

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Obsolete
Core Processor	C166SV2
Core Size	16-Bit
Speed	66MHz
Connectivity	EBI/EMI, I ² C, LINbus, SPI, SSC, UART/USART, USI
Peripherals	I ² S, POR, PWM, WDT
Number of I/O	75
Program Memory Size	192KB (192K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	24K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP Exposed Pad
Supplier Device Package	PG-LQFP-100-3
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/saf-xe164h-24f66l-ac

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

XE164 16-Bit Single-Chip Real Time Signal Controller

Microcontrollers

Never stop thinking

Summary of Features

The XE164 types are offered with several Flash memory sizes. **Table 2** describes the location of the available memory areas for each Flash memory size.

Total Flash Size	Flash Area A ¹⁾	Flash Area B	Flash Area C
768 Kbytes	C0'0000 _H C0'EFFF _H	C1'0000 _H CB'FFFF _H	n.a.
576 Kbytes	C0'0000 _H C0'EFFF _H	C1'0000 _H C8'FFFF _H	n.a.
384 Kbytes	C0'0000 _H C0'EFFF _H	C1'0000 _H C5'FFFF _H	n.a.
192 Kbytes	C0'0000 _H C0'EFFF _H	C1'0000 _H C1'FFFF _H	C4'0000 _H C4'FFFF _H

Table 2Flash Memory Allocation

1) The uppermost 4-Kbyte sector of the first Flash segment is reserved for internal use $(C0'F000_{H} \text{ to } C0'FFF_{H})$.

The XE164 types are offered with different interface options. **Table 3** lists the available channels for each option.

Table 3	Interface	Channel	Association
---------	-----------	---------	-------------

Total Number	Available Channels
11 ADC0 channels	CH0, CH2 CH5, CH8 CH11, CH13, CH15
6 ADC0 channels	CH0, CH2, CH3, CH4, CH5, CH8
5 ADC1 channels	CH0, CH2, CH4, CH5, CH6
4 CAN nodes	CAN0, CAN1, CAN2, CAN3
2 CAN nodes	CAN0, CAN1
6 serial channels	U0C0, U0C1, U1C0, U1C1, U2C0, U2C1
4 serial channels	U0C0, U0C1, U1C0, U1C1

General Device Information

Table	able 4Pin Definitions and Functions (cont'd)					
Pin	Symbol	Ctrl.	Туре	Function		
7	P7.3	O0 / I	St/B	Bit 3 of Port 7, General Purpose Input/Output		
	EMUX1	01	St/B	External Analog MUX Control Output 1 (ADC1)		
	U0C1_DOUT	02	St/B	USIC0 Channel 1 Shift Data Output		
	U0C0_DOUT	O3	St/B	USIC0 Channel 0 Shift Data Output		
	CCU62_ CCPOS1A	1	St/B	CCU62 Position Input 1		
	TMS_C	I	St/B	JTAG Test Mode Selection Input		
	U0C1_DX0F	I	St/B	USIC0 Channel 1 Shift Data Input		
8	P7.1	O0 / I	St/B	Bit 1 of Port 7, General Purpose Input/Output		
	EXTCLK	01	St/B	Programmable Clock Signal Output		
	CCU62_ CTRAPA	1	St/B	CCU62 Emergency Trap Input		
	BRKIN_C	I	St/B	OCDS Break Signal Input		
9	P7.4	O0 / I	St/B	Bit 4 of Port 7, General Purpose Input/Output		
	EMUX2	01	St/B	External Analog MUX Control Output 2 (ADC1)		
	U0C1_DOUT	02	St/B	USIC0 Channel 1 Shift Data Output		
	U0C1_ SCLKOUT	O3	St/B	USIC0 Channel 1 Shift Clock Output		
	CCU62_ CCPOS2A	1	St/B	CCU62 Position Input 2		
	TCK_C	I	St/B	JTAG Clock Input		
	U0C0_DX0D	I	St/B	USIC0 Channel 0 Shift Data Input		
	U0C1_DX1E	I	St/B	USIC0 Channel 1 Shift Clock Input		
11	P6.0	O0 / I	St/A	Bit 0 of Port 6, General Purpose Input/Output		
	EMUX0	01	St/A	External Analog MUX Control Output 0 (ADC0)		
	BRKOUT	O3	St/A	OCDS Break Signal Output		
	ADCx_ REQGTyC	1	St/A	External Request Gate Input for ADC0/1		
	U1C1_DX0E	I	St/A	USIC1 Channel 1 Shift Data Input		

