009h	System Clock Control Register 3	CM3	00h
000Ah	Protect Register	PRCR	00h
000Bh	Reset Source Determination Register	RSTFR	0XXXXXXXb ⁽²⁾
000Ch	Oscillation Stop Detection Register	OCD	00000100b
000Dh	Watchdog Timer Reset Register	WDTR	XXh
000Eh	Watchdog Timer Start Register	WDTS	XXh
000Fh	Watchdog Timer Control Register	WDTC	00111111b
0010h			
0011h			
0012h			
0013h			
0014h			
0015h	High-Speed On-Chip Oscillator Control Register 7	FRA7	When shipping
0016h			
0017h			
0018h			
0019h			
001Ah			
001Bh			
001Ch	Count Source Protection Mode Register	CSPR	00h
			1000000b ⁽³⁾
001Dh			
001Eh			
001Fh			
0020h			
0021h			
0022h			
0023h	High-Speed On-Chip Oscillator Control Register 0	FRA0	00h
0024h	High-Speed On-Chip Oscillator Control Register 1	FRA1	When shipping
0025h	High-Speed On-Chip Oscillator Control Register 2	FRA2	00h
0026h	On-Chip Reference Voltage Control Register	OCVREFCR	00h
0027h			
0028h	Clock Prescaler Reset Flag	CPSRF	00h
0029h	High-Speed On-Chip Oscillator Control Register 4	FRA4	When Shipping
002Ah	High-Speed On-Chip Oscillator Control Register 5	FRA5	When Shipping
002Bh	High-Speed On-Chip Oscillator Control Register 6	FRA6	When Shipping
002Ch			
002Dh			
002Eh			
002Fh	High-Speed On-Chip Oscillator Control Register 3	FRA3	When shipping
0030h	Voltage Monitor Circuit/Comparator A Control Register	CMPA	00h
0031h	Voltage Monitor Circuit Edge Select Register	VCAC	00h
0032h			
0033h	Voltage Detect Register 1	VCA1	00001000b
0034h	Voltage Detect Register 2	VCA2	00h ⁽⁴⁾
			00100000b ⁽⁵⁾
0035h			
0036h	Voltage Detection 1 Level Select Register	VD1LS	00000111b
0037h			
0038h	Voltage Monitor 0 Circuit Control Register	VW0C	1100X010b (4)
00000			1100X010b (5)
0039h	Voltage Monitor 1 Circuit Control Register	VW1C	10001010b
000311	Tranage monitor i onour control register	***10	100010100

Table 4.1 SFR Information (1)⁽¹⁾

X: Undefined Notes:

1.

The blank areas are reserved and cannot be accessed by users. The CWR bit in the RSTFR register is set to 0 after power-on and voltage monitor 0 reset. Hardware reset, software reset, or watchdog timer 2. reset does not affect this bit.

The CSPROINI bit in the OFS register is set to 0. 3.

The LVDAS bit in the OFS register is set to 1. 4.

5. The LVDAS bit in the OFS register is set to 0.

Address	Register	Symbol	After Reset
0080h	DTC Activation Control Register	DTCTL	00h
0081h			
0082h			
0083h			
0084h			
0085h			
0086h			
0087h			
		DTOENO	0.01
0088h	DTC Activation Enable Register 0	DTCEN0	00h
0089h	DTC Activation Enable Register 1	DTCEN1	00h
008Ah	DTC Activation Enable Register 2	DTCEN2	00h
008Bh	DTC Activation Enable Register 3	DTCEN3	00h
008Ch	DTC Activation Enable Register 4	DTCEN4	00h
008Dh	DTC Activation Enable Register 5	DTCEN5	00h
008Eh	DTC Activation Enable Register 6	DTCEN6	00h
008Eh		DICENO	0011
0090h			
0091h			
0092h			
0093h			
0094h			
0095h			
0096h			
0090h			
0098h			
0099h			
009Ah			
009Bh			
009Ch			
009Dh			
009Eh			
009Eh			
	LIADTO Transmit/Descrive Mede Descister	LIOND	0.01
00A0h	UART0 Transmit/Receive Mode Register	U0MR	00h
00A1h	UART0 Bit Rate Register	U0BRG	XXh
00A2h	UART0 Transmit Buffer Register	U0TB	XXh
00A3h	1		XXh
00A4h	UART0 Transmit/Receive Control Register 0	U0C0	00001000b
00A5h	UART0 Transmit/Receive Control Register 1	U0C1	00000010b
00A6h	UART0 Receive Buffer Register	UORB	XXh
00A7h		CONE	XXh
		LIGNER	
00A8h	UART2 Transmit/Receive Mode Register	U2MR	00h
00A9h	UART2 Bit Rate Register	U2BRG	XXh
00AAh	UART2 Transmit Buffer Register	U2TB	XXh
00ABh			XXh
00ACh	UART2 Transmit/Receive Control Register 0	U2C0	00001000b
00ADh	UART2 Transmit/Receive Control Register 1	U2C1	0000010b
00AEh	UART2 Receive Buffer Register	U2RB	XXh
00AEh 00AFh		02100	XXh
	LIADT2 Digital Filter Eurotion Salast Deviator		
00B0h	UART2 Digital Filter Function Select Register	URXDF	00h
00B1h			
00B2h			
00B3h			
00B4h			
00B5h			1
00B6h			
00B0h			
00B8h			
00B9h			
00BAh			
	UART2 Special Mode Register 5	U2SMR5	00h
00BBh		U2SMR4	00h
	UAR12 Special Mode Register 4	02310114	
00BCh	UART2 Special Mode Register 4		
00BCh 00BDh	UART2 Special Mode Register 3	U2SMR3	000X0X0Xb
00BCh			

Table 4.3	SFR Information	(3) (1)
-----------	-----------------	---------

X: Undefined Note: 1. The blank areas are reserved and cannot be accessed by users.

