

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	C166SV2
Core Size	16-Bit
Speed	66MHz
Connectivity	CANbus, EBI/EMI, I ² C, LINbus, SPI, SSC, UART/USART, USI
Peripherals	I ² S, POR, PWM, WDT
Number of I/O	75
Program Memory Size	576KB (576K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	50K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP Exposed Pad
Supplier Device Package	PG-LQFP-100-3
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/saf-xe164g-72f66l-ac

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

General Device Information

Table	Fable 4Pin Definitions and Functions (cont'd)					
Pin	Symbol	Ctrl.	Туре	Function		
82	P10.10	O0 / I	St/B	Bit 10 of Port 10, General Purpose Input/Output		
	U0C0_ SELO0	O1	St/B	USIC0 Channel 0 Select/Control 0 Output		
	CCU60_ COUT63	O2	St/B	CCU60 Channel 3 Output		
	AD10	OH/I	St/B	External Bus Interface Address/Data Line 10		
	U0C0_DX2C	I	St/B	USIC0 Channel 0 Shift Control Input		
	TDI_B	1	St/B	JTAG Test Data Input		
	U0C1_DX1A	1	St/B	USIC0 Channel 1 Shift Clock Input		
83	P10.11	O0 / I	St/B	Bit 11 of Port 10, General Purpose Input/Output		
	U1C0_ SCLKOUT	O1	St/B	USIC1 Channel 0 Shift Clock Output		
-	BRKOUT	02	St/B	OCDS Break Signal Output		
	AD11	OH/I	St/B	External Bus Interface Address/Data Line 11		
	U1C0_DX1D	1	St/B	USIC1 Channel 0 Shift Clock Input		
	RxDC2B	1	St/B	CAN Node 2 Receive Data Input		
	TMS_B	I	St/B	JTAG Test Mode Selection Input		
84	P1.2	O0 / I	St/B	Bit 2 of Port 1, General Purpose Input/Output		
	CCU62_ CC62	O1 / I	St/B	CCU62 Channel 2 Input/Output		
	U1C0_ SELO6	O2	St/B	USIC1 Channel 0 Select/Control 6 Output		
	U2C1_ SCLKOUT	O3	St/B	USIC2 Channel 1 Shift Clock Output		
	A10	OH	St/B	External Bus Interface Address Line 10		
	ESR1_4	1	St/B	ESR1 Trigger Input 4		
	CCU61_ T12HRB	1	St/B	External Run Control Input for T12 of CCU61		
	EX2AINA	I	St/B	External Interrupt Trigger Input		
	U2C1_DX0D	I	St/B	USIC2 Channel 1 Shift Data Input		
	U2C1_DX1C	1	St/B	USIC2 Channel 1 Shift Clock Input		

Table 6XE164 Interrupt Nodes (cont'd)