General Device Information

Table	able 4 Pin Definitions and Functions (cont'd)						
Pin	Symbol	Ctrl.	Туре	Function			
54	P2.7	O0 / I	St/B	Bit 7 of Port 2, General Purpose Input/Output			
	U0C1_ SELO0	01	St/B	USIC0 Channel 1 Select/Control 0 Output			
	U0C0_ SELO1	02	St/B	USIC0 Channel 0 Select/Control 1 Output			
	CC2_20	O3 / I	St/B	CAPCOM2 CC20IO Capture Inp./ Compare Out.			
	A20	ОН	St/B	External Bus Interface Address Line 20			
	U0C1_DX2C	I	St/B	USIC0 Channel 1 Shift Control Input			
	RxDC1C	1	St/B	CAN Node 1 Receive Data Input			
55	P0.1	O0 / I	St/B	Bit 1 of Port 0, General Purpose Input/Output			
	U1C0_DOUT	01	St/B	USIC1 Channel 0 Shift Data Output			
	TxDC0	O2	St/B	CAN Node 0 Transmit Data Output			
	CCU61_ CC61	O3 / I	St/B	CCU61 Channel 1 Input/Output			
	A1	OH	St/B	External Bus Interface Address Line 1			
	U1C0_DX0B	I	St/B	USIC1 Channel 0 Shift Data Input			
	U1C0_DX1A	I	St/B	USIC1 Channel 0 Shift Clock Input			
56	P2.8	O0 / I	DP/B	Bit 8 of Port 2, General Purpose Input/Output			
	U0C1_ SCLKOUT	01	DP/B	USIC0 Channel 1 Shift Clock Output			
	EXTCLK	02	DP/B	Programmable Clock Signal Output			
	CC2_21	O3 / I	DP/B	CAPCOM2 CC21IO Capture Inp./ Compare Out.			
	A21	OH	DP/B	External Bus Interface Address Line 21			
	U0C1_DX1D	I	DP/B	USIC0 Channel 1 Shift Clock Input			
57	P2.9	O0 / I	St/B	Bit 9 of Port 2, General Purpose Input/Output			
	U0C1_DOUT	01	St/B	USIC0 Channel 1 Shift Data Output			
	TxDC1	O2	St/B	CAN Node 1 Transmit Data Output			
	CC2_22	O3 / I	St/B	CAPCOM2 CC22IO Capture Inp./ Compare Out.			
	A22	OH	St/B	External Bus Interface Address Line 22			
	CLKIN1	1	St/B	Clock Signal Input			
	TCK_A	I	St/B	JTAG Clock Input			

General Device Information

Tabl	able 4Pin Definitions and Functions (cont'd)						
Pin	Symbol	Ctrl.	Туре	Function			
93	P1.6	O0 / I	St/B	Bit 6 of Port 1, General Purpose Input/Output			
	CCU62_ CC61	01/1	St/B	CCU62 Channel 1 Input/Output			
	U1C1_ SELO2	O2	St/B	USIC1 Channel 1 Select/Control 2 Output			
	U2C0_DOUT	O3	St/B	USIC2 Channel 0 Shift Data Output			
	A14	OH	St/B	External Bus Interface Address Line 14			
	U2C0_DX0D	I	St/B	USIC2 Channel 0 Shift Data Input			
94	P1.7	O0 / I	St/B	Bit 7 of Port 1, General Purpose Input/Output			
	CCU62_ CC60	01/1	St/B	CCU62 Channel 0 Input/Output			
	U1C1_ MCLKOUT	02	St/B	USIC1 Channel 1 Master Clock Output			
	U2C0_ SCLKOUT	O3	St/B	USIC2 Channel 0 Shift Clock Output			
	A15	OH	St/B	External Bus Interface Address Line 15			
	U2C0_DX1C	I	St/B	USIC2 Channel 0 Shift Clock Input			
95	XTAL2	0	Sp/1	Crystal Oscillator Amplifier Output			
96	XTAL1	I	Sp/1	Crystal Oscillator Amplifier Input To clock the device from an external source, drive XTAL1, while leaving XTAL2 unconnected. Voltages on XTAL1 must comply to the core supply voltage V_{DDI1} .			
97	PORST	1	In/B	Power On Reset Input A low level at this pin resets the XE164 completely. A spike filter suppresses input pulses <10 ns. Input pulses >100 ns safely pass the filter. The minimum duration for a safe recognition should be 120 ns. An internal pullup device will hold this pin high when nothing is driving it.			

