

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2 0 0 0 0 0	
Product Status	Active
Core Processor	R8C
Core Size	16-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SIO, SSU, UART/USART
Peripherals	POR, PWM, Voltage Detect, WDT
Number of I/O	47
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	10K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 12x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	52-LQFP
Supplier Device Package	52-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f2135cmnfp-30

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.1.2 Specifications

Tables 1.1 and 1.2 outline the Specifications for R8C/35M Group.

lable 1.1	Function	Specification
CPU	Central processing	R8C CPU core
	unit	Number of fundamental instructions: 89
	unit	Minimum instruction execution time:
		50 ns (f(XIN) = 20 MHz, VCC = 2.7 to 5.5 V)
		200 ns (f(XIN) = 5 MHz, VCC = 1.8 to 5.5 V)
		• Multiplier: 16 bits \times 16 bits \rightarrow 32 bits
		• Multiply-accumulate instruction: 16 bits \times 16 bits \times 16 bits \rightarrow 32 bits
		 Operation mode: Single-chip mode (address space: 1 Mbyte)
Memory	ROM, RAM, Data	Refer to Table 1.3 Product List for R8C/35M Group.
-	flash	
Power Supply	Voltage detection	Power-on reset
Voltage	circuit	Voltage detection 3 (detection level of voltage detection 0 and voltage
Detection		detection 1 selectable)
I/O Ports	Programmable I/O	Input-only: 1 pin
	ports	 CMOS I/O ports: 47, selectable pull-up resistor
		High current drive ports: 47
Clock	Clock generation	4 circuits: XIN clock oscillation circuit,
	circuits	XCIN clock oscillation circuit (32 kHz),
		High-speed on-chip oscillator (with frequency adjustment function),
		Low-speed on-chip oscillator
		Oscillation stop detection: XIN clock oscillation stop detection function
		• Frequency divider circuit: Dividing selectable 1, 2, 4, 8, and 16
		Low power consumption modes:
		Standard operating mode (high-speed clock, low-speed clock, high-speed
		on-chip oscillator, low-speed on-chip oscillator), wait mode, stop mode
		Real-time clock (timer RE)
Interrupts		 Number of interrupt vectors: 69
		 External Interrupt: 9 (INT × 5, Key input × 4)
		Priority levels: 7 levels
Watchdog Tim	er	• 14 bits × 1 (with prescaler)
		Reset start selectable
		Low-speed on-chip oscillator for watchdog timer selectable
DTC (Data Tra	insfer Controller)	• 1 channel
		Activation sources: 33
		Transfer modes: 2 (normal mode, repeat mode)
Timer	Timer RA	8 bits × 1 (with 8-bit prescaler)
		Timer mode (period timer), pulse output mode (output level inverted every
		period), event counter mode, pulse width measurement mode, pulse period
	TimerDD	measurement mode
	Timer RB	8 bits × 1 (with 8-bit prescaler) Timer mode (period timer), programmable waveform generation mode (PWM
		output), programmable one-shot generation mode, programmable wait one-
		shot generation mode
	Timer RC	16 bits × 1 (with 4 capture/compare registers)
		Timer mode (input capture function, output compare function), PWM mode
		(output 3 pins), PWM2 mode (PWM output pin)
	Timer RD	16 bits × 2 (with 4 capture/compare registers)
		Timer mode (input capture function, output compare function), PWM mode
		(output 6 pins), reset synchronous PWM mode (output three-phase
		waveforms (6 pins), sawtooth wave modulation), complementary PWM mode
		(output three-phase waveforms (6 pins), triangular wave modulation), PWM3
		mode (PWM output 2 pins with fixed period)
	Timer RE	8 bits x 1
		Real-time clock mode (count seconds, minutes, hours, days of week), output
	1	compare mode

Table 1.1	Specifications for R8C/35M Group (1)

1.3 **Block Diagram**

Figure 1.2 shows a Block Diagram.

Figure 1.2 **Block Diagram**

				I/O Pin	Functions for	Peripher	al Modu	les
Pin Number	Control Pin	Port	Interrupt	Timer	Serial Interface	SSU	I ² C bus	A/D Converter, D/A Converter, Comparator A, Comparator B
36		P1_2	KI2	(TRCIOB)				AN10/LVREF
37		P1_1	KI1	(TRCIOA/ TRCTRG)				AN9/LVCMP2
38		P1_0	KI0	(TRCIOD)				AN8/LVCMP1
39		P0_7		(TRCIOC)				AN0/DA1
40		P0_6		(TRCIOD)				AN1/DA0
41		P0_5		(TRCIOB)				AN2
42		P0_4		TREO (/TRCIOB)				AN3
43		P0_3		(TRCIOB)	(CLK1)			AN4
44		P0_2		(TRCIOA/ TRCTRG)	(RXD1)			AN5
45		P0_1		(TRCIOA/ TRCTRG)	(TXD1)			AN6
46		P0_0		(TRCIOA/ TRCTRG)				AN7
47		P6_4			(RXD1)			
48		P6_3			(TXD1)			
49		P6_2			(CLK1)			
50		P6_1						
51		P6_0		(TREO)				
52		P5_7						

 Table 1.5
 Pin Name Information by Pin Number (2)

Note:

1. Can be assigned to the pin in parentheses by a program.

2. Central Processing Unit (CPU)

Figure 2.1 shows the CPU Registers. The CPU contains 13 registers. R0, R1, R2, R3, A0, A1, and FB configure a register bank. There are two sets of register bank.