Source of Interrupt or PEC Service Request	Control Register	Vector Location ¹⁾	Trap Number
GPT2 Timer 5	GPT12E_T5IC	xx'008C _H	23 _H / 35 _D
GPT2 Timer 6	GPT12E_T6IC	xx'0090 _H	24 _H / 36 _D
GPT2 CAPREL Register	GPT12E_CRIC	xx'0094 _H	25 _H / 37 _D
CAPCOM Timer 7	CC2_T7IC	xx'0098 _H	26 _H / 38 _D
CAPCOM Timer 8	CC2_T8IC	xx'009C _H	27 _H / 39 _D
A/D Converter Request 0	ADC_0IC	xx'00A0 _H	28 _H / 40 _D
A/D Converter Request 1	ADC_1IC	xx'00A4 _H	29 _H / 41 _D
A/D Converter Request 2	ADC_2IC	xx'00A8 _H	2A _H / 42 _D
A/D Converter Request 3	ADC_3IC	xx'00AC _H	2B _H / 43 _D
A/D Converter Request 4	ADC_4IC	xx'00B0 _H	2C _H / 44 _D
A/D Converter Request 5	ADC_5IC	xx'00B4 _H	2D _H / 45 _D
A/D Converter Request 6	ADC_6IC	xx'00B8 _H	2E _H / 46 _D
A/D Converter Request 7	ADC_7IC	xx'00BC _H	2F _H / 47 _D
CCU60 Request 0	CCU60_0IC	xx'00C0 _H	30 _H / 48 _D
CCU60 Request 1	CCU60_1IC	xx'00C4 _H	31 _H / 49 _D
CCU60 Request 2	CCU60_2IC	xx'00C8 _H	32 _H / 50 _D
CCU60 Request 3	CCU60_3IC	xx'00CC _H	33 _H / 51 _D
CCU61 Request 0	CCU61_0IC	xx'00D0 _H	34 _H / 52 _D
CCU61 Request 1	CCU61_1IC	xx'00D4 _H	35 _H / 53 _D
CCU61 Request 2	CCU61_2IC	xx'00D8 _H	36 _H / 54 _D
CCU61 Request 3	CCU61_3IC	xx'00DC _H	37 _H / 55 _D
CCU62 Request 0	CCU62_0IC	xx'00E0 _H	38 _H / 56 _D
CCU62 Request 1	CCU62_1IC	xx'00E4 _H	39 _H / 57 _D
CCU62 Request 2	CCU62_2IC	xx'00E8 _H	3A _H / 58 _D
CCU62 Request 3	CCU62_3IC	xx'00EC _H	3B _H / 59 _D
Unassigned node	-	xx'00F0 _H	3C _H / 60 _D
Unassigned node	-	xx'00F4 _H	3D _H / 61 _D
Unassigned node	-	xx'00F8 _H	3E _H / 62 _D
Unassigned node	-	xx'00FC _H	3F _H / 63 _D
CAN Request 0	CAN_0IC	xx'0100 _H	40 _H / 64 _D

Table 6 XE164 Interrupt Nodes (cont'd) Source of Interrupt or PEC Control Vector Trap Location¹⁾ Number Service Request Register 41_н / 65_D CAN Request 1 CAN 1IC xx'0104_н CAN Request 2 CAN 2IC xx'0108_н 42_H / 66_D CAN Request 3 CAN 3IC xx'010C_н 43_H / 67_D **CAN Request 4** CAN 4IC 44_H / 68_D xx'0110_н CAN Request 5 CAN 5IC xx'0114_ц 45_H / 69_D CAN Request 6 CAN 6IC xx'0118_н 46_H / 70_D CAN Request 7 CAN 7IC xx'011C_н 47_H / 71_D CAN Request 8 CAN 8IC xx'0120_н 48_H / 72_D CAN Request 9 CAN 9IC xx'0124_н 49_H / 73_D CAN Request 10 CAN_10IC 4A_H / 74_D xx'0128_H 4B_н / 75_D CAN Request 11 CAN 11IC xx'012C_н CAN Request 12 CAN 12IC xx'0130_н 4C_H / 76_D CAN Request 13 CAN 13IC xx'0134_н 4D_H / 77_D CAN Request 14 CAN 14IC xx'0138_ц 4E_H / 78_D CAN Request 15 CAN 15IC xx'013C_н 4F_H / 79_D USIC0 Cannel 0, Request 0 **U0C0 0IC** xx'0140_н 50_H / 80_D USIC0 Cannel 0, Request 1 U0C0_1IC xx'0144_н 51_H / 81_D USIC0 Cannel 0, Request 2 U0C0 2IC xx'0148_н 52_н / 82_D USIC0 Cannel 1, Request 0 U0C1_0IC xx'014C_н 53_H / 83_D USIC0 Cannel 1, Request 1 U0C1 1IC xx'0150_н 54_H / 84_D USIC0 Cannel 1, Request 2 U0C1 2IC xx'0154_н 55_H / 85_D USIC1 Cannel 0, Request 0 U1C0 0IC xx'0158_н 56_H / 86_D USIC1 Cannel 0, Request 1 57_H / 87_D U1C0 1IC xx'015C_H USIC1 Cannel 0, Request 2 U1C0 2IC xx'0160_H 58_H / 88_D USIC1 Cannel 1, Request 0 U1C1 0IC xx'0164_н 59_H / 89_D USIC1 Cannel 1, Request 1 U1C1 1IC xx'0168_н 5A_H / 90_D USIC1 Cannel 1, Request 2 U1C1 2IC xx'016C_н 5B_H / 91_D USIC2 Cannel 0, Request 0 U2C0 0IC xx'0170_н 5C_н / 92_D USIC2 Cannel 0, Request 1 U2C0 1IC xx'0174_н 5D_н / 93_D USIC2 Cannel 0, Request 2 U2C0 2IC xx'0178_н 5E_H / 94_D

3.5 On-Chip Debug Support (OCDS)

The On-Chip Debug Support system built into the XE164 provides a broad range of debug and emulation features. User software running on the XE164 can be debugged within the target system environment.