3.2 External Bus Controller

All external memory access operations are performed by a special on-chip External Bus Controller (EBC). The EBC also controls access to resources connected to the on-chip LXBus (MultiCAN and the USIC modules). The LXBus is an internal representation of the external bus that allows access to integrated peripherals and modules in the same way as to external components.

The EBC can be programmed either to Single Chip Mode, when no external memory is required, or to an external bus mode with the following selections¹⁾:

- Address Bus Width with a range of 0 ... 24-bit
- Data Bus Width 8-bit or 16-bit
- Bus Operation Multiplexed or Demultiplexed

The bus interface uses Port 10 and Port 2 for addresses and data. In the demultiplexed bus modes, the lower addresses are output separately on Port 0 and Port 1. The number of active segment address lines is selectable, restricting the external address space to 8 Mbytes ... 64 Kbytes. This is required when interface lines shall be assigned to Port 2.

Up to four external \overline{CS} signals (three windows plus default) can be generated and output on Port 4 in order to save external glue logic. External modules can be directly connected to the common address/data bus and their individual select lines.

Important timing characteristics of the external bus interface are programmable (with registers TCONCSx/FCONCSx) to allow the user to adapt it to a wide range of different types of memories and external peripherals.

Access to very slow memories or modules with varying access times is supported by a special 'Ready' function. The active level of the control input signal is selectable.

In addition, up to four independent address windows may be defined (using registers ADDRSELx) to control access to resources with different bus characteristics. These address windows are arranged hierarchically where window 4 overrides window 3, and window 2 overrides window 1. All accesses to locations not covered by these four address windows are controlled by TCONCS0/FCONCS0. The currently active window can generate a chip select signal.

The external bus timing is based on the rising edge of the reference clock output CLKOUT. The external bus protocol is compatible with that of the standard C166 Family.

¹⁾ Bus modes are switched dynamically if several address windows with different mode settings are used.

3.3 Central Processing Unit (CPU)

The core of the CPU consists of a 5-stage execution pipeline with a 2-stage instructionfetch pipeline, a 16-bit arithmetic and logic unit (ALU), a 32-bit/40-bit multiply and accumulate unit (MAC), a register-file providing three register banks, and dedicated SFRs. The ALU features a multiply-and-divide unit, a bit-mask generator, and a barrel shifter.