Address	Register	Symbol	After Reset
0100h	Timer RA Control Register	TRACR	00h
0101h	Timer RA I/O Control Register	TRAIOC	00h
0102h	Timer RA Mode Register	TRAMR	00h
0103h	Timer RA Prescaler Register	TRAPRE	FFh
0104h	Timer RA Register	TRA	FFh
0105h	LIN Control Register 2	LINCR2	00h
0106h	LIN Control Register	LINCR	00h
0107h	LIN Status Register	LINST	00h
0108h	Timer RB Control Register	TRBCR	00h
0109h	Timer RB One-Shot Control Register	TRBOCR	00h
010Ah	Timer RB I/O Control Register	TRBIOC	00h
010Bh	Timer RB Mode Register	TRBMR	00h
010Ch	Timer RB Prescaler Register	TRBPRE	FFh
010Dh	Timer RB Secondary Register	TRBSC	FFh
010Eh	Timer RB Primary Register	TRBPR	FFh
010Fh			
0110h			
0111h			
0112h			
0113h			
0114h			
0115h			1
0116h			1
0117h			+
0117h 0118h	Timer RE Second Data Register / Counter Data Register	TRESEC	00h
0119h	Timer RE Minute Data Register / Compare Data Register	TREMIN	00h
011Ah	Timer RE Hour Data Register	TREHR	00h
011Bh	Timer RE Day of Week Data Register	TREWK	00h
011Ch	Timer RE Control Register 1	TRECR1	00h
011Dh	Timer RE Control Register 2	TRECR2	00h
011Eh	Timer RE Count Source Select Register	TRECSR	00001000b
011Fh		INLOON	000010000
	Times DO Mada Davistor	TROMP	04004000
0120h	Timer RC Mode Register	TRCMR	01001000b
0121h	Timer RC Control Register 1	TRCCR1	00h
0122h	Timer RC Interrupt Enable Register	TRCIER	01110000b
0123h	Timer RC Status Register	TRCSR	01110000b
0124h	Timer RC I/O Control Register 0	TRCIOR0	10001000b
0125h	Timer RC I/O Control Register 1	TRCIOR1	10001000b
0126h	Timer RC Counter	TRC	00h
0120h		into	00h
		TROOPA	
0128h	Timer RC General Register A	TRCGRA	FFh
0129h			FFh
012Ah	Timer RC General Register B	TRCGRB	FFh
012Bh			FFh
012Ch	Timer RC General Register C	TRCGRC	FFh
012Dh	, č		FFh
012Eh	Timer RC General Register D	TRCGRD	FFh
012En			FFh
	Timor BC Control Register 2	TRCCR2	
	Timer RC Control Register 2	TRCCR2	00011000b
0131h	Timer RC Digital Filter Function Select Register	TRCDF	00h
0132h	Timer RC Output Master Enable Register	TRCOER	01111111b
0133h	Timer RC Trigger Control Register	TRCADCR	00h
0134h		1	1
0135h	Timer RD Control Expansion Register	TRDECR	00h
0136h	Timer RD Trigger Control Register	TRDADCR	00h
0137h	Timer RD Start Register	TRDSTR	11111100b
0138h	Timer RD Mode Register	TRDMR	00001110b
0139h	Timer RD PWM Mode Register	TRDPMR	10001000b
013Ah	Timer RD Function Control Register	TRDFCR	1000000b
013Bh	Timer RD Output Master Enable Register 1	TRDOER1	FFh
013Ch	Timer RD Output Master Enable Register 2	TRDOER2	01111111b
013Dh	Timer RD Output Control Register	TRDOCR	00h
			0.011
	Timer RD Digital Filter Function Select Register 0		00h
013Eh 013Fh	Timer RD Digital Filter Function Select Register 0 Timer RD Digital Filter Function Select Register 1	TRDDF0 TRDDF1	00h 00h

SFR Information (5)⁽¹⁾ Table 4.5

Note: 1. The blank areas are reserved and cannot be accessed by users.

Table 4.12	SFR Information (12) ⁽¹⁾
------------	-------------------------------------

Address	Register	Symbol	After Reset
2CF0h	DTC Control Data 22	DTCD22	XXh
2CF1h			XXh
2CF2h			XXh
2CF3h			XXh
2CF4h			XXh
2CF5h			XXh
2CF6h			XXh
2CF7h			XXh
2CF8h	DTC Control Data 23	DTCD23	XXh
2CF9h			XXh
2CFAh			XXh
2CFBh			XXh
2CFCh			XXh
2CFDh			XXh
2CFEh			XXh
2CFFh			XXh
2D00h			
:			
2FFFh			

X: Undefined

Note: 1. The blank areas are reserved and cannot be accessed by users.