The OCDS is controlled by an external debugging device via the debug interface. This consists of the JTAG port conforming to IEEE-1149. The debug interface can be completed with an optional break interface.

The debugger controls the OCDS with a set of dedicated registers accessible via the debug interface (JTAG). In addition the OCDS system can be controlled by the CPU, e.g. by a monitor program. An injection interface allows the execution of OCDS-generated instructions by the CPU.

Multiple breakpoints can be triggered by on-chip hardware, by software, or by an external trigger input. Single stepping is supported, as is the injection of arbitrary instructions and read/write access to the complete internal address space. A breakpoint trigger can be answered with a CPU halt, a monitor call, a data transfer, or/and the activation of an external signal.

Tracing data can be obtained via the debug interface, or via the external bus interface for increased performance.

The JTAG interface uses four interface signals, to communicate with external circuitry. The debug interface can be amended with two optional break lines.

When a capture/compare register has been selected for capture mode, the current contents of the allocated timer will be latched ('captured') into the capture/compare register in response to an external event at the port pin associated with this register. In addition, a specific interrupt request for this capture/compare register is generated. Either a positive, a negative, or both a positive and a negative external signal transition at the pin can be selected as the triggering event.

The contents of all registers selected for one of the five compare modes are continuously compared with the contents of the allocated timers.

When a match occurs between the timer value and the value in a capture/compare register, specific actions will be taken based on the compare mode selected.

MultiCAN Features

- CAN functionality conforming to CAN specification V2.0 B active for each CAN node (compliant to ISO 11898)
- Up to four independent CAN nodes
- 128 independent message objects (shared by the CAN nodes)
- Dedicated control registers for each CAN node
- Data transfer rate up to 1 Mbit/s, individually programmable for each node
- Flexible and powerful message transfer control and error handling capabilities
- Full-CAN functionality for message objects:
 - Can be assigned to one of the CAN nodes
 - Configurable as transmit or receive objects, or as message buffer FIFO
 - Handle 11-bit or 29-bit identifiers with programmable acceptance mask for filtering
 - Remote Monitoring Mode, and frame counter for monitoring
- Automatic Gateway Mode support
- 16 individually programmable interrupt nodes
- Analyzer mode for CAN bus monitoring

3.15 Parallel Ports

The XE164 provides up to 75 I/O lines which are organized into 7 input/output ports and 2 input ports. All port lines are bit-addressable, and all input/output lines can be individually (bit-wise) configured via port control registers. This configuration selects the direction (input/output), push/pull or open-drain operation, activation of pull devices, and edge characteristics (shape) and driver characteristics (output current) of the port drivers. The I/O ports are true bidirectional ports which are switched to high impedance state when configured as inputs. During the internal reset, all port pins are configured as inputs without pull devices active.

All port lines have alternate input or output functions associated with them. These alternate functions can be programmed to be assigned to various port pins to support the best utilization for a given application. For this reason, certain functions appear several times in **Table 9**.

All port lines that are not used for alternate functions may be used as general purpose I/O lines.

Port	Width	Alternate Functions
Port 0	8	Address lines, Serial interface lines of USIC1, CAN0, and CAN1, Input/Output lines for CCU61
Port 1	8	Address lines, Serial interface lines of USIC1 and USIC2, Input/Output lines for CCU62, OCDS control, interrupts
Port 2	13	Address and/or data lines, bus control, Serial interface lines of USIC0, CAN0, and CAN1, Input/Output lines for CCU60 and CAPCOM2, Timer control signals, JTAG, interrupts, system clock output
Port 4	8	Chip select signals, Serial interface lines of CAN2, Input/Output lines for CAPCOM2, Timer control signals
Port 5	16	Analog input channels to ADC0, Input/Output lines for CCU6x, Timer control signals, JTAG, OCDS control, interrupts