Figure 4 CPU Block Diagram

Table 6 XE164 Interrupt Nodes (cont'd) Source of Interrupt or PEC Control Vector Trap Location¹⁾ Number Service Request Register 41_н / 65_D CAN Request 1 CAN 1IC xx'0104_н CAN Request 2 CAN 2IC xx'0108_н 42_H / 66_D CAN Request 3 CAN 3IC xx'010C_н 43_H / 67_D **CAN Request 4** CAN 4IC 44_H / 68_D xx'0110_н CAN Request 5 CAN 5IC xx'0114_ц 45_H / 69_D CAN Request 6 CAN 6IC xx'0118_н 46_H / 70_D CAN Request 7 CAN 7IC xx'011C_н 47_H / 71_D CAN Request 8 CAN 8IC xx'0120_н 48_H / 72_D CAN Request 9 CAN 9IC xx'0124_н 49_H / 73_D CAN Request 10 CAN_10IC 4A_H / 74_D xx'0128_H 4B_н / 75_D CAN Request 11 CAN 11IC xx'012C_н CAN Request 12 CAN 12IC xx'0130_н 4C_H / 76_D CAN Request 13 CAN 13IC xx'0134_н 4D_H / 77_D CAN Request 14 CAN 14IC xx'0138_ц 4E_H / 78_D CAN Request 15 CAN 15IC xx'013C_н 4F_H / 79_D USIC0 Cannel 0, Request 0 **U0C0 0IC** xx'0140_н 50_H / 80_D USIC0 Cannel 0, Request 1 U0C0_1IC xx'0144_н 51_H / 81_D USIC0 Cannel 0, Request 2 U0C0 2IC xx'0148_н 52_н / 82_D USIC0 Cannel 1, Request 0 U0C1_0IC xx'014C_н 53_H / 83_D USIC0 Cannel 1, Request 1 U0C1 1IC xx'0150_н 54_H / 84_D USIC0 Cannel 1, Request 2 U0C1 2IC xx'0154_н 55_H / 85_D USIC1 Cannel 0, Request 0 U1C0 0IC xx'0158_н 56_H / 86_D USIC1 Cannel 0, Request 1 57_H / 87_D U1C0 1IC xx'015C_H USIC1 Cannel 0, Request 2 U1C0 2IC xx'0160_H 58_H / 88_D USIC1 Cannel 1, Request 0 U1C1 0IC xx'0164_н 59_H / 89_D USIC1 Cannel 1, Request 1 U1C1 1IC xx'0168_н 5A_H / 90_D USIC1 Cannel 1, Request 2 U1C1 2IC xx'016C_н 5B_H / 91_D USIC2 Cannel 0, Request 0 U2C0 0IC xx'0170_н 5C_н / 92_D USIC2 Cannel 0, Request 1 U2C0 1IC xx'0174_н 5D_н / 93_D USIC2 Cannel 0, Request 2 U2C0 2IC xx'0178_н 5E_H / 94_D

Figure 5 CAPCOM2 Unit Block Diagram

Figure 6 CCU6 Block Diagram

Timer T12 can work in capture and/or compare mode for its three channels. The modes can also be combined. Timer T13 can work in compare mode only. The multi-channel control unit generates output patterns that can be modulated by timer T12 and/or timer T13. The modulation sources can be selected and combined for signal modulation.

With its maximum resolution of 2 system clock cycles, the **GPT2 module** provides precise event control and time measurement. It includes two timers (T5, T6) and a capture/reload register (CAPREL). Both timers can be clocked with an input clock which is derived from the CPU clock via a programmable prescaler or with external signals. The counting direction (up/down) for each timer can be programmed by software or altered dynamically with an external signal on a port pin (TxEUD¹). Concatenation of the timers is supported with the output toggle latch (T6OTL) of timer T6, which changes its state on each timer overflow/underflow.

The state of this latch may be used to clock timer T5, and/or it may be output on pin T6OUT. The overflows/underflows of timer T6 can also be used to clock the CAPCOM2 timers and to initiate a reload from the CAPREL register.

The CAPREL register can capture the contents of timer T5 based on an external signal transition on the corresponding port pin (CAPIN); timer T5 may optionally be cleared after the capture procedure. This allows the XE164 to measure absolute time differences or to perform pulse multiplication without software overhead.

The capture trigger (timer T5 to CAPREL) can also be generated upon transitions of GPT1 timer T3 inputs T3IN and/or T3EUD. This is especially advantageous when T3 operates in Incremental Interface Mode.

¹⁾ Exception: T5EUD is not connected to a pin.

3.16 Instruction Set Summary

 Table 10 lists the instructions of the XE164.

The addressing modes that can be used with a specific instruction, the function of the instructions, parameters for conditional execution of instructions, and the opcodes for each instruction can be found in the "Instruction Set Manual".

This document also provides a detailed description of each instruction.