2.1 Data Registers (R0, R1, R2, and R3)

R0 is a 16-bit register for transfer, arithmetic, and logic operations. The same applies to R1 to R3. R0 can be split into high-order bits (R0H) and low-order bits (R0L) to be used separately as 8-bit data registers. R1H and R1L are analogous to R0H and R0L. R2 can be combined with R0 and used as a 32-bit data register (R2R0). R3R1 is analogous to R2R0.

2.2 Address Registers (A0 and A1)

A0 is a 16-bit register for address register indirect addressing and address register relative addressing. It is also used for transfer, arithmetic, and logic operations. A1 is analogous to A0. A1 can be combined with A0 and as a 32-bit address register (A1A0).

2.3 Frame Base Register (FB)

FB is a 16-bit register for FB relative addressing.

2.4 Interrupt Table Register (INTB)

INTB is a 20-bit register that indicates the starting address of an interrupt vector table.

2.5 Program Counter (PC)

PC is 20 bits wide and indicates the address of the next instruction to be executed.

2.6 User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)

The stack pointers (SP), USP and ISP, are each 16 bits wide. The U flag of FLG is used to switch between USP and ISP.

2.7 Static Base Register (SB)

SB is a 16-bit register for SB relative addressing.

2.8 Flag Register (FLG)

FLG is an 11-bit register indicating the CPU state.

2.8.1 Carry Flag (C)

The C flag retains carry, borrow, or shift-out bits that have been generated by the arithmetic and logic unit.

2.8.2 Debug Flag (D)

The D flag is for debugging only. Set it to 0.

2.8.3 Zero Flag (Z)

The Z flag is set to 1 when an arithmetic operation results in 0; otherwise to 0.

2.8.4 Sign Flag (S)

The S flag is set to 1 when an arithmetic operation results in a negative value; otherwise to 0.

2.8.5 Register Bank Select Flag (B)

Register bank 0 is selected when the B flag is 0. Register bank 1 is selected when this flag is set to 1.

2.8.6 Overflow Flag (O)

The O flag is set to 1 when an operation results in an overflow; otherwise to 0.

Table 4.12	SFR Information (12) ⁽¹⁾
------------	-------------------------------------

Address	Register	Symbol	After Reset
2CF0h	DTC Control Data 22	DTCD22	XXh
2CF1h			XXh
2CF2h			XXh
2CF3h			XXh
2CF4h			XXh
2CF5h			XXh
2CF6h			XXh
2CF7h			XXh
2CF8h	DTC Control Data 23	DTCD23	XXh
2CF9h			XXh
2CFAh			XXh
2CFBh			XXh
2CFCh			XXh
2CFDh			XXh
2CFEh			XXh
2CFFh	7		XXh
2D00h			
:			
2FFFh			

X: Undefined

Note: 1. The blank areas are reserved and cannot be accessed by users.

Table 4.13 ID Code Areas and Option Function Select Area

Address	Area Name	Symbol	After Reset
:			-
FFDBh	Option Function Select Register 2	OFS2	(Note 1)
:			
FFDFh	ID1		(Note 2)
FFE3h	ID2		(Note 2)
:			
FFEBh	ID3		(Note 2)
:			
FFEFh	ID4		(Note 2)
			(NI-+- 0)
FFF3h	ID5		(Note 2)
FFF7h	ID6		(Note 2)
	ID0		(Note 2)
FFFBh	I ID7		(Note 2)
			(1000 2)
FFFFh	Option Function Select Register	OFS	(Note 1)
40.01		0.0	

Notes:

 The option function select area is allocated in the flash memory, not in the SFRs. Set appropriate values as ROM data by a program. Do not write additions to the option function select area. If the block including the option function select area is erased, the option function select area is set to FFh.

When blank products are shipped, the option function select area is set to FFh. It is set to the written value after written by the user.

When blank products are shipped, the option function select area is set to FFh. This is set to the written value area written by the user.
The ID code areas are allocated in the flash memory, not in the SFRs. Set appropriate values as ROM data by a program. Do not write additions to the ID code areas. If the block including the ID code areas is erased, the ID code areas are set to FFh. When blank products are shipped, the ID code areas are set to FFh. They are set to the written value after written by the user. When factory-programming products are shipped, the value of the ID code areas is the value programmed by the user.