Table 9 Summary of the XE164's Parallel Ports

Table 9	Summary of the XE164's Parallel Ports (cont'd)					
Port	Width	Alternate Functions				
Port 6	4	ADC control lines, Serial interface lines of USIC1, Timer control signals, OCDS control				
Port 7	5	ADC control lines, Serial interface lines of USIC0, Input/Output lines for CCU62, Timer control signals, JTAG, OCDS control,system clock output				
Port 10	16	Address and/or data lines, bus control, Serial interface lines of USIC0, USIC1, CAN2 and CAN3, Input/Output lines for CCU60, JTAG, OCDS control				
Port 15	8	Analog input channels to ADC1, Timer control signals				

Table 10 Ir	struction Set Summary (cont'd)	
Mnemonic	Description	Bytes
ROL/ROR	Rotate left/right direct word GPR	2
ASHR	Arithmetic (sign bit) shift right direct word GPR	2
MOV(B)	Move word (byte) data	2/4
MOVBS/Z	Move byte operand to word op. with sign/zero extension	2/4
JMPA/I/R	Jump absolute/indirect/relative if condition is met	4
JMPS	Jump absolute to a code segment	4
JB(C)	Jump relative if direct bit is set (and clear bit)	4
JNB(S)	Jump relative if direct bit is not set (and set bit)	4
CALLA/I/R	Call absolute/indirect/relative subroutine if condition is met	4
CALLS	Call absolute subroutine in any code segment	4
PCALL	Push direct word register onto system stack and call absolute subroutine	4
TRAP	Call interrupt service routine via immediate trap number	2
PUSH/POP	Push/pop direct word register onto/from system stack	2
SCXT	Push direct word register onto system stack and update register with word operand	4
RET(P)	Return from intra-segment subroutine (and pop direct word register from system stack)	2
RETS	Return from inter-segment subroutine	2
RETI	Return from interrupt service subroutine	2
SBRK	Software Break	2
SRST	Software Reset	4
IDLE	Enter Idle Mode	4
PWRDN	Unused instruction ¹⁾	4
SRVWDT	Service Watchdog Timer	4
DISWDT/ENWE	DT Disable/Enable Watchdog Timer	4
EINIT	End-of-Initialization Register Lock	4
ATOMIC	Begin ATOMIC sequence	2
EXTR	Begin EXTended Register sequence	2
EXTP(R)	Begin EXTended Page (and Register) sequence	2/4
EXTS(R)	Begin EXTended Segment (and Register) sequence	2/4

Parameter	Symbol		Values		Unit	Note /	
		Min.	Тур.	Max.		Test Condition	
External Pin Load Capacitance	CL	-	20	-	pF	Pin drivers in default mode ⁶⁾	
Voltage Regulator Buffer Capacitance for DMP_M	$C_{\rm EVRM}$	1.0	-	4.7	μF	7)	
Voltage Regulator Buffer Capacitance for DMP_1	$C_{\rm EVR1}$	0.47	-	2.2	μF	One for each supply pin ⁷⁾	
Operating frequency	f _{sys}	_	_	80	MHz	8)	
Ambient temperature	T _A	-	-	-	°C	See Table 1	

Table 12Operating Condition Parameters (cont'd)

 If both core power domains are clocked, the difference between the power supply voltages must be less than 10 mV. This condition imposes additional constraints when using external power supplies. Do not combine internal and external supply of different core power domains.
 Do not supply the core power domains with two independent external voltage regulators. The simplest method

Do not supply the core power domains with two independent external voltage regulators. The simplest method is to supply both power domains directly via a single external power supply.

Performance of pad drivers, A/D Converter, and Flash module depends on V_{DDP}.
 If the external supply voltage V_{DDP} becomes lower than the specified operating range, a power reset must be generated. Otherwise, the core supply voltage V_{DDI} may rise above its specified operating range due to parasitic effects.

This power reset can be generated by the on-chip SWD. If the SWD is disabled the power reset must be generated by activating the PORST input.

