

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	C166SV2
Core Size	16-Bit
Speed	66MHz
Connectivity	CANbus, EBI/EMI, I ² C, LINbus, SPI, SSC, UART/USART, USI
Peripherals	I ² S, POR, PWM, WDT
Number of I/O	75
Program Memory Size	576KB (576K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	50K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP Exposed Pad
Supplier Device Package	PG-LQFP-100-3
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xe164f72f66lacfxqma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Summary of Features

The XE164 types are offered with several Flash memory sizes. **Table 2** describes the location of the available memory areas for each Flash memory size.

Total Flash Size	Flash Area A ¹⁾	Flash Area B	Flash Area C
768 Kbytes	C0'0000 _H C0'EFFF _H	C1'0000 _H CB'FFFF _H	n.a.
576 Kbytes	C0'0000 _H C0'EFFF _H	C1'0000 _H C8'FFFF _H	n.a.
384 Kbytes	C0'0000 _H C0'EFFF _H	C1'0000 _H C5'FFFF _H	n.a.
192 Kbytes	C0'0000 _H C0'EFFF _H	C1'0000 _H C1'FFFF _H	C4'0000 _H C4'FFFF _H

Table 2Flash Memory Allocation

1) The uppermost 4-Kbyte sector of the first Flash segment is reserved for internal use $(C0'F000_{H} \text{ to } C0'FFF_{H})$.

The XE164 types are offered with different interface options. **Table 3** lists the available channels for each option.

Table 3	Interface	Channel	Association
---------	-----------	---------	-------------

Total Number	Available Channels
11 ADC0 channels	CH0, CH2 CH5, CH8 CH11, CH13, CH15
6 ADC0 channels	CH0, CH2, CH3, CH4, CH5, CH8
5 ADC1 channels	CH0, CH2, CH4, CH5, CH6
4 CAN nodes	CAN0, CAN1, CAN2, CAN3
2 CAN nodes	CAN0, CAN1
6 serial channels	U0C0, U0C1, U1C0, U1C1, U2C0, U2C1
4 serial channels	U0C0, U0C1, U1C0, U1C1

2 General Device Information

The XE164 series of real time signal controllers is a part of the Infineon XE166 Family of full-feature single-chip CMOS microcontrollers. These devices extend the functionality and performance of the C166 Family in terms of instructions (MAC unit), peripherals, and speed. They combine high CPU performance (up to 80 million instructions per second) with extended peripheral functionality and enhanced IO capabilities. Optimized peripherals can be adapted flexibly to meet the application requirements. These derivatives utilize clock generation via PLL and internal or external clock sources. On-chip memory modules include program Flash, program RAM, and data RAM.

Figure 1 Logic Symbol

Notes to Pin Definitions

Ctrl.: The output signal for a port pin is selected by bitfield PC in the associated register Px_IOCRy. Output O0 is selected by setting the respective bitfield PC to 1x00_B, output O1 is selected by 1x01_B, etc. Output signal OH is controlled by hardware.

2. **Type**: Indicates the pad type used (St=standard pad, Sp=special pad, DP=double pad, In=input pad, PS=power supply) and its power supply domain (A, B, M, 1).

Pin	Symbol	Ctrl.	Туре	Function
3	TESTM	1	In/B	Testmode EnableEnables factory test modes, must be held HIGH for normal operation (connect to V_{DDPB}).An internal pullup device will hold this pin high when nothing is driving it.
4	P7.2	O0 / I	St/B	Bit 2 of Port 7, General Purpose Input/Output
	EMUX0	01	St/B	External Analog MUX Control Output 0 (ADC1)
	CCU62_ CCPOS0A	I	St/B	CCU62 Position Input 0
	TDI_C	I	St/B	JTAG Test Data Input
5	TRST	1	In/B	Test-System Reset Input For normal system operation, pin TRST should be held low. A high level at this pin at the rising edge of PORST activates the XE164's debug system. In this case, pin TRST must be driven low once to reset the debug system. An internal pulldown device will hold this pin low when nothing is driving it.
6	P7.0	O0 / I	St/B	Bit 0 of Port 7, General Purpose Input/Output
	T3OUT	01	St/B	GPT1 Timer T3 Toggle Latch Output
	T6OUT	02	St/B	GPT2 Timer T6 Toggle Latch Output
	TDO_A	OH	St/B	JTAG Test Data Output
	ESR2_1	I	St/B	ESR2 Trigger Input 1