Symbol	Parameter		Conditions	Standard			Unit		
Symbol		Para	ameter		Conditions	Min.	Тур.	Max.	Unit
Vcc/AVcc	Supply voltage					1.8	-	5.5	V
Vss/AVss	Supply voltage					-	0	-	V
Viн	Input "H" voltage	Other th	an CMOS ir	nput		0.8 Vcc	-	Vcc	V
		CMOS	Input level		$4.0~V \leq Vcc \leq 5.5~V$	0.5 Vcc	-	Vcc	V
		input	switching	: 0.35 Vcc	$2.7~V \leq Vcc < 4.0~V$	0.55 Vcc	-	Vcc	V
			function (I/O port)		$1.8~V \leq Vcc < 2.7~V$	0.65 Vcc	-	Vcc	V
			(1/0 port)	Input level selection	$4.0~V \leq Vcc \leq 5.5~V$	0.65 Vcc	-	Vcc	V
				: 0.5 Vcc	$2.7~V \leq Vcc < 4.0~V$	0.7 Vcc	-	Vcc	V
					$1.8~V \leq Vcc < 2.7~V$	0.8 Vcc	-	Vcc	V
				Input level selection	$4.0~V \leq Vcc \leq 5.5~V$	0.85 Vcc	I	Vcc	V
				: 0.7 Vcc	$2.7~\text{V} \leq \text{Vcc} < 4.0~\text{V}$	0.85 Vcc	I	Vcc	V
					$1.8~\text{V} \leq \text{Vcc} < 2.7~\text{V}$	0.85 Vcc	I	Vcc	V
		Externa	l clock input	(XOUT)		1.2	I	Vcc	V
VIL	Input "L" voltage	Other th	an CMOS ir	nput		0	I	0.2 Vcc	V
		CMOS	Input level	Input level selection	$4.0~V \leq Vcc \leq 5.5~V$	0	I	0.2 Vcc	V
		input	switching	: 0.35 Vcc	$2.7~\text{V} \leq \text{Vcc} < 4.0~\text{V}$	0	-	0.2 Vcc	V
			function		$1.8~\text{V} \leq \text{Vcc} < 2.7~\text{V}$	0	-	0.2 Vcc	V
			(I/O port)	Input level selection	$4.0 \text{ V} \le \text{Vcc} \le 5.5 \text{ V}$	0	-	0.4 Vcc	V
				: 0.5 Vcc	$2.7~\text{V} \leq \text{Vcc} < 4.0~\text{V}$	0	-	0.3 Vcc	V
				$1.8~\text{V} \leq \text{Vcc} < 2.7~\text{V}$	0	-	0.2 Vcc	V	
		Input level selection	$4.0 \text{ V} \le \text{Vcc} \le 5.5 \text{ V}$	0	-	0.55 Vcc	V		
				: 0.7 Vcc	$2.7~\text{V} \leq \text{Vcc} < 4.0~\text{V}$	0	-	0.45 Vcc	V
					$1.8~\text{V} \leq \text{Vcc} < 2.7~\text{V}$	0	-	0.35 Vcc	V
		Externa	l clock input	(XOUT)		0	-	0.4	V
IOH(sum)	Peak sum output "H'	' current	Sum of all	pins IOH(peak)		-	-	-160	mA
IOH(sum)	Average sum output "I	H" current	Sum of all	pins IOH(avg)		-	-	-80	mA
IOH(peak)	Peak output "H" curr	ent	Drive capa	city Low		-	-	-10	mA
			Drive capacity High			-	-	-40	mA
IOH(avg)	Average output "H" of	current	Drive capacity Low			-	-	-5	mA
			Drive capa	city High		-	-	-20	mA
IOL(sum)	Peak sum output "L"	current	Sum of all	pins IOL(peak)		-	-	160	mA
IOL(sum)	Average sum output "I	L" current	Sum of all	pins IOL(avg)		-	-	80	mA
IOL(peak)	Peak output "L" curre	ent	Drive capa	city Low		-	-	10	mA
			Drive capa	city High		-	-	40	mA
IOL(avg)	Average output "L" c	urrent	Drive capa	city Low		-	-	5	mA
			Drive capa	city High		-	-	20	mA
f(XIN)	XIN clock input oscil	lation free	quency		$2.7 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	-	_	20	MHz
					$1.8 \text{ V} \le \text{Vcc} < 2.7 \text{ V}$	-	_	5	MHz
f(XCIN)	XCIN clock input osc	cillation fr	equency		$1.8 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	-	32.768	50	kHz
fOCO40M	When used as the co	ount sour	ce for timer	RC or timer RD (3)	$2.7 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	32	-	40	MHz
fOCO-F	fOCO-F frequency				2.7 V ≤ Vcc ≤ 5.5 V	-	-	20	MHz
-	- 1 7				$1.8 \text{ V} \leq \text{Vcc} < 2.7 \text{ V}$	-	-	5	MHz
-	System clock freque	ncy			$2.7 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	-	-	20	MHz
		2			$1.8 \text{ V} \leq \text{Vcc} < 2.7 \text{ V}$	-	-	5	MHz
f(BCLK)	CPU clock frequency	/			$2.7 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	-	-	20	MHz
` '	- 1,				$1.8 \text{ V} \le \text{Vcc} < 2.7 \text{ V}$	_	-	5	MHz

Table 5.2 Recommended Operating Conditions

Notes:

1. Vcc = 1.8 to 5.5 V and Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.

2. The average output current indicates the average value of current measured during 100 ms.

3. fOCO40M can be used as the count source for timer RC or timer RD in the range of Vcc = 2.7 V to 5.5V.