Table 4.13 ID Code Areas and Option Function Select Area

Address	Area Name	Symbol	After Reset
:			-
FFDBh	Option Function Select Register 2	OFS2	(Note 1)
:			
FFDFh	ID1		(Note 2)
FFE3h	ID2		(Note 2)
:			
FFEBh	ID3		(Note 2)
:			
FFEFh	ID4		(Note 2)
			(NI-+- 0)
FFF3h	ID5		(Note 2)
FFF7h	ID6		(Note 2)
	ID0		(Note 2)
FFFBh	I ID7		(Note 2)
			(1000 2)
FFFFh	Option Function Select Register	OFS	(Note 1)
40.01		0.0	

Notes:

 The option function select area is allocated in the flash memory, not in the SFRs. Set appropriate values as ROM data by a program. Do not write additions to the option function select area. If the block including the option function select area is erased, the option function select area is set to FFh.

When blank products are shipped, the option function select area is set to FFh. It is set to the written value after written by the user.

When blank products are shipped, the option function select area is set to FFh. This is set to the written value area written by the user.
The ID code areas are allocated in the flash memory, not in the SFRs. Set appropriate values as ROM data by a program. Do not write additions to the ID code areas. If the block including the ID code areas is erased, the ID code areas are set to FFh. When blank products are shipped, the ID code areas are set to FFh. They are set to the written value after written by the user. When factory-programming products are shipped, the value of the ID code areas is the value programmed by the user.

Symbol	Parameter		Conditions		Standard			Unit
Symbol	Falameter		Cond		Min.	Тур.	Max.	Unit
-	Resolution		Vref = AVCC	-	-	10	Bit	
-	Absolute accuracy	10-bit mode	Vref = AVcc = 5.0 V	AN0 to AN7 input, AN8 to AN11 input	-	-	±3	LSB
			Vref = AVCC = 3.3 V	AN0 to AN7 input, AN8 to AN11 input	-	-	±5	LSB
			Vref = AVCC = 3.0 V	AN0 to AN7 input, AN8 to AN11 input	-	-	±5	LSB
			Vref = AVCC = 2.2 V	AN0 to AN7 input, AN8 to AN11 input	_	-	±5	LSB
		8-bit mode	Vref = AVCC = 5.0 V	AN0 to AN7 input, AN8 to AN11 input	_	-	±2	LSB
			Vref = AVCC = 3.3 V	AN0 to AN7 input, AN8 to AN11 input	-	-	±2	LSB
			Vref = AVcc = 3.0 V	AN0 to AN7 input, AN8 to AN11 input	-	-	±2	LSB
			Vref = AVCC = 2.2 V	AN0 to AN7 input, AN8 to AN11 input	-	-	±2	LSB
φAD	A/D conversion clock		$4.0 \text{ V} \leq \text{Vref} = \text{AVCC} \leq$	5.5 V ⁽²⁾	2	-	20	MHz
			$3.2 \text{ V} \leq \text{Vref} = \text{AVCC} \leq$	5.5 V ⁽²⁾	2	-	16	MHz
			$2.7 \text{ V} \leq \text{Vref} = \text{AVCC} \leq$	5.5 V ⁽²⁾	2	-	10	MHz
			$2.2 \text{ V} \leq \text{Vref} = \text{AVCC} \leq$	5.5 V ⁽²⁾	2	-	5	MHz
-	Tolerance level impedance				-	3	-	kΩ
t CONV	Conversion time	10-bit mode	$Vref = AVCC = 5.0 V, \phi$	AD = 20 MHz	2.2	-	_	μS
		8-bit mode	$Vref = AVCC = 5.0 V, \phi$	AD = 20 MHz	2.2	-	_	μS
tSAMP	Sampling time		$\phi AD = 20 MHz$		0.8	-	-	μS
lVref	Vref current		$Vcc = 5 V$, $XIN = f1 = \phi AD = 20 MHz$		-	45	-	μΑ
Vref	Reference voltage				2.2	_	AVcc	V
VIA	Analog input voltage (3)				0	-	Vref	V
OCVREF	On-chip reference voltage		$2 \text{ MHz} \le \phi \text{AD} \le 4 \text{ MH}$	Z	1.19	1.34	1.49	V

Table 5.3 A/D Converter Characteristics

Notes:

1. Vcc/AVcc = Vref = 2.2 to 5.5 V, Vss = 0 V and Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.

2. The A/D conversion result will be undefined in wait mode, stop mode, when the flash memory stops, and in low-currentconsumption mode. Do not perform A/D conversion in these states or transition to these states during A/D conversion.

3. When the analog input voltage is over the reference voltage, the A/D conversion result will be 3FFh in 10-bit mode and FFh in 8-bit mode.