Table 4Pin Definitions and Functions

Table	able 4Pin Definitions and Functions (cont'd)				
Pin	Symbol	Ctrl.	Туре	Function	
12	P6.1	O0 / I	St/A	Bit 1 of Port 6, General Purpose Input/Output	
	EMUX1	01	St/A	External Analog MUX Control Output 1 (ADC0)	
	T3OUT	O2	St/A	GPT1 Timer T3 Toggle Latch Output	
	U1C1_DOUT	O3	St/A	USIC1 Channel 1 Shift Data Output	
	ADCx_ REQTRyC	I	St/A	External Request Trigger Input for ADC0/1	
13	P6.2	O0 / I	St/A	Bit 2 of Port 6, General Purpose Input/Output	
	EMUX2	01	St/A	External Analog MUX Control Output 2 (ADC0)	
	T6OUT	O2	St/A	GPT2 Timer T6 Toggle Latch Output	
	U1C1_ SCLKOUT	O3	St/A	USIC1 Channel 1 Shift Clock Output	
	U1C1_DX1C	1	St/A	USIC1 Channel 1 Shift Clock Input	
15	P15.0	1	In/A	Bit 0 of Port 15, General Purpose Input	
	ADC1_CH0	I	In/A	Analog Input Channel 0 for ADC1	
16	P15.2	1	In/A	Bit 2 of Port 15, General Purpose Input	
	ADC1_CH2	1	In/A	Analog Input Channel 2 for ADC1	
	T5IN	I	In/A	GPT2 Timer T5 Count/Gate Input	
17	P15.4	I	In/A	Bit 4 of Port 15, General Purpose Input	
	ADC1_CH4	I	In/A	Analog Input Channel 4 for ADC1	
	T6IN	1	In/A	GPT2 Timer T6 Count/Gate Input	
18	P15.5	I	In/A	Bit 5 of Port 15, General Purpose Input	
	ADC1_CH5	I	In/A	Analog Input Channel 5 for ADC1	
	T6EUD	I	In/A	GPT2 Timer T6 External Up/Down Control Input	
19	P15.6	I	In/A	Bit 6 of Port 15, General Purpose Input	
	ADC1_CH6	1	In/A	Analog Input Channel 6 for ADC1	
20	V _{AREF}	-	PS/A	Reference Voltage for A/D Converters ADC0/1	
21	V _{AGND}	-	PS/A	Reference Ground for A/D Converters ADC0/1	
22	P5.0	1	In/A	Bit 0 of Port 5, General Purpose Input	
	ADC0_CH0	1	In/A	Analog Input Channel 0 for ADC0	

Tabl	able 4 Pin Definitions and Functions (cont'd)				
Pin	Symbol	Ctrl.	Туре	Function	
47	P4.2	O0 / I	St/B	Bit 2 of Port 4, General Purpose Input/Output	
	TxDC2	02	St/B	CAN Node 2 Transmit Data Output	
	CC2_26	O3 / I	St/B	CAPCOM2 CC26IO Capture Inp./ Compare Out.	
	CS2	OH	St/B	External Bus Interface Chip Select 2 Output	
	T2IN	1	St/B	GPT1 Timer T2 Count/Gate Input	
48	P2.6	O0 / I	St/B	Bit 6 of Port 2, General Purpose Input/Output	
	U0C0_ SELO0	01	St/B	USIC0 Channel 0 Select/Control 0 Output	
-	U0C1_ SELO1	O2	St/B	USIC0 Channel 1 Select/Control 1 Output	
	CC2_19	O3 / I	St/B	CAPCOM2 CC19IO Capture Inp./ Compare Out.	
	A19	OH	St/B	External Bus Interface Address Line 19	
	U0C0_DX2D	I	St/B	USIC0 Channel 0 Shift Control Input	
	RxDC0D	I	St/B	CAN Node 0 Receive Data Input	
49	P4.3	O0 / I	St/B	Bit 3 of Port 4, General Purpose Input/Output	
	CC2_27	O3 / I	St/B	CAPCOM2 CC27IO Capture Inp./ Compare Out.	
	CS3	OH	St/B	External Bus Interface Chip Select 3 Output	
	RxDC2A	1	St/B	CAN Node 2 Receive Data Input	
	T2EUD	1	St/B	GPT1 Timer T2 External Up/Down Control Input	
53	P0.0	O0 / I	St/B	Bit 0 of Port 0, General Purpose Input/Output	
	U1C0_DOUT	01	St/B	USIC1 Channel 0 Shift Data Output	
	CCU61_ CC60	O3 / I	St/B	CCU61 Channel 0 Input/Output	
	A0	OH	St/B	External Bus Interface Address Line 0	
	U1C0_DX0A	I	St/B	USIC1 Channel 0 Shift Data Input	