Symbol	Parameter		Conditions		Standard			Unit
Symbol	Falameter		Cond		Min.	Тур.	Max.	Unit
-	Resolution		Vref = AVCC			-	10	Bit
-	Absolute accuracy	10-bit mode	Vref = AVcc = 5.0 V	AN0 to AN7 input, AN8 to AN11 input	-	-	±3	LSB
			Vref = AVCC = 3.3 V	AN0 to AN7 input, AN8 to AN11 input	-	-	±5	LSB
			Vref = AVCC = 3.0 V	AN0 to AN7 input, AN8 to AN11 input	-	-	±5	LSB
			Vref = AVCC = 2.2 V	AN0 to AN7 input, AN8 to AN11 input	_	-	±5	LSB
		8-bit mode	Vref = AVCC = 5.0 V	AN0 to AN7 input, AN8 to AN11 input	_	-	±2	LSB
			Vref = AVCC = 3.3 V	AN0 to AN7 input, AN8 to AN11 input	-	-	±2	LSB
			Vref = AVcc = 3.0 V	AN0 to AN7 input, AN8 to AN11 input	-	-	±2	LSB
			Vref = AVCC = 2.2 V	AN0 to AN7 input, AN8 to AN11 input	-	-	±2	LSB
φAD	A/D conversion clock		$4.0 \text{ V} \leq \text{Vref} = \text{AVCC} \leq$	5.5 V ⁽²⁾	2	-	20	MHz
			$3.2 \text{ V} \leq \text{Vref} = \text{AVCC} \leq$	5.5 V ⁽²⁾	2	-	16	MHz
			$2.7 \text{ V} \leq \text{Vref} = \text{AVcc} \leq 5.5 \text{ V}^{(2)}$		2	-	10	MHz
			$2.2 \text{ V} \leq \text{Vref} = \text{AVCC} \leq$	5.5 V ⁽²⁾	2	-	5	MHz
-	Tolerance level impedance				-	3	-	kΩ
t CONV	Conversion time	10-bit mode	$Vref = AVCC = 5.0 V, \phi$	AD = 20 MHz	2.2	-	_	μS
		8-bit mode	$Vref = AVCC = 5.0 V, \phi$	AD = 20 MHz	2.2	-	_	μS
tSAMP	Sampling time		$\phi AD = 20 MHz$		0.8	-	-	μS
lVref	Vref current		Vcc = 5 V, XIN = f1 =	$\phi AD = 20 \text{ MHz}$	-	45	-	μΑ
Vref	Reference voltage				2.2	_	AVcc	V
VIA	Analog input voltage (3)				0	-	Vref	V
OCVREF	On-chip reference voltage		$2 \text{ MHz} \le \phi \text{AD} \le 4 \text{ MH}$	Z	1.19	1.34	1.49	V

Table 5.3 A/D Converter Characteristics

Notes:

1. Vcc/AVcc = Vref = 2.2 to 5.5 V, Vss = 0 V and Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.

2. The A/D conversion result will be undefined in wait mode, stop mode, when the flash memory stops, and in low-currentconsumption mode. Do not perform A/D conversion in these states or transition to these states during A/D conversion.

3. When the analog input voltage is over the reference voltage, the A/D conversion result will be 3FFh in 10-bit mode and FFh in 8-bit mode.

Symbol	Parameter	Condition		Unit		
	Falameter	Condition	Min.	Тур.	Max.	Unit
-	Resolution		_	-	8	Bit
-	Absolute accuracy		_	-	2.5	LSB
tsu	Setup time		_	-	3	μS
Ro	Output resistor		_	6	_	kΩ
IVref	Reference power input current	(Note 2)	_	-	1.5	mA

Table 5.4 **D/A Converter Characteristics**

Notes:

1. Vcc/AVcc = Vref = 2.7 to 5.5 V and Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.

2. This applies when one D/A converter is used and the value of the DAi register (i = 0 or 1) for the unused D/A converter is 00h. The resistor ladder of the A/D converter is not included.