- 3) Overload conditions occur if the standard operating conditions are exceeded, i.e. the voltage on any pin exceeds the specified range: $V_{OV} > V_{IHmax}$ ($I_{OV} > 0$) or $V_{OV} < V_{ILmin}$ ($I_{OV} < 0$). The absolute sum of input overload currents on all pins may not exceed **50 mA**. The supply voltages must remain within the specified limits. Proper operation under overload conditions depends on the application. Overload conditions must not occur on pin XTAL1 (powered by V_{DDI}).
- 4) Not subject to production test verified by design/characterization.
- 5) An overload current (I_{OV}) through a pin injects an error current (I_{INJ}) into the adjacent pins. This error current adds to that pin's leakage current (I_{OZ}). The value of the error current depends on the overload current and is defined by the overload coupling factor K_{OV} . The polarity of the injected error current is reversed from the polarity of the overload current that produces it.

The total current through a pin is $|I_{TOT}| = |I_{OZ}| + (|I_{OV}| \times K_{OV})$. The additional error current may distort the input voltage on analog inputs.

- 6) The timing is valid for pin drivers operating in default current mode (selected after reset). Reducing the output current may lead to increased delays or reduced driving capability (C_L).
- 7) To ensure the stability of the voltage regulators the EVRs must be buffered with ceramic capacitors. Separate buffer capacitors with the recomended values shall be connected as close as possible to each V_{DDI} pin to keep the resistance of the board tracks below 2 Ω . Connect all V_{DDI1} pins together. The minimum capacitance value is required for proper operation under all conditions (e.g. temperature). Higher values slightly increase the startup time.
- 8) The operating frequency range may be reduced for specific types of the XE164. This is indicated in the device designation (...FxxL). 80-MHz devices are marked ...F80L.

4.2 DC Parameters

These parameters are static or average values that may be exceeded during switching transitions (e.g. output current).

The XE164 can operate within a wide supply voltage range from 3.0 V to 5.5 V. However, during operation this supply voltage must remain within 10 percent of the selected nominal supply voltage. It cannot vary across the full operating voltage range.

Because of the supply voltage restriction and because electrical behavior depends on the supply voltage, the parameters are specified separately for the upper and the lower voltage range.

During operation, the supply voltages may only change with a maximum speed of dV/dt < 1 V/ms.

Leakage current is strongly dependent on the operating temperature and the voltage level at the respective pin. The maximum values in the following tables apply under worst case conditions, i.e. maximum temperature and an input level equal to the supply voltage.

The value for the leakage current in an application can be determined by using the respective leakage derating formula (see tables) with values from that application.

The pads of the XE164 are designed to operate in various driver modes. The DC parameter specifications refer to the current limits in **Table 13**.

Port Output Driver Mode	Maximum Out (I _{OLmax} , -I _{OHmax}	put Current () ¹⁾	Nominal Output Current (I _{OLnom} , -I _{OHnom})		
	$V_{ t DDP} \ge$ 4.5 V	$V_{ m DDP}$ < 4.5 V	$V_{ t DDP} \ge$ 4.5 V	$V_{ m DDP}$ < 4.5 V	
Strong driver	10 mA	10 mA	2.5 mA	2.5 mA	
Medium driver	4.0 mA	2.5 mA	1.0 mA	1.0 mA	
Weak driver	0.5 mA	0.5 mA	0.1 mA	0.1 mA	

 Table 13
 Current Limits for Port Output Drivers

1) An output current above $|I_{OXnom}|$ may be drawn from up to three pins at the same time. For any group of 16 neighboring output pins, the total output current in each direction (ΣI_{OL} and ΣI_{OH}) must remain below 50 mA.

- 4) As a rule, with decreasing output current the output levels approach the respective supply level ($V_{OL} \rightarrow V_{SS}$, $V_{OH} \rightarrow V_{DDP}$). However, only the levels for nominal output currents are verified.
- 5) This specification is not valid for outputs which are switched to open drain mode. In this case the respective output will float and the voltage is determined by the external circuit.
- 6) An additional error current (I_{INJ}) will flow if an overload current flows through an adjacent pin. Please refer to the definition of the overload coupling factor K_{OV} .
- 7) The given values are worst-case values. In production test, this leakage current is only tested at 125°C; other values are ensured by correlation. For derating, please refer to the following descriptions:

Leakage derating depending on temperature (T_1 = junction temperature [°C]):

 $I_{OZ} = 0.05 \times e^{(1.5 + 0.028 \times TJ)} [\mu A]$. For example, at a temperature of 95°C the resulting leakage current is 3.2 μA . Leakage derating depending on voltage level (DV = V_{DDP} - V_{PIN} [V]):

 $I_{OZ} = I_{OZtempmax} - (1.6 \times DV) [\mu A]$

This voltage derating formula is an approximation which applies for maximum temperature.