Mnemonic	Description	Bytes
ADD(B)	Add word (byte) operands	2/4
ADDC(B)	Add word (byte) operands with Carry	2/4
SUB(B)	Subtract word (byte) operands	2/4
SUBC(B)	Subtract word (byte) operands with Carry	2/4
MUL(U)	(Un)Signed multiply direct GPR by direct GPR (16- \times 16-bit)	2
DIV(U)	(Un)Signed divide register MDL by direct GPR (16-/16-bit)	2
DIVL(U)	(Un)Signed long divide reg. MD by direct GPR (32-/16-bit)	2
CPL(B)	Complement direct word (byte) GPR	2
NEG(B)	Negate direct word (byte) GPR	2
AND(B)	Bitwise AND, (word/byte operands)	2/4
OR(B)	Bitwise OR, (word/byte operands)	2/4
XOR(B)	Bitwise exclusive OR, (word/byte operands)	2/4
BCLR/BSET	Clear/Set direct bit	2
BMOV(N)	Move (negated) direct bit to direct bit	4
BAND/BOR/BXOR	AND/OR/XOR direct bit with direct bit	4
BCMP	Compare direct bit to direct bit	4
BFLDH/BFLDL	Bitwise modify masked high/low byte of bit-addressable direct word memory with immediate data	4
CMP(B)	Compare word (byte) operands	2/4
CMPD1/2	Compare word data to GPR and decrement GPR by 1/2	2/4
CMPI1/2	Compare word data to GPR and increment GPR by 1/2	2/4
PRIOR	Determine number of shift cycles to normalize direct word GPR and store result in direct word GPR	2
SHL/SHR	Shift left/right direct word GPR	2

Table 10Instruction Set Summary

Operating Conditions

The following operating conditions must not be exceeded to ensure correct operation of the XE164. All parameters specified in the following sections refer to these operating conditions, unless otherwise noticed.

Table 12	Operating	Condition	Parameters

Parameter	Symbol		Values		Unit	Note /	
		Min.	Тур.	Max.		Test Condition	
Digital core supply voltage	V_{DDI}	1.4	_	1.6	V		
Core Supply Voltage Difference	∆VDDI	-10	_	+10	mV	V_{DDIM} - V_{DDI1}	
Digital supply voltage for IO pads and voltage regulators, upper voltage range	$V_{ m DDPA}, V_{ m DDPB}$	4.5	-	5.5	V	2)	
Digital supply voltage for IO pads and voltage regulators, lower voltage range	$V_{ m DDPA},\ V_{ m DDPB}$	3.0	_	4.5	V	2)	
Digital ground voltage	V _{SS}	0	_	0	V	Reference voltage	
Overload current	I _{OV}	-5	-	5	mA	Per IO pin ³⁾⁴⁾	
		-2	_	5	mA	Per analog input pin ³⁾⁴⁾	
Overload positive current coupling factor for analog inputs ⁵⁾	K _{ova}	-	1.0 × 10 ⁻⁶	1.0 × 10 ⁻⁴	_	<i>I</i> _{OV} > 0	
Overload negative current coupling factor for analog inputs ⁵⁾	K _{ova}	-	2.5 × 10 ⁻⁴	1.5 × 10 ⁻³	_	<i>I</i> _{OV} < 0	
Overload positive current coupling factor for digital I/O pins ⁵⁾	K _{OVD}	-	1.0 × 10 ⁻⁴	5.0 × 10 ⁻³	_	<i>I</i> _{OV} > 0	
Overload negative current coupling factor for digital I/O pins ⁵⁾	K _{OVD}	-	1.0 × 10 ⁻²	3.0 × 10 ⁻²	_	<i>I</i> _{OV} < 0	
Absolute sum of overload currents	ΣΙΟΥΙ	_	_	50	mA	4)	

4.2.1 DC Parameters for Upper Voltage Area

These parameters apply to the upper IO voltage range, 4.5 V $\leq V_{\text{DDP}} \leq$ 5.5 V.