Table	able 4 Pin Definitions and Functions (cont'd)			
Pin	Symbol	Ctrl.	Туре	Function
79	P10.8	O0 / I	St/B	Bit 8 of Port 10, General Purpose Input/Output
	U0C0_ MCLKOUT	01	St/B	USIC0 Channel 0 Master Clock Output
	U0C1_ SELO0	O2	St/B	USIC0 Channel 1 Select/Control 0 Output
	AD8	OH/I	St/B	External Bus Interface Address/Data Line 8
	CCU60_ CCPOS1A	I	St/B	CCU60 Position Input 1
	U0C0_DX1C	I	St/B	USIC0 Channel 0 Shift Clock Input
	BRKIN_B	I	St/B	OCDS Break Signal Input
80	P10.9	O0 / I	St/B	Bit 9 of Port 10, General Purpose Input/Output
	U0C0_ SELO4	01	St/B	USIC0 Channel 0 Select/Control 4 Output
	U0C1_ MCLKOUT	O2	St/B	USIC0 Channel 1 Master Clock Output
	AD9	OH/I	St/B	External Bus Interface Address/Data Line 9
	CCU60_ CCPOS2A	I	St/B	CCU60 Position Input 2
_	TCK_B	I	St/B	JTAG Clock Input
81	P1.1	O0 / I	St/B	Bit 1 of Port 1, General Purpose Input/Output
	CCU62_ COUT62	01	St/B	CCU62 Channel 2 Output
	U1C0_ SELO5	O2	St/B	USIC1 Channel 0 Select/Control 5 Output
	U2C1_DOUT	O3	St/B	USIC2 Channel 1 Shift Data Output
	A9	OH	St/B	External Bus Interface Address Line 9
	ESR2_3	1	St/B	ESR2 Trigger Input 3
	EX1BINA	1	St/B	External Interrupt Trigger Input
	U2C1_DX0C	1	St/B	USIC2 Channel 1 Shift Data Input

3.1 Memory Subsystem and Organization

The memory space of the XE164 is configured in the von Neumann architecture. In this architecture all internal and external resources, including code memory, data memory, registers and I/O ports, are organized in the same linear address space.

Address Area	Start Loc.	End Loc.	Area Size ¹⁾	Notes
IMB register space	FF'FF00 _H	FF'FFFF _H	256 Bytes	-
Reserved (Access trap)	F0'0000 _H	FF'FEFF _H	<1 Mbyte	Minus IMB registers
Reserved for EPSRAM	E9'0000 _H	EF'FFFF _H	448 Kbytes	Mirrors EPSRAM
Emulated PSRAM	E8'0000 _H	E8'FFFF _H	64 Kbytes	Flash timing
Reserved for PSRAM	E1'0000 _H	E7'FFFF _H	448 Kbytes	Mirrors PSRAM
Program SRAM	E0'0000 _H	E0'FFFF _H	64 Kbytes	Maximum speed
Reserved for pr. mem.	CC'0000 _H	DF'FFFF _H	<1.25 Mbytes	-
Program Flash 2	C8'0000 _H	CB'FFFF _H	256 Kbytes	-
Program Flash 1	C4'0000 _H	C7'FFFF _H	256 Kbytes	-
Program Flash 0	C0'0000 _H	C3'FFFF _H	256 Kbytes	2)
External memory area	40'0000 _H	BF'FFFF _H	8 Mbytes	-
Available Ext. IO area ³⁾	20'5800 _H	3F'FFFF _H	< 2 Mbytes	Minus USIC/CAN
USIC registers	20'4000 _H	20'57FF _H	6 Kbytes	Accessed via EBC
MultiCAN registers	20'0000 _H	20'3FFF _H	16 Kbytes	Accessed via EBC
External memory area	01'0000 _H	1F'FFFF _H	< 2 Mbytes	Minus segment 0
SFR area	00'FE00 _H	00'FFFF _H	0.5 Kbyte	-
Dual-Port RAM	00'F600 _H	00'FDFF _H	2 Kbytes	-
Reserved for DPRAM	00'F200 _H	00'F5FF _H	1 Kbyte	-
ESFR area	00'F000 _H	00'F1FF _H	0.5 Kbyte	-
XSFR area	00'E000 _H	00'EFFF _H	4 Kbytes	-
Data SRAM	00'A000 _H	00'DFFF _H	16 Kbytes	-
Reserved for DSRAM	00'8000 _H	00'9FFF _H	8 Kbytes	_
External memory area	00'000 _H	00'7FFF _H	32 Kbytes	-

Table 5XE164 Memory Map

1) The areas marked with "<" are slightly smaller than indicated. See column "Notes".