Symbol	Parameter	Conditions		Unit			
Symbol	Falameter	Conditions	Min.	Тур.	Max.	Unit	
-	Program/erase endurance (2)		10,000 (3)	-	-	times	
-	Byte program time (program/erase endurance ≤ 1,000 times)		-	160	1,500	μS	
-	Byte program time (program/erase endurance > 1,000 times)		-	300	1,500	μS	
-	Block erase time (program/erase endurance ≤ 1,000 times)		-	0.2	1	S	
-	Block erase time (program/erase endurance > 1,000 times)		-	0.3	1	S	
td(SR-SUS)	Time delay from suspend request until suspend		-	-	5+CPU clock × 3 cycles	ms	
-	Interval from erase start/restart until following suspend request		0	-	_	μS	
-	Time from suspend until erase restart		-	-	30+CPU clock × 1 cycle	μS	
td(CMDRST- READY)	Time from when command is forcibly terminated until reading is enabled		-	-	30+CPU clock × 1 cycle	μs	
-	Program, erase voltage		2.7	_	5.5	V	
-	Read voltage		1.8	-	5.5	V	
-	Program, erase temperature		-20 (7)	-	85	°C	
-	Data hold time ⁽⁸⁾	Ambient temperature = 55 °C	20	-	-	year	

Table 5.8 Flash Memory (Data flash Block A to Block D) Electrical Characteristics

Notes:

1. Vcc = 2.7 to 5.5 V and Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.

The programming and erasure endurance is defined on a per-block basis. If the programming and erasure endurance is n (n = 10,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to different addresses in block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one. However, the same address must not be programmed more than once per erase operation (overwriting prohibited).

Endurance to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed).

4. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. In addition, averaging the erasure endurance between blocks A to D can further reduce the actual erasure endurance. It is also advisable to retain data on the erasure endurance of each block and limit the number of erase operations to a certain number.

5. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.

6. Customers desiring program/erase failure rate information should contact their Renesas technical support representative.

- 7. -40°C for D version.
- 8. The data hold time includes time that the power supply is off or the clock is not supplied.

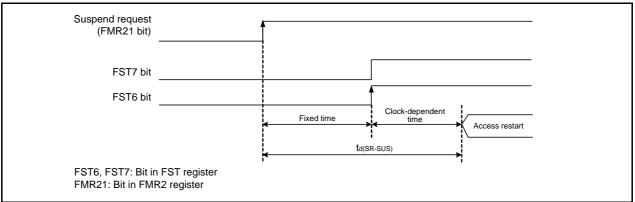


Figure 5.2 Time delay until Suspend

^{2.} Definition of programming/erasure endurance

Symbol	Parameter	Condition		Unit		
Symbol	Faranieter	Condition	Min.	Тур.	Max.	Unit
Vdet0	Voltage detection level Vdet0_0 (2)		1.80	1.90	2.05	V
	Voltage detection level Vdet0_1 ⁽²⁾		2.15	2.35	2.50	V
	Voltage detection level Vdet0_2 (2)		2.70	2.85	3.05	V
	Voltage detection level Vdet0_3 ⁽²⁾		3.55	3.80	4.05	V
_	Voltage detection 0 circuit response time (4)	At the falling of Vcc from 5 V to $(Vdet0_0 - 0.1)$ V	_	6	150	μs
-	Voltage detection circuit self power consumption	VCA25 = 1, Vcc = 5.0 V	-	1.5	-	μΑ
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽³⁾		-	-	100	μS

Notes:

1. The measurement condition is Vcc = 1.8 V to 5.5 V and $T_{opr} = -20$ to 85°C (N version) / -40 to 85°C (D version).

2. Select the voltage detection level with bits VDSEL0 and VDSEL1 in the OFS register.

3. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA25 bit in the VCA2 register to 0.

4. Time until the voltage monitor 0 reset is generated after the voltage passes Vdet0.

Symbol	Parameter	Condition		Standard	Standard		
Symbol	Falalleter	Condition	Min.	Тур.	Max.	Unit	
Vdet1	Voltage detection level Vdet1_0 ⁽²⁾	At the falling of Vcc	2.00	2.20	2.40	V	
	Voltage detection level Vdet1_1 ⁽²⁾	At the falling of Vcc	2.15	2.35	2.55	V	
	Voltage detection level Vdet1_2 ⁽²⁾	At the falling of Vcc	2.30	2.50	2.70	V	
	Voltage detection level Vdet1_3 ⁽²⁾	At the falling of Vcc	2.45	2.65	2.85	V	
	Voltage detection level Vdet1_4 ⁽²⁾	At the falling of Vcc	2.60	2.80	3.00	V	
	Voltage detection level Vdet1_5 ⁽²⁾	At the falling of Vcc	2.75	2.95	3.15	V	
	Voltage detection level Vdet1_6 ⁽²⁾	At the falling of Vcc	2.85	3.10	3.40	V	
	Voltage detection level Vdet1_7 ⁽²⁾	At the falling of Vcc	3.00	3.25	3.55	V	
	Voltage detection level Vdet1_8 ⁽²⁾	At the falling of Vcc	3.15	3.40	3.70	V	
	Voltage detection level Vdet1_9 ⁽²⁾	At the falling of Vcc	3.30	3.55	3.85	V	
	Voltage detection level Vdet1_A ⁽²⁾	At the falling of Vcc	3.45	3.70	4.00	V	
	Voltage detection level Vdet1_B (2)	At the falling of Vcc	3.60	3.85	4.15	V	
	Voltage detection level Vdet1_C ⁽²⁾	At the falling of Vcc	3.75	4.00	4.30	V	
	Voltage detection level Vdet1_D (2)	At the falling of Vcc	3.90	4.15	4.45	V	
	Voltage detection level Vdet1_E ⁽²⁾	At the falling of Vcc	4.05	4.30	4.60	V	
	Voltage detection level Vdet1_F (2)	At the falling of Vcc	4.20	4.45	4.75	V	
-	Hysteresis width at the rising of Vcc in voltage detection 1 circuit	Vdet1_0 to Vdet1_5 selected	-	0.07	-	V	
		Vdet1_6 to Vdet1_F selected	-	0.10	-	V	
-	Voltage detection 1 circuit response time ⁽³⁾	At the falling of Vcc from 5 V to (Vdet1_0 – 0.1) V	_	60	150	μs	
_	Voltage detection circuit self power consumption	VCA26 = 1, Vcc = 5.0 V	-	1.7	-	μA	
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽⁴⁾		-	-	100	μS	