Note / Parameter Symbol Values Unit **Test Condition** Min. Тур. Max. V Input low voltage V_{\parallel} SR -0.3 $0.3 \times$ _ _ (all except XTAL1) $V_{\rm DDP}$ $V_{\rm IH}\,{\rm SR}$ Input high voltage 0.7 × V V_{DDP} _ _ (all except XTAL1) + 0.3 V_{DDP} Input Hysteresis²⁾ HYS CC 0.11 V V_{DDP} in [V], _ _ Series $\times V_{\text{DDP}}$ resistance = 0Ω $I_{\rm OL} \leq I_{\rm OLmax}^{3)}$ V_{OI} CC V Output low voltage 1.0 _ _ $I_{\rm OL} \leq I_{\rm OLnom}^{3)4)}$ V Output low voltage V_{OI} CC 0.4 $I_{OH} \ge I_{OHmax}^{3)}$ $V_{\rm OH}$ CC Output high voltage⁵⁾ V $V_{\rm DDP}$ _ - 1.0 $I_{\text{OH}} \ge I_{\text{OHnom}}^{3)4)}$ V_{OH} CC Output high voltage⁵⁾ $V_{\rm DDP}$ V _ _ - 0.4 $0 V < V_{IN} < V_{DDP}$ Input leakage current I_{O71} CC _ ±10 ±200 nA (Port 5, Port 15)⁶⁾ $T_{\rm J} \le 110^{\circ} {\rm C},$ Input leakage current I_{072} CC _ ± 0.2 ±5 μA (all other)⁶⁾⁷⁾ $0.45 V < V_{INI}$ $< V_{\rm DDP}$ $V_{\mathsf{PIN}} \ge V_{\mathsf{IH}} \ (\mathsf{up})^{\mathsf{8}}$ Pull level keep current ±30 μA I_{PLK} _ _ $V_{\text{PIN}} \le V_{\text{IL}}$ (dn) $V_{\mathsf{PIN}} \le V_{\mathsf{IL}} \ (\mathsf{up})^{\mathsf{8}}$ Pull level force current I_{PLF} ±250 _ _ μA $V_{\text{PIN}} \ge V_{\text{IH}} (\text{dn})$ Pin capacitance⁹⁾ $C_{\rm IO}$ CC 10 pF _ _ (digital inputs/outputs)

Table 14DC Characteristics for Upper Voltage Range
(Operating Conditions apply)¹⁾

1) Keeping signal levels within the limits specified in this table ensures operation without overload conditions. For signal levels outside these specifications, also refer to the specification of the overload current I_{OV} .

 Not subject to production test - verified by design/characterization. Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It cannot suppress switching due to external system noise under all conditions.

 The maximum deliverable output current of a port driver depends on the selected output driver mode, see Table 13, Current Limits for Port Output Drivers. The limit for pin groups must be respected.

- 4) As a rule, with decreasing output current the output levels approach the respective supply level ($V_{OL} \rightarrow V_{SS}$, $V_{OH} \rightarrow V_{DDP}$). However, only the levels for nominal output currents are verified.
- 5) This specification is not valid for outputs which are switched to open drain mode. In this case the respective output will float and the voltage is determined by the external circuit.
- 6) An additional error current (*I*_{INJ}) will flow if an overload current flows through an adjacent pin. Please refer to the definition of the overload coupling factor *K*_{OV}.
 The leakage current value is not tested in the lower voltage range but only in the upper voltage range. This parameter is ensured by correlation.
- 7) The given values are worst-case values. In production test, this leakage current is only tested at 125°C; other values are ensured by correlation. For derating, please refer to the following descriptions:

Leakage derating depending on temperature (T_{J} = junction temperature [°C]):

 $I_{OZ} = 0.03 \times e^{(1.35 + 0.028 \times TJ)}$ [µA]. For example, at a temperature of 95°C the resulting leakage current is 1.65 µA. Leakage derating depending on voltage level (DV = V_{DDP} - V_{PIN} [V]):

 $I_{OZ} = I_{OZtempmax} - (1.3 \times DV) [\mu A]$

This voltage derating formula is an approximation which applies for maximum temperature.

Because pin P2.8 is connected to two pads (standard pad and high-speed clock pad), it has twice the normal leakage.

8) Keep current: Limit the current through this pin to the indicated value so that the enabled pull device can keep the default pin level: V_{PIN} ≥ V_{IH} for a pullup; V_{PIN} ≤ V_{IL} for a pulldown. Force current: Drive the indicated minimum current through this pin to change the default pin level driven by

the enabled pull device: $V_{\text{PIN}} \leq V_{\text{IL}}$ for a pullup; $V_{\text{PIN}} \geq V_{\text{IH}}$ for a pulldown. These values apply to the fixed pull-devices in dedicated pins and to the user-selectable pull-devices in

general purpose IO pins.9) Not subject to production test - verified by design/characterization.

Because pin P2.8 is connected to two pads (standard pad and high-speed clock pad), it has twice the normal capacitance.