Because pin P2.8 is connected to two pads (standard pad and high-speed clock pad), it has twice the normal leakage.

8) Keep current: Limit the current through this pin to the indicated value so that the enabled pull device can keep the default pin level: V_{PIN} ≥ V_{IH} for a pullup; V_{PIN} ≤ V_{IL} for a pulldown. Force current: Drive the indicated minimum current through this pin to change the default pin level driven by

the enabled pull device: $V_{\text{PIN}} \le V_{\text{IL}}$ for a pullup; $V_{\text{PIN}} \ge V_{\text{IH}}$ for a pulldown. These values apply to the fixed pull-devices in dedicated pins and to the user-selectable pull-devices in

These values apply to the fixed pull-devices in dedicated pins and to the user-selectable pull-devices in general purpose IO pins.

 Not subject to production test - verified by design/characterization. Because pin P2.8 is connected to two pads (standard pad and high-speed clock pad), it has twice the normal capacitance.

4.2.2 DC Parameters for Lower Voltage Area

These parameters apply to the lower IO voltage range, 3.0 V $\leq V_{\text{DDP}} \leq$ 4.5 V.

Note / Parameter Symbol Values Unit **Test Condition** Min. Тур. Max. V Input low voltage V_{\parallel} SR -0.3 $0.3 \times$ _ _ (all except XTAL1) V_{DDP} $V_{\rm IH}\,{\rm SR}$ Input high voltage 0.7 × V V_{DDP} _ _ (all except XTAL1) + 0.3 V_{DDP} Input Hysteresis²⁾ HYS CC 0.07 V V_{DDP} in [V], _ _ Series $\times V_{\text{DDP}}$ resistance = 0Ω $I_{\rm OL} \leq I_{\rm OLmax}^{3)}$ V_{OI} CC V Output low voltage 1.0 _ _ $I_{\rm OL} \leq I_{\rm OLnom}^{3)4)}$ V Output low voltage V_{OI} CC 0.4 $I_{OH} \ge I_{OHmax}^{3)}$ Output high voltage⁵⁾ $V_{OH} CC$ V $V_{\rm DDP}$ _ - 1.0 $I_{\text{OH}} \ge I_{\text{OHnom}}^{3)4)}$ $V_{OH} CC$ Output high voltage⁵⁾ $V_{\rm DDP}$ V _ _ - 0.4 $0 V < V_{IN} < V_{DDP}$ Input leakage current I_{O71} CC _ ±10 ±200 nA (Port 5, Port 15)⁶⁾ $T_{\rm J} \le 110^{\circ} {\rm C},$ Input leakage current I_{072} CC _ ± 0.2 ± 2.5 μA (all other)⁶⁾⁷⁾ $0.45 V < V_{INI}$ $< V_{\rm DDP}$ $V_{\mathsf{PIN}} \ge V_{\mathsf{IH}} \ (\mathsf{up})^{\mathsf{8}}$ Pull level keep current ±10 μA I_{PLK} _ _ $V_{\text{PIN}} \le V_{\text{IL}}$ (dn) $V_{\mathsf{PIN}} \le V_{\mathsf{IL}} \ (\mathsf{up})^{\mathsf{8}}$ Pull level force current I_{PLF} ±150 _ _ μA $V_{\text{PIN}} \ge V_{\text{IH}} (\text{dn})$ Pin capacitance⁹⁾ $C_{\rm IO}$ CC 10 pF _ _ (digital inputs/outputs)

Table 15DC Characteristics for Lower Voltage Range
(Operating Conditions apply)¹⁾

1) Keeping signal levels within the limits specified in this table ensures operation without overload conditions. For signal levels outside these specifications, also refer to the specification of the overload current I_{OV} .

 Not subject to production test - verified by design/characterization. Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It cannot suppress switching due to external system noise under all conditions.

 The maximum deliverable output current of a port driver depends on the selected output driver mode, see Table 13, Current Limits for Port Output Drivers. The limit for pin groups must be respected.