Notes:

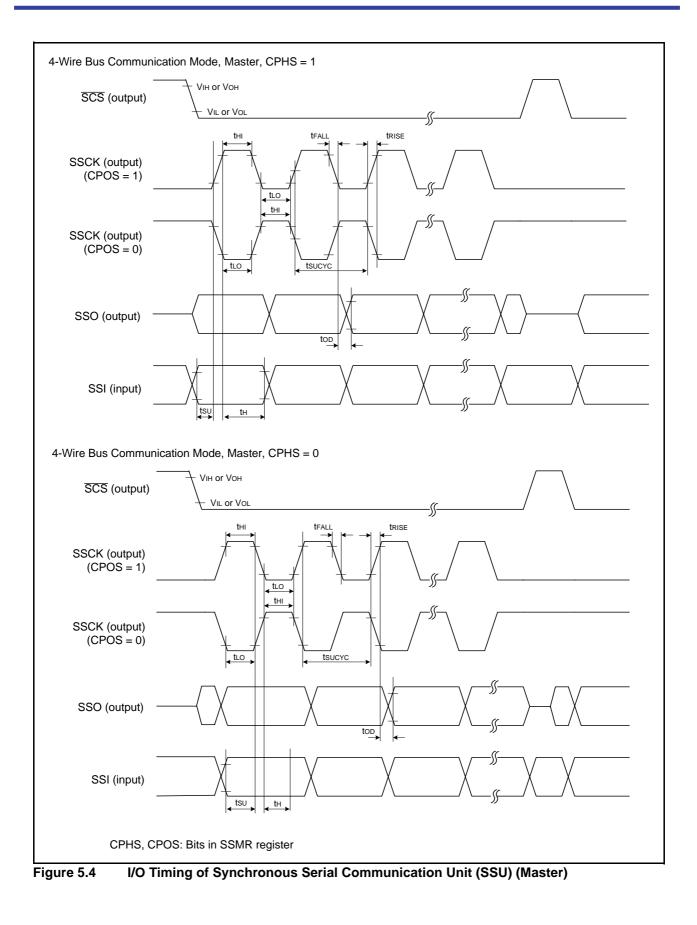
1. The measurement condition is Vcc = 1.8 V to 5.5 V and Topr = -20 to $85^{\circ}C$ (N version) / -40 to $85^{\circ}C$ (D version).

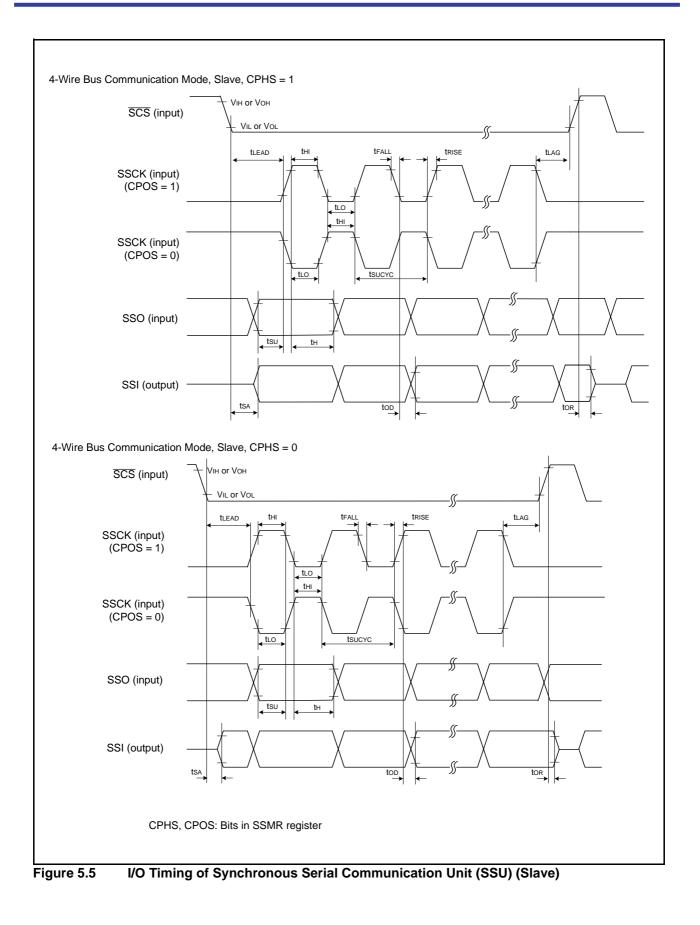
2. Select the voltage detection level with bits VD1S0 to VD1S3 in the VD1LS register.