Table 16Switching Power Consumption XE164
(Operating Conditions apply)

Parameter	Sym-		Values	6	Unit	Note /	
	bol	Min.	Тур.	Max.		Test Condition	
Power supply current (active) with all peripherals active and EVVRs on	I _{SACT}	-	10 + 0.6×f _{SYS}	10 + 1.0×f _{SYS}	mA	Active mode ¹⁾²⁾ f_{SYS} in [MHz]	
Power supply current in stopover mode, EVVRs on	I _{SSO}	_	1.0	2.0	mA	Stopover Mode ²⁾	

1) The pad supply voltage pins (V_{DDPB}) provide the input current for the on-chip EVVRs and the current consumed by the pin output drivers. A small current is consumed because the drivers' input stages are switched.

2) The pad supply voltage has only a minor influence on this parameter.

Table 18A/D Converter Characteristics (cont'd)(Operating Conditions apply)

Parameter	Symbo	Symbol		nit Values	Unit	Test
			Min.	Max.		Condition
Switched capacitance of the reference input	C_{AREFS}	CC	_	7	pF	6)7)
Resistance of the reference input path	R _{AREF}	CC	_	2	kΩ	6)7)

1) TUE is tested at $V_{AREFx} = V_{DDPA}$, $V_{AGND} = 0$ V. It is verified by design for all other voltages within the defined voltage range.

The specified TUE is valid only if the absolute sum of input overload currents on Port 5 or Port 15 pins (see I_{OV} specification) does not exceed 10 mA, and if V_{AREF} and V_{AGND} remain stable during the measurement time.

- 2) V_{AIN} may exceed V_{AGND} or V_{AREFx} up to the absolute maximum ratings. However, the conversion result in these cases will be X000_H or X3FF_H, respectively.
- 3) The limit values for f_{ADCI} must not be exceeded when selecting the peripheral frequency and the prescaler setting.
- 4) This parameter includes the sample time (also the additional sample time specified by STC), the time to determine the digital result and the time to load the result register with the conversion result. Values for the basic clock t_{ADCI} depend on programming and are found in Table 19.
- 5) The total unadjusted error TUE is the maximum deviation from the ideal ADC transfer curve, not the sum of individual errors.

All error specifications are based on measurement methods standardized by IEEE 1241.2000.

- 6) Not subject to production test verified by design/characterization.
- 7) These parameter values cover the complete operating range. Under relaxed operating conditions (temperature, supply voltage) typical values can be used for calculation. At room temperature and nominal supply voltage the following typical values can be used:

 $C_{AINTtyp}$ = 12 pF, $C_{AINStyp}$ = 5 pF, R_{AINtyp} = 1.0 k Ω , $C_{AREFTtyp}$ = 15 pF, $C_{AREFStyp}$ = 10 pF, $R_{AREFtyp}$ = 1.0 k Ω .

Figure 15 Equivalent Circuitry for Analog Inputs

4.5 Flash Memory Parameters

The XE164 is delivered with all Flash sectors erased and with no protection installed.

The data retention time of the XE164's Flash memory (i.e. the time after which stored data can still be retrieved) depends on the number of times the Flash memory has been erased and programmed.

Note: These parameters are not subject to production test but verified by design and/or characterization.

Parameter	Symbol	Limit Values			Unit	Note / Test
		Min.	Тур.	Max.	-	Condition
Programming time per 128-byte page	t _{PR}	-	3 ¹⁾	3.5	ms	ms
Erase time per sector/page	t _{ER}	-	4 ¹⁾	5	ms	ms
Data retention time	t _{RET}	20	_	-	years	1,000 erase / program cycles
Flash erase endurance for user sectors ²⁾	N_{ER}	15,000	-	_	cycles	Data retention time 5 years
Flash erase endurance for security pages	N _{SEC}	10	-	-	cycles	Data retention time 20 years
Drain disturb limit	N_{DD}	64	-	-	cycles	3)

Table 23Flash Characteristics(Operating Conditions apply)

 Programming and erase times depend on the internal Flash clock source. The control state machine needs a few system clock cycles. This requirement is only relevant for extremely low system frequencies. In the XE164 erased areas must be programmed completely (with actual code/data or dummy values) before that area is read.

2) A maximum of 64 Flash sectors can be cycled 15,000 times. For all other sectors the limit is 1,000 cycles.