Figure 13 Supply Current in Active Mode as a Function of Frequency

Figure 20 External Clock Drive XTAL1

Note: For crystal/resonator operation, it is strongly recommended to measure the oscillation allowance (negative resistance) in the final target system (layout) to determine the optimum parameters for oscillator operation. Please refer to the limits specified by the crystal/resonator supplier.

Table 29External Bus Cycle Timing for Upper Voltage Range
(Operating Conditions apply)

Parameter	Symbol	Limits		Unit	Note	
		Min.	Тур.	Max.]	
Output valid delay for: RD, WR(L/H)	<i>t</i> ₁₀ CC	-		13	ns	
Output valid delay for: BHE, ALE	<i>t</i> ₁₁ CC	_		13	ns	
Output valid delay for: A23 A16, A15 A0 (on P0/P1)	<i>t</i> ₁₂ CC	-		14	ns	
Output valid delay for: A15 A0 (on P2/P10)	<i>t</i> ₁₃ CC	-		14	ns	
Output valid delay for: CS	<i>t</i> ₁₄ CC	_		13	ns	
Output valid delay for: D15 D0 (write data, MUX-mode)	<i>t</i> ₁₅ CC	-		14	ns	
Output valid delay for: D15 D0 (write data, DEMUX- mode)	<i>t</i> ₁₆ CC	_		14	ns	
Output hold time for: RD, WR(L/H)	<i>t</i> ₂₀ CC	0		8	ns	
Output hold time for: BHE, ALE	<i>t</i> ₂₁ CC	0		8	ns	
Output hold time for: A23 A16, A15 A0 (on P2/P10)	<i>t</i> ₂₃ CC	0		8	ns	
Output hold time for: CS	<i>t</i> ₂₄ CC	0		8	ns	
Output hold time for: D15 D0 (write data)	<i>t</i> ₂₅ CC	0		8	ns	
Input setup time for: READY, D15 … D0 (read data)	<i>t</i> ₃₀ SR	18		-	ns	
Input hold time for: READY, D15 D0 (read data) ¹⁾	<i>t</i> ₃₁ SR	-4		_	ns	

 Read data are latched with the same internal clock edge that triggers the address change and the rising edge of RD. Address changes before the end of RD have no impact on (demultiplexed) read cycles. Read data can change after the rising edge of RD.

XE164x XE166 Family Derivatives

Electrical Parameters

Figure 22 Multiplexed Bus Cycle

4.6.6 JTAG Interface Timing

The following parameters are applicable for communication through the JTAG debug interface. The JTAG module is fully compliant with IEEE1149.1-2000.

Note: These parameters are not subject to production test but verified by design and/or characterization.

Parameter	Symbol	Values			Unit	Note /	
		Min.	Тур.	Max.		Test Condition	
TCK clock period	t ₁ SR	60	50	-	ns	-	
TCK high time	$t_2 \mathrm{SR}$	16	-	-	ns	-	
TCK low time	t_3 SR	16	-	-	ns	-	
TCK clock rise time	t_4 SR	-	-	8	ns	-	
TCK clock fall time	t ₅ SR	-	-	8	ns	-	
TDI/TMS setup to TCK rising edge	t ₆ SR	6	-	-	ns	_	
TDI/TMS hold after TCK rising edge	t ₇ SR	6	-	-	ns	_	
TDO valid	t ₈ CC	-	-	30	ns	C _L = 50 pF	
after TCK falling edge ¹⁾	t ₈ CC	10	-	-	ns	C _L = 20 pF	
TDO high imped. to valid from TCK falling edge ¹⁾²⁾	t ₉ CC	-	-	30	ns	C _L = 50 pF	
TDO valid to high imped. from TCK falling edge ¹⁾	<i>t</i> ₁₀ CC	-	-	30	ns	C _L = 50 pF	

Table 33JTAG Interface Timing Parameters
(Operating Conditions apply)

1) The falling edge on TCK is used to generate the TDO timing.

2) The setup time for TDO is given implicitly by the TCK cycle time.

Package and Reliability

Package Outlines

Figure 28 PG-LQFP-100-3 (Plastic Green Thin Quad Flat Package)

All dimensions in mm.

You can find complete information about Infineon packages, packing and marking in our Infineon Internet Page "Packages": http://www.infineon.com/packages