Table 5.5 **Comparator A Electrical Characteristics**

Symbol	Parameter	Condition		Unit		
Symbol	Falameter	Condition	Min.	Тур.	Max.	Unit
LVREF	External reference voltage input range		1.4	-	Vcc	V
LVCMP1, LVCMP2	External comparison voltage input range		-0.3	-	Vcc + 0.3	V
-	Offset		-	50	200	mV
-	Comparator output delay time (2)	At falling, VI = Vref – 100 mV	-	3	-	μs
		At falling, $V_1 = Vref - 1 V$ or below	-	1.5	-	μs
		At rising, VI = Vref + 100 mV	-	2	-	μs
		At rising, VI = Vref + 1 V or above	_	0.5	-	μs
-	Comparator operating current	Vcc = 5.0 V	_	0.5	-	μA

Notes:

1. Vcc = 2.7 to 5.5 V, Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.

2. When the digital filter is disabled.

Table 5.6 **Comparator B Electrical Characteristics**

Symbol	Parameter	Condition		Unit		
	Farameter	Condition	Min.	Тур.	Max.	Unit
Vref	IVREF1, IVREF3 input reference voltage		0	-	Vcc - 1.4	V
Vi	IVCMP1, IVCMP3 input voltage		-0.3	-	Vcc + 0.3	V
-	Offset		-	5	100	mV
td	Comparator output delay time (2)	VI = Vref ± 100 mV	-	0.1	-	μS
ICMP	Comparator operating current	Vcc = 5.0 V	-	17.5	-	μΑ

Notes:

1. Vcc = 2.7 to 5.5 V, $T_{opr} = -20$ to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified. 2. When the digital filter is disabled.

Symbol	Parameter	Condition		Unit			
Symbol	Falameter	Condition	Min.	Тур.	Max.	Unit	
Vdet2	Voltage detection level Vdet2_0 ⁽²⁾	At the falling of Vcc	3.70	4.00	4.30	V	
	Voltage detection level Vdet2_EXT (2)	At the falling of LVCMP2	1.20	1.34	1.48	V	
-	Hysteresis width at the rising of Vcc in voltage detection 2 circuit		_	0.10	_	V	
-	Voltage detection 2 circuit response time ⁽³⁾	At the falling of Vcc from 5 V to (Vdet2_0 - 0.1) V	-	20	150	μs	
-	Voltage detection circuit self power consumption	VCA27 = 1, Vcc = 5.0 V	-	1.7	-	μA	
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽⁴⁾		-	-	100	μS	

Table 5.11 Voltage Detection 2 Circuit Electrical Characteristics

Notes:

- 1. The measurement condition is Vcc = 1.8 V to 5.5 V and Topr = -20 to $85^{\circ}C$ (N version) / -40 to $85^{\circ}C$ (D version).
- 2. The voltage detection level varies with detection targets. Select the level with the VCA24 bit in the VCA2 register.

3. Time until the voltage monitor 2 interrupt request is generated after the voltage passes Vdet2.

4. Necessary time until the voltage detection circuit operates after setting to 1 again after setting the VCA27 bit in the VCA2 register to 0.

Table 5.12 Power-on Reset Circuit ⁽²⁾

Symbol	Parameter	Condition		Unit		
	Falameter	Condition	Min.	Тур.	Max.	Unit
trth	External power Vcc rise gradient	(1)	0	-	50,000	mV/ms

Notes:

1. The measurement condition is Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.

2. To use the power-on reset function, enable voltage monitor 0 reset by setting the LVDAS bit in the OFS register to 0.

 tw(por) indicates the duration the external power Vcc must be held below the valid voltage (0.5 V) to enable a power-on reset. When turning on the power after it falls with voltage monitor 0 reset disabled, maintain tw(por) for 1 ms or more.

Figure 5.3 Power-on Reset Circuit Electrical Characteristics

Symbol	Parameter		Condition		St	andard		Unit
Symbol		Falametei			Min.	Тур.	Max.	Unit
Vон	Output "H"	Other than XOUT	Drive capacity High Vcc = 5 V	Іон = -20 mA	Vcc - 2.0	-	Vcc	V
	voltage		Drive capacity Low Vcc = 5 V	Iон = -5 mA	Vcc - 2.0	-	Vcc	V
		XOUT	Vcc = 5 V	Іон = -200 μА	1.0	-	Vcc	V
Vol	Output "L"	Other than XOUT	Drive capacity High Vcc = 5 V	IoL = 20 mA	-	-	2.0	V
	voltage		Drive capacity Low Vcc = 5 V	IoL = 5 mA	-	-	2.0	V
		XOUT	Vcc = 5 V	IoL = 200 μA	-	-	0.5	V
VT+-VT-	Hysteresis	INTO, INT1, INT2, INT3, INT4, KI0, KI1, KI2, KI3, TRAIO, TRCIOA, TRCIOB, TRCIOC, TRCIOD, TRDIOA0, TRDIOB0, TRDIOC0, TRDIOD0, TRDIOC1, TRDIOD1, TRCIRG, TRCCLK, ADTRG, RXD0, RXD1, RXD2, CLK0, CLK1, CLK2, SSI, SCL, SDA, SSO	Vcc = 5.0 V		0.1	1.2	_	V
		RESET	Vcc = 5.0 V		0.1	1.2	_	V
Ін	Input "H" cu	rrent	VI = 5 V, Vcc = 5.0 V		-	_	5.0	μA
lι	Input "L" cu	rrent	VI = 0 V, Vcc = 5.0 V		-	-	-5.0	μA
Rpullup	Pull-up resis	stance	VI = 0 V, Vcc = 5.0 V		25	50	100	kΩ
Rfxin	Feedback resistance	XIN			-	0.3	-	MΩ
RfxCIN	Feedback resistance	XCIN			_	8	-	MΩ
Vram	RAM hold v	oltage	During stop mode		1.8	-	-	V