2) The uppermost 4-Kbyte sector of the first Flash segment is reserved for internal use (C0'F000_H to C0'FFFF_H).

3) Several pipeline optimizations are not active within the external IO area. This is necessary to control external peripherals properly.

3.4 Interrupt System

With a minimum interrupt response time of 7/11¹⁾ CPU clocks (in the case of internal program execution), the XE164 can react quickly to the occurrence of non-deterministic events.

The architecture of the XE164 supports several mechanisms for fast and flexible response to service requests; these can be generated from various sources internal or external to the microcontroller. Any of these interrupt requests can be programmed to be serviced by the Interrupt Controller or by the Peripheral Event Controller (PEC).

Where in a standard interrupt service the current program execution is suspended and a branch to the interrupt vector table is performed, just one cycle is 'stolen' from the current CPU activity to perform a PEC service. A PEC service implies a single byte or word data transfer between any two memory locations with an additional increment of either the PEC source pointer, the destination pointer, or both. An individual PEC transfer counter is implicitly decremented for each PEC service except when performing in the continuous transfer mode. When this counter reaches zero, a standard interrupt is performed to the corresponding source-related vector location. PEC services are particularly well suited to supporting the transmission or reception of blocks of data. The XE164 has eight PEC channels, each whith fast interrupt-driven data transfer capabilities.

Each of the possible interrupt nodes has a separate control register containing an interrupt request flag, an interrupt enable flag and an interrupt priority bitfield. Each node can be programmed by its related register to one of sixteen interrupt priority levels. Once accepted by the CPU, an interrupt service can only be interrupted by a higher-priority service request. For standard interrupt processing, each possible interrupt node has a dedicated vector location.

Fast external interrupt inputs can service external interrupts with high-precision requirements. These fast interrupt inputs feature programmable edge detection (rising edge, falling edge, or both edges).

Software interrupts are supported by the 'TRAP' instruction in combination with an individual trap (interrupt) number.

Table 6 shows all of the possible XE164 interrupt sources and the corresponding hardware-related interrupt flags, vectors, vector locations and trap (interrupt) numbers.

Note: Interrupt nodes which are not assigned to peripherals (unassigned nodes) may be used to generate software-controlled interrupt requests by setting the respective interrupt request bit (xIR).

¹⁾ Depending if the jump cache is used or not.

Table 6XE164 Interrupt Nodes

Source of Interrupt or PEC Service Request	Control Register	Vector Location ¹⁾	Trap Number
CAPCOM Register 16, or ERU Request 0	CC2_CC16IC	xx'0040 _H	10 _H / 16 _D
CAPCOM Register 17, or ERU Request 1	CC2_CC17IC	xx'0044 _H	11 _H / 17 _D
CAPCOM Register 18, or ERU Request 2	CC2_CC18IC	xx'0048 _H	12 _H / 18 _D
CAPCOM Register 19, or ERU Request 3	CC2_CC19IC	xx'004C _H	13 _H / 19 _D
CAPCOM Register 20, or USIC0 Request 6	CC2_CC20IC	xx'0050 _H	14 _H / 20 _D
CAPCOM Register 21, or USIC0 Request 7	CC2_CC21IC	xx'0054 _H	15 _H / 21 _D
CAPCOM Register 22, or USIC1 Request 6	CC2_CC22IC	xx'0058 _H	16 _H / 22 _D
CAPCOM Register 23, or USIC1 Request 7	CC2_CC23IC	xx'005C _H	17 _H / 23 _D
CAPCOM Register 24, or ERU Request 0	CC2_CC24IC	xx'0060 _H	18 _H / 24 _D
CAPCOM Register 25, or ERU Request 1	CC2_CC25IC	xx'0064 _H	19 _H / 25 _D
CAPCOM Register 26, or ERU Request 2	CC2_CC26IC	xx'0068 _H	1A _H / 26 _D
CAPCOM Register 27, or ERU Request 3	CC2_CC27IC	xx'006C _H	1B _H / 27 _D
CAPCOM Register 28, or USIC2 Request 6	CC2_CC28IC	xx'0070 _H	1C _H / 28 _D
CAPCOM Register 29, or USIC2 Request 7	CC2_CC29IC	xx'0074 _H	1D _H / 29 _D
CAPCOM Register 30	CC2_CC30IC	xx'0078 _H	1E _H / 30 _D
CAPCOM Register 31	CC2_CC31IC	xx'007C _H	1F _H / 31 _D
GPT1 Timer 2	GPT12E_T2IC	xx'0080 _H	20 _H / 32 _D
GPT1 Timer 3	GPT12E_T3IC	xx'0084 _H	21 _H / 33 _D
GPT1 Timer 4	GPT12E_T4IC	xx'0088 _H	22 _H / 34 _D