3. Time until the voltage monitor 1 interrupt request is generated after the voltage passes Vdet1.

4. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA26 bit in the VCA2 register to 0.

Cumbal	Parameter		Conditions		Stand	Standard		
Symbol			Conditions	Min.		Max.	Unit	
tsucyc	SSCK clock cycle tim	е		4	-	-	tCYC ⁽²⁾	
tнı	SSCK clock "H" width	1		0.4	-	0.6	tsucyc	
t∟o	SSCK clock "L" width			0.4	1	0.6	tsucyc	
trise	SSCK clock rising	Master		-	-	1	tCYC (2)	
	time	Slave		-		1	μS	
tFALL	SSCK clock falling	Master		-	-	1	tCYC (2)	
time	time	Slave		-	1	1	μS	
tsu	SSO, SSI data input setup time			100	-	-	ns	
tн	SSO, SSI data input I	nold time		1	-	-	tcyc (2)	
tlead	SCS setup time	Slave		1tcyc + 50	-	-	ns	
tlag	SCS hold time	Slave		1tcyc + 50	-	-	ns	
tod	SSO, SSI data output	delay time		-		1	tCYC ⁽²⁾	
tsa	SSI slave access time	Э	$2.7~V \leq Vcc \leq 5.5~V$	_	-	1.5tcyc + 100	ns	
			$1.8 \text{ V} \leq \text{Vcc} < 2.7 \text{ V}$	-	_	1.5tcyc + 200	ns	
tor	SSI slave out open tir	ne	$2.7~V \leq Vcc \leq 5.5~V$	-	-	1.5tcyc + 100	ns	
			$1.8 \text{ V} \le \text{Vcc} < 2.7 \text{ V}$	-	-	1.5tcyc + 200	ns	


Table 5.16 Timing Requirements of Synchronous Serial Communication Unit (SSU) ⁽¹⁾


Notes:

1. Vcc = 1.8 to 5.5 V, Vss = 0 V and Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.

2. 1tcyc = 1/f1(s)

RENESAS

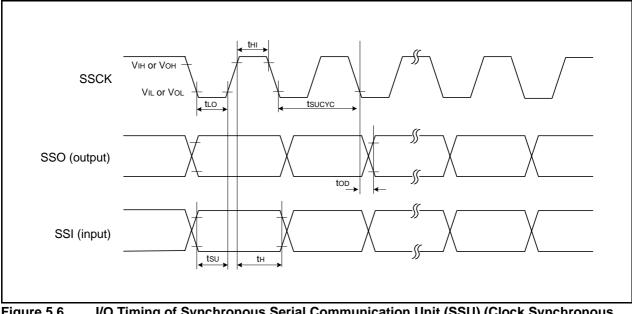


Figure 5.6 I/O Timing of Synchronous Serial Communication Unit (SSU) (Clock Synchronous Communication Mode)

Table 5.22Serial Interface

Sympol		Parameter	Star	Standard	
Symbol	Palamelei		Min.	Max.	Unit
tc(CK)	CLKi input cycle time	When external clock is selected	200	-	ns
tw(CKH)	CLKi input "H" width		100	-	ns
tW(CKL)	CLKi input "L" width		100	-	ns
td(C-Q)	TXDi output delay time		-	90	ns
th(C-Q)	TXDi hold time		0	-	ns
tsu(D-C)	RXDi input setup time		10	-	ns
th(C-D)	RXDi input hold time		90	-	ns
td(C-Q)	TXDi output delay time	When internal clock is selected	-	10	ns
tsu(D-C)	RXDi input setup time		90	-	ns
th(C-D)	RXDi input hold time		90	-	ns

i = 0 to 2 Note:

1. Vcc = 5 V and Topr = -20 to 85 °C (N version)/-40 to 85 °C (D version), unless otherwise specified.

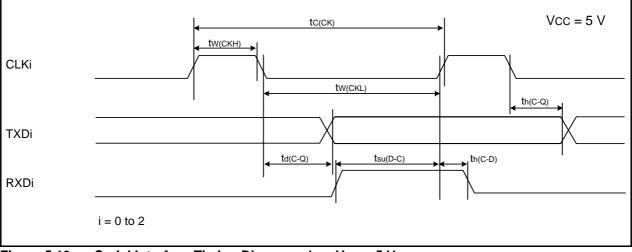
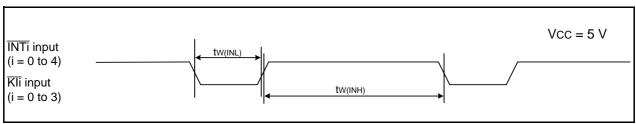


Figure 5.10 Serial Interface Timing Diagram when Vcc = 5 V


Table 5.23 External Interrupt INTi (i = 0 to 4) Input, Key Input Interrupt Kli (i = 0 to 3)