Table 5.18	Electrical Characteristics (1) [4.2 V \leq Vcc \leq 5.5 V]
------------	--

Note:

1. $4.2 \text{ V} \le \text{Vcc} \le 5.5 \text{ V}$ and $\text{T}_{opr} = -20 \text{ to } 85^{\circ}\text{C}$ (N version) / -40 to 85°C (D version), f(XIN) = 20 MHz, unless otherwise specified.

Symbol	Paramotor	Condition			Standard	ł	Unit	
Symbol	Parameter	arameter Condition		Min.	Min. Typ.		Unit	
lcc	Power supply current (Vcc = 3.3 to 5.5 V)	High-speed clock mode	XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	-	6.5	15	mA	
	Single-chip mode, output pins are open, other pins		XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	-	5.3	12.5	mA	
	are Vss		XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	-	3.6	_	mA	
			XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	3.0	_	mA	
			XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	2.2	-	mA	
			XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	1.5	_	mA	
		High-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator on fOCO-F = 20 MHz Low-speed on-chip oscillator on = 125 kHz No division	-	7.0	15	mA	
			XIN clock off High-speed on-chip oscillator on fOCO-F = 20 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	3.0	-	mA	
			XIN clock off High-speed on-chip oscillator on fOCO-F = 4 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-16, MSTIIC = MSTTRD = MSTTRC = 1	-	1	-	mA	
		Low-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8, FMR27 = 1, VCA20 = 0	-	90	400	μA	
		Low-speed clock mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz No division, FMR27 = 1, VCA20 = 0	-	85	400	μA	
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz No division, Program operation on RAM Flash memory off, FMSTP = 1, VCA20 = 0	-	47	-	μA	
		Wait mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	_	15	100	μA	
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	-	4	90	μA	
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz (peripheral clock off) While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	-	3.5	-	μA	
		Stop mode	XIN clock off, Topr = 25°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1, Peripheral clock off VCA27 = VCA26 = VCA25 = 0	-	2.0	5.0	μA	
			XIN clock off, Topr = 85°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1, Peripheral clock off VCA27 = VCA26 = VCA25 = 0	-	5.0 ⁽¹⁾ 15 ⁽²⁾	_	μA	

Electrical Characteristics (2) [3.3 V \leq Vcc \leq 5.5 V] **Table 5.19** (Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.)

Notes:

Value when the program ROM capacity of the product is 16 Kbytes to 32 Kbytes.
 Value when the program ROM capacity of the product is 48 Kbytes to 128 Kbytes.

Timing Requirements (Unless Otherwise Specified: Vcc = 5 V, Vss = 0 V at Topr = 25°C)

Table 5.20 External Clock Input (XOUT, XCIN)

Symbol	Parameter		Standard		
	Falameter	Min.	Max.	Unit	
tc(XOUT)	XOUT input cycle time	50	-	ns	
twh(xout)	XOUT input "H" width		-	ns	
twl(xout)	XOUT input "L" width	24	-	ns	
tc(XCIN)	XCIN input cycle time	14	-	μS	
twh(xcin)	XCIN input "H" width	7	-	μS	
twl(xcin)	XCIN input "L" width	7	-	μS	

Figure 5.8 External Clock Input Timing Diagram when VCC = 5 V

Table 5.21 TRAIO Input

Symbol	Parameter		Standard		
			Max.	Unit	
tc(TRAIO)	TRAIO input cycle time	100	-	ns	
twh(traio)	TRAIO input "H" width	40	-	ns	
twl(traio)	TRAIO input "L" width	40	-	ns	

Figure 5.9 TRAIO Input Timing Diagram when Vcc = 5 V

Table 5.22Serial Interface

Symbol		Parameter			Unit	
					Unit	
tc(CK)	CLKi input cycle time	When external clock is selected	200	-	ns	
tw(CKH)	CLKi input "H" width		100	-	ns	
tW(CKL)	CLKi input "L" width		100	-	ns	
td(C-Q)	TXDi output delay time		-	90	ns	
th(C-Q)	TXDi hold time		0	-	ns	
tsu(D-C)	RXDi input setup time		10	-	ns	
th(C-D)	RXDi input hold time		90	-	ns	
td(C-Q)	TXDi output delay time	When internal clock is selected	-	10	ns	
tsu(D-C)	RXDi input setup time		90	-	ns	
th(C-D)	RXDi input hold time		90	-	ns	

i = 0 to 2 Note:

1. Vcc = 5 V and Topr = -20 to 85 °C (N version)/-40 to 85 °C (D version), unless otherwise specified.

Figure 5.10 Serial Interface Timing Diagram when Vcc = 5 V

Table 5.23 External Interrupt INTi (i = 0 to 4) Input, Key Input Interrupt Kli (i = 0 to 3)

Symbol	Parameter	Standard		Unit
	Falanielei		Max.	Offic
tw(INH)	INTi input "H" width, Kli input "H" width	250 ⁽¹⁾	-	ns
tw(INL)	INTi input "L" width, Kli input "L" width		I	ns

Notes:

1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

2. When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

Figure 5.11 Input Timing Diagram for External Interrupt \overline{INTi} and Key Input Interrupt \overline{KIi} when Vcc = 5 V

Symbol	Parameter		Conditi		S	tandard		Unit
Symbol	Palar	neter	Conditi	JU	Min.	Тур.	Max.	Unit
Vон	Output "H" voltage	Other than XOUT	Drive capacity High	Iон = -5 mA	Vcc - 0.5	-	Vcc	V
			Drive capacity Low	Iон = -1 mA	Vcc - 0.5	-	Vcc	V
		XOUT		Іон = -200 μА	1.0	_	Vcc	V
Vol	Output "L" voltage	Other than XOUT	Drive capacity High	IOL = 5 mA	_	-	0.5	V
			Drive capacity Low	Iol = 1 mA	_	-	0.5	V
		XOUT		IOL = 200 μA	-	-	0.5	V
VT+-VT-	Hysteresis	INTO, INT1, INT2, INT3, INT4, KI0, KI1, KI2, KI3, TRAIO, TRCIOA, TRCIOB, TRCIOC, TRDIOB0, TRDIOC0, TRDIOC0, TRDIOC1, TRD	Vcc = 3.0 V Vcc = 3.0 V		0.1	0.4	_	V
Ін	Input "H" current		VI = 3 V, Vcc = 3.0 V	/	—	-	4.0	μA
lı∟	Input "L" current		VI = 0 V, Vcc = 3.0 V	/	_	_	-4.0	μA
Rpullup	Pull-up resistance		VI = 0 V, Vcc = 3.0 V	/	42	84	168	kΩ
Rfxin	Feedback resistance	XIN			-	0.3	-	MΩ
Rfxcin	Feedback resistance	XCIN			-	8	-	MΩ
VRAM	RAM hold voltage	·	During stop mode		1.8	-	-	V

Table 5.24	Electrical Characteristics (3) [2.7 V \leq Vcc $<$ 4.2 V]
------------	---

Note:

1. 2.7 V \leq Vcc < 4.2 V and Topr = -20 to 85°C (N version) / -40 to 85°C (D version), f(XIN) = 10 MHz, unless otherwise specified.

Electrical Characteristics (4) [2.7 V \leq Vcc < 3.3 V] **Table 5.25** (Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.)

Symbol	Parameter		Condition		Standard		Unit
-				Min.	Тур.	Max.	-
lcc	(Vcc = 2.7 to 3.3 V) Single-chip mode,	High-speed clock mode	XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	-	3.5	10	mA
	output pins are open, other pins are Vss		XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	1.5	7.5	mA
		High-speed on-chip oscillator	XIN clock off High-speed on-chip oscillator on fOCO-F = 20 MHz Low-speed on-chip oscillator on = 125 kHz No division	-	7.0	15	mA
		mode	XIN clock off High-speed on-chip oscillator on fOCO-F = 20 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	3.0	-	mA
			XIN clock off High-speed on-chip oscillator on fOCO-F = 10 MHz Low-speed on-chip oscillator on = 125 kHz No division	-	4.0	_	mA
			XIN clock off High-speed on-chip oscillator on fOCO-F = 10 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	1.5	_	mA
			XIN clock off High-speed on-chip oscillator on fOCO-F = 4 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-16 MSTIIC = MSTTRD = MSTTRC = 1	_	1	_	mA
		Low-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8, FMR27 = 1, VCA20 = 0	_	90	390	μA
		Low-speed clock mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz No division, FMR27 = 1, VCA20 = 0	_	80	400	μA
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz No division, Program operation on RAM Flash memory off, FMSTP = 1, VCA20 = 0	_	40	-	μA
		Wait mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = VCA25 = 0, VCA20 = 1	-	15	90	μA
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = VCA25 = 0, VCA20 = 1	_	4	80	μA
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz (peripheral clock off) While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0, VCA20 = 1	-	3.5	-	μA
		Stop mode	XIN clock off, $T_{opr} = 25^{\circ}C$ High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	-	2.0	5.0	μA
			XIN clock off, Topr = 85°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1	-	5.0 ⁽¹⁾ 15 ⁽²⁾	-	μA
			Peripheral clock off VCA27 = VCA26 = VCA25 = 0				

Notes:

Value when the program ROM capacity of the product is 16 Kbytes to 32 Kbytes.
 Value when the program ROM capacity of the product is 48 Kbytes to 128 Kbytes.