3) This parameter limits the number of subsequent programming operations within a physical sector. The drain disturb limit is applicable if wordline erase is used repeatedly. For normal sector erase/program cycles this limit will not be violated.

Access to the XE164 Flash modules is controlled by the IMB. Built-in prefetch mechanisms optimize the performance for sequential access.

Flash access waitstates only affect non-sequential access. Due to prefetch mechanisms, the performance for sequential access (depending on the software structure) is only partially influenced by waitstates.

Direct Drive

When direct drive operation is selected (SYSCON0.CLKSEL = 11_B), the system clock is derived directly from the input clock signal CLKIN1:

 $f_{\text{SYS}} = f_{\text{IN}}$.

The frequency of f_{SYS} is the same as the frequency of f_{IN} . In this case the high and low times of f_{SYS} are determined by the duty cycle of the input clock f_{IN} .

Selecting Bypass Operation from the XTAL1¹ input and using a divider factor of 1 results in a similar configuration.

Prescaler Operation

When prescaler operation is selected (SYSCON0.CLKSEL = 10_B , PLLCON0.VCOBY = 1_B), the system clock is derived either from the crystal oscillator (input clock signal XTAL1) or from the internal clock source through the output prescaler K1 (= K1DIV+1):

 $f_{\rm SYS} = f_{\rm OSC} / {\rm K1}.$

If a divider factor of 1 is selected, the frequency of $f_{\rm SYS}$ equals the frequency of $f_{\rm OSC}$. In this case the high and low times of $f_{\rm SYS}$ are determined by the duty cycle of the input clock $f_{\rm OSC}$ (external or internal).

The lowest system clock frequency results from selecting the maximum value for the divider factor K1:

 $f_{\rm SYS} = f_{\rm OSC} / 1024.$

Phase Locked Loop (PLL)

When PLL operation is selected (SYSCON0.CLKSEL = 10_B , PLLCON0.VCOBY = 0_B), the on-chip phase locked loop is enabled and provides the system clock. The PLL multiplies the input frequency by the factor **F** ($f_{SYS} = f_{IN} \times F$).

F is calculated from the input divider P (= PDIV+1), the multiplication factor N (= NDIV+1), and the output divider K2 (= K2DIV+1): (**F** = N / (P × K2)).

The input clock can be derived either from an external source at XTAL1 or from the onchip clock source.

The PLL circuit synchronizes the system clock to the input clock. This synchronization is performed smoothly so that the system clock frequency does not change abruptly.

Adjustment to the input clock continuously changes the frequency of f_{SYS} so that it is locked to f_{IN} . The slight variation causes a jitter of f_{SYS} which in turn affects the duration of individual TCSs.

¹⁾ Voltages on XTAL1 must comply to the core supply voltage V_{DDI1} .

Package and Reliability

5.2 Thermal Considerations

When operating the XE164 in a system, the total heat generated in the chip must be dissipated to the ambient environment to prevent overheating and the resulting thermal damage.

The maximum heat that can be dissipated depends on the package and its integration into the target board. The "Thermal resistance $R_{\Theta JA}$ " quantifies these parameters. The power dissipation must be limited so that the average junction temperature does not exceed 125 °C.

The difference between junction temperature and ambient temperature is determined by $\Delta T = (P_{INT} + P_{IOSTAT} + P_{IODYN}) \times R_{\Theta JA}$

The internal power consumption is defined as

 $P_{\text{INT}} = V_{\text{DDP}} \times I_{\text{DDP}}$ (see Section 4.2.3).

The static external power consumption caused by the output drivers is defined as $P_{\text{IOSTAT}} = \Sigma((V_{\text{DDP}}-V_{\text{OH}}) \times I_{\text{OH}}) + \Sigma(V_{\text{OL}} \times I_{\text{OL}})$

The dynamic external power consumption caused by the output drivers (P_{IODYN}) depends on the capacitive load connected to the respective pins and their switching frequencies.

If the total power dissipation for a given system configuration exceeds the defined limit, countermeasures must be taken to ensure proper system operation:

- Reduce V_{DDP} , if possible in the system
- Reduce the system frequency
- Reduce the number of output pins
- Reduce the load on active output drivers