Svmbol	Parameter		Standard		
Symbol	Falameter	Min.	Max.	Unit	
tw(INH)	INTi input "H" width, Kli input "H" width	250 ⁽¹⁾	-	ns	
tw(INL)	INTi input "L" width, Kli input "L" width	250 (2)	I	ns	

Notes:

1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

2. When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

Figure 5.11 Input Timing Diagram for External Interrupt \overline{INTi} and Key Input Interrupt \overline{KIi} when Vcc = 5 V

Symbol	Parameter		Conditi	Condition		tandard		Unit
Symbol	Palar	neter	Conditi	JU	Min.	Тур.	Max.	Unit
Vон	Output "H" voltage	Other than XOUT	Drive capacity High	Iон = -5 mA	Vcc - 0.5	-	Vcc	V
			Drive capacity Low	Iон = -1 mA	Vcc - 0.5	-	Vcc	V
		XOUT		Іон = -200 μА	1.0	_	Vcc	V
Vol	Output "L" voltage	Other than XOUT	Drive capacity High	IOL = 5 mA	_	-	0.5	V
			Drive capacity Low	Iol = 1 mA	_	-	0.5	V
		XOUT		IOL = 200 μA	-	-	0.5	V
VT+-VT-	Hysteresis	INTO, INT1, INT2, INT3, INT4, KI0, KI1, KI2, KI3, TRAIO, TRCIOA, TRCIOB, TRCIOC, TRDIOB0, TRDIOC0, TRDIOC0, TRDIOC1, TRD	Vcc = 3.0 V Vcc = 3.0 V		0.1	0.4	_	V
Ін	Input "H" current		VI = 3 V, Vcc = 3.0 V	/	_	-	4.0	μΑ
lı∟	Input "L" current		VI = 0 V, Vcc = 3.0 V	/	_	_	-4.0	μA
Rpullup	Pull-up resistance		VI = 0 V, Vcc = 3.0 V	/	42	84	168	kΩ
Rfxin	Feedback resistance	XIN			-	0.3	-	MΩ
Rfxcin	Feedback resistance	XCIN			-	8	-	MΩ
VRAM	RAM hold voltage	·	During stop mode		1.8	-	-	V

Table 5.24	Electrical Characteristics (3) [2.7 V \leq Vcc $<$ 4.2 V]
------------	---

Note:

1. 2.7 V \leq Vcc < 4.2 V and Topr = -20 to 85°C (N version) / -40 to 85°C (D version), f(XIN) = 10 MHz, unless otherwise specified.

Table 5.28Serial Interface

Symbol		Parameter		Standard	
Symbol	Palamelei		Min.	Max.	Unit
tc(CK)	CLKi input cycle time	When external clock is selected	300	-	ns
tw(ckh)	CLKi input "H" width		150	-	ns
tw(CKL)	CLKi Input "L" width		150	-	ns
td(C-Q)	TXDi output delay time		-	120	ns
th(C-Q)	TXDi hold time		0	-	ns
tsu(D-C)	RXDi input setup time		30	-	ns
th(C-D)	RXDi input hold time		90	-	ns
td(C-Q)	TXDi output delay time	When internal clock is selected	-	30	ns
tsu(D-C)	RXDi input setup time		120	-	ns
th(C-D)	RXDi input hold time		90	-	ns

i = 0 to 2 Note:

1. Vcc = 3 V and Topr = -20 to 85 °C (N version)/-40 to 85 °C (D version), unless otherwise specified.

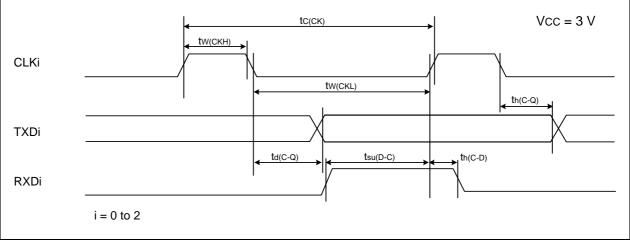


Figure 5.14 Serial Interface Timing Diagram when Vcc = 3 V

Table 5.29 External Interrupt INTi (i = 0 to 4) Input, Key Input Interrupt Kli (i = 0 to 3)

Svmbol	Parameter		Standard		
Symbol	Falanielei	Min.	Max.	Unit	
tw(INH)	INTi input "H" width, Kli input "H" width	380 (1)	-	ns	
tw(INL)	INTi input "L" width, Kli input "L" width	380 (2)	I	ns	

Notes:

1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

2. When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

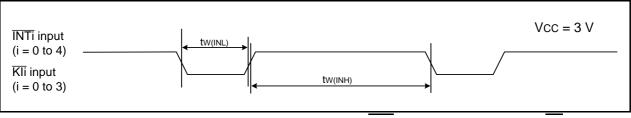
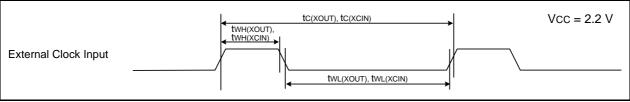



Figure 5.15 Input Timing Diagram for External Interrupt INTi and Key Input Interrupt Kli when Vcc = 3 V