Table 5.28Serial Interface

Symbol	Parameter		Standard		Linit
			Min.	Max.	Unit
tc(CK)	CLKi input cycle time	When external clock is selected	300	-	ns
tw(ckh)	CLKi input "H" width		150	-	ns
tw(CKL)	CLKi Input "L" width		150	-	ns
td(C-Q)	TXDi output delay time		-	120	ns
th(C-Q)	TXDi hold time		0	-	ns
tsu(D-C)	RXDi input setup time		30	-	ns
th(C-D)	RXDi input hold time		90	-	ns
td(C-Q)	TXDi output delay time	When internal clock is selected		30	ns
tsu(D-C)	RXDi input setup time		120	-	ns
th(C-D)	RXDi input hold time		90	-	ns

i = 0 to 2 Note:

1. Vcc = 3 V and Topr = -20 to 85 °C (N version)/-40 to 85 °C (D version), unless otherwise specified.

Figure 5.14 Serial Interface Timing Diagram when Vcc = 3 V

Table 5.29 External Interrupt INTi (i = 0 to 4) Input, Key Input Interrupt Kli (i = 0 to 3)

Svmbol	Parameter		Standard	
Symbol			Max.	Unit
tw(INH)	INTi input "H" width, Kli input "H" width	380 (1)	-	ns
tw(INL)	INTi input "L" width, Kli input "L" width	380 (2)	I	ns

Notes:

1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

2. When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

Figure 5.15 Input Timing Diagram for External Interrupt INTi and Key Input Interrupt Kli when Vcc = 3 V

Symbol	Parameter		Condition		Standard			Unit
		ameter			Min.	Тур.	Max.	Unit
Vон	Output "H" voltage	Other than XOUT	Drive capacity High	Iон = -2 mA	Vcc - 0.5	I	Vcc	V
			Drive capacity Low	Iон = -1 mA	Vcc - 0.5	I	Vcc	V
		XOUT		Іон = -200 μА	1.0	-	Vcc	V
Vol	Output "L" voltage	Other than XOUT	Drive capacity High	IoL = 2 mA	-	I	0.5	V
			Drive capacity Low	IoL = 1 mA	-	-	0.5	V
		XOUT		IoL = 200 μA	-	-	0.5	V
VT+-VT-	HysteresisINT0, INT1, INT2, INT3, INT4, KI0, KI1, KI2, KI3, TRAIO, TRCIOA, TRCIOB, TRCIOC, TRCIOD, TRDIOA0, TRDIOB0, TRDIOC0, TRDIOD0, TRDIOA1, TRDIOD1, TRDIOA1, TRDIOD1, TRCTRG, TRCCLK, ADTRG, RXD0, RXD1, RXD2, CLK0, CLK1, CLK2, SSI, SCL, SDA, SSO		Vcc = 2.2 V		0.05	0.2	_	V
		RESET	Vcc = 2.2 V				-	
Ін	Input "H" current		VI = 2.2 V, Vcc = 2.2		-	-	4.0	μA
lı∟	Input "L" current		VI = 0 V, Vcc = 2.2 \		-	-	-4.0	μA
Rpullup	Pull-up resistance	1	VI = 0 V, Vcc = 2.2 \	/	70	140	300	kΩ
RfXIN	Feedback resistance	XIN			-	0.3	-	MΩ
RfXCIN	Feedback resistance	XCIN			-	8	-	MΩ
VRAM	RAM hold voltage		During stop mode		1.8	-	-	V

Table 5.30	Electrical Characteristics (5) [1.8 V \leq Vcc $<$ 2.7 V]
------------	---

Note:

1. $1.8 \text{ V} \le \text{Vcc} < 2.7 \text{ V}$ and $\text{T}_{opr} = -20 \text{ to } 85^{\circ}\text{C}$ (N version) / -40 to 85°C (D version), f(XIN) = 5 MHz, unless otherwise specified.

Package Dimensions

Diagrams showing the latest package dimensions and mounting information are available in the "Packages" section of the Renesas Electronics website.

REVISION HISTORY	R8C/35M Group Datasheet
	ried/com ereap Bataoneet

Rev.	Date		Description
		Page	Summary
0.10	Sep 28, 2010	-	First Edition issued
0.20	Feb 15, 2011	35	Table 5.11 revised, Note 2 added
		36	Table 5.13 and Table 5.14 revised
		42	Table 5.18 revised
		50	Table 5.30 revised
1.00	Jun 20, 2011	All pages	"Preliminary", "Under development" deleted
		4	Table 1.3 "(D): Under development", "(P): Under planning" deleted
		28	Table 5.2 revised
		35	Table 5.11 revised
		36	Table 5.13 revised
		43	Table 5.19 revised
		44	Table 5.20 revised
		45	Table 5.22 Note 1 revised
		47	Table 5.25 revised
		48	Table 5.26 revised
		49	Table 5.28 Note 1 revised
		51	Table 5.31 revised
		52	Table 5.32 revised
		53	Table 5.34 Note 1 revised

All trademarks and registered trademarks are the property of their respective owners.