Timing Requirements (Unless Otherwise Specified: Vcc = 2.2 V, Vss = 0 V at Topr = 25°C)

Table 5.32 External Clock Input (XOUT, XCIN)

Symbol	Parameter	Stan	Unit	
	Falameter		Max.	Unit
tc(XOUT)	XOUT input cycle time	200	-	ns
twh(xout)	XOUT input "H" width	90	-	ns
twl(xout)	XOUT input "L" width	90	-	ns
tc(XCIN)	XCIN input cycle time	14	-	μS
twh(xcin)	XCIN input "H" width	7	-	μS
twl(xcin)	XCIN input "L" width	7	-	μS

Figure 5.16 External Clock Input Timing Diagram when Vcc = 2.2 V

Table 5.33 TRAIO Input

Symbol	Parameter		Standard	
Symbol		Min.	Max.	Unit
tc(TRAIO)	TRAIO input cycle time	500	-	ns
twh(traio)	TRAIO input "H" width	200	=	ns
twl(traio)	TRAIO input "L" width	200	-	ns

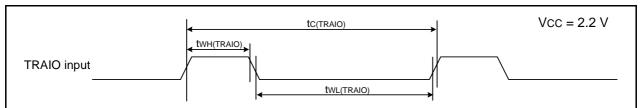


Figure 5.17 TRAIO Input Timing Diagram when Vcc = 2.2 V

Table 5.34Serial Interface

Symbol	Parameter		Standard		Linit
			Min.	Max.	Unit
tc(CK)	CLKi input cycle time	When external clock is selected	800	-	ns
tw(CKH)	CLKi input "H" width		400	-	ns
tW(CKL)	CLKi input "L" width		400	-	ns
td(C-Q)	TXDi output delay time		-	200	ns
th(C-Q)	TXDi hold time		0	-	ns
tsu(D-C)	RXDi input setup time		150	-	ns
th(C-D)	RXDi input hold time		90	-	ns
td(C-Q)	TXDi output delay time	When internal clock is selected	-	200	ns
tsu(D-C)	RXDi input setup time		150	-	ns
th(C-D)	RXDi input hold time		90	-	ns

i = 0 to 2 Note:

1. Vcc = 2.2 V and Topr = -20 to 85 °C (N version)/-40 to 85 °C (D version), unless otherwise specified.

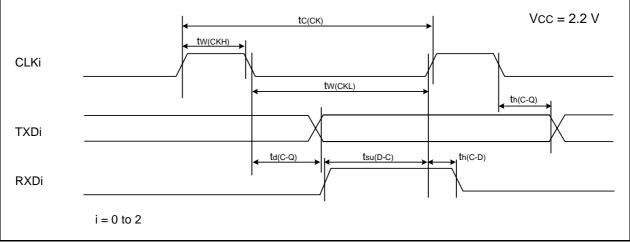


Figure 5.18 Serial Interface Timing Diagram when Vcc = 2.2 V

Table 5.35 External Interrupt INTi (i = 0 to 4) Input, Key Input Interrupt Kli (i = 0 to 3)

Symbol	Parameter		Standard	
			Max.	Unit
tw(INH)	INTi input "H" width, Kli input "H" width	1000 (1)	-	ns
tw(INL)	INTi input "L" width, Kli input "L" width		-	ns

Notes:

1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

2. When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

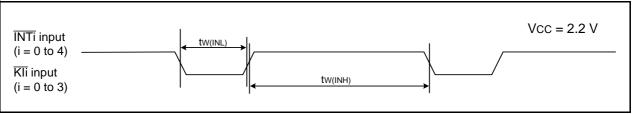


Figure 5.19 Input Timing Diagram for External Interrupt INTi and Key Input Interrupt Kli when Vcc = 2.2 V

Notice

- All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The recommended where you have failed to obtain the prior written consent of Renesas Electronics and the prior written consent of Renesas Electronics and the prior written consent of Renesas Electronics. The recommended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
- "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools
- personal electronic equipment; and industrial robots.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically
 designed for life support.
- *Specific*: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and mafunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and mafunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Refer to "http://www.renesas.com/" for the latest and detailed information

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Renesas Electronics America Inc. 2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A. Tel: +1-408-588-4000, Fax: +1-408-588-6130 Renesas Electronics Canada Limited 1011 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada Tel: +1-905-898-5441, Fax: +1-905-898-3220 Renesas Electronics Europe Limited Dukes Meadow, Millboard Road, Boume End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-585-100, Fax: +44-1628-585-900 Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +44-1628-585-900 Renesas Electronics Curope GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +44-1628-585-900 Renesas Electronics Curope GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +44-1628-585-900 Renesas Electronics (Shanghai) Co., Ltd. 7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China Tel: +486-12-4877-71818, Fax: +486-21-6877-71818, Fax: +486-21-6876-71884 Renesas Electronics Taiwan Co., Ltd. 11 Faybourf: Faybourd, Fax: +480-21-685-6776 Renesas Electronics Korea Co., Ltd. 11F, Samik Lavied' on Billog, 720-2 Veoksam-Dong, Kangnam-Ku, Seoul 135-080, Ko