Table 6XE164 Interrupt Nodes (cont'd)

Source of Interrupt or PEC Service Request	Control Register	Vector Location ¹⁾	Trap Number
GPT2 Timer 5	GPT12E_T5IC	xx'008C _H	23 _H / 35 _D
GPT2 Timer 6	GPT12E_T6IC	xx'0090 _H	24 _H / 36 _D
GPT2 CAPREL Register	GPT12E_CRIC	xx'0094 _H	25 _H / 37 _D
CAPCOM Timer 7	CC2_T7IC	xx'0098 _H	26 _H / 38 _D
CAPCOM Timer 8	CC2_T8IC	xx'009C _H	27 _H / 39 _D
A/D Converter Request 0	ADC_0IC	xx'00A0 _H	28 _H / 40 _D
A/D Converter Request 1	ADC_1IC	xx'00A4 _H	29 _H / 41 _D
A/D Converter Request 2	ADC_2IC	xx'00A8 _H	2A _H / 42 _D
A/D Converter Request 3	ADC_3IC	xx'00AC _H	2B _H / 43 _D
A/D Converter Request 4	ADC_4IC	xx'00B0 _H	2C _H / 44 _D
A/D Converter Request 5	ADC_5IC	xx'00B4 _H	2D _H / 45 _D
A/D Converter Request 6	ADC_6IC	xx'00B8 _H	2E _H / 46 _D
A/D Converter Request 7	ADC_7IC	xx'00BC _H	2F _H / 47 _D
CCU60 Request 0	CCU60_0IC	xx'00C0 _H	30 _H / 48 _D
CCU60 Request 1	CCU60_1IC	xx'00C4 _H	31 _H / 49 _D
CCU60 Request 2	CCU60_2IC	xx'00C8 _H	32 _H / 50 _D
CCU60 Request 3	CCU60_3IC	xx'00CC _H	33 _H / 51 _D
CCU61 Request 0	CCU61_0IC	xx'00D0 _H	34 _H / 52 _D
CCU61 Request 1	CCU61_1IC	xx'00D4 _H	35 _H / 53 _D
CCU61 Request 2	CCU61_2IC	xx'00D8 _H	36 _H / 54 _D
CCU61 Request 3	CCU61_3IC	xx'00DC _H	37 _H / 55 _D
CCU62 Request 0	CCU62_0IC	xx'00E0 _H	38 _H / 56 _D
CCU62 Request 1	CCU62_1IC	xx'00E4 _H	39 _H / 57 _D
CCU62 Request 2	CCU62_2IC	xx'00E8 _H	3A _H / 58 _D
CCU62 Request 3	CCU62_3IC	xx'00EC _H	3B _H / 59 _D
Unassigned node	-	xx'00F0 _H	3C _H / 60 _D
Unassigned node	-	xx'00F4 _H	3D _H / 61 _D
Unassigned node	-	xx'00F8 _H	3E _H / 62 _D
Unassigned node	-	xx'00FC _H	3F _H / 63 _D
CAN Request 0	CAN_0IC	xx'0100 _H	40 _H / 64 _D

With its maximum resolution of 2 system clock cycles, the **GPT2 module** provides precise event control and time measurement. It includes two timers (T5, T6) and a capture/reload register (CAPREL). Both timers can be clocked with an input clock which is derived from the CPU clock via a programmable prescaler or with external signals. The counting direction (up/down) for each timer can be programmed by software or altered dynamically with an external signal on a port pin (TxEUD¹). Concatenation of the timers is supported with the output toggle latch (T6OTL) of timer T6, which changes its state on each timer overflow/underflow.

The state of this latch may be used to clock timer T5, and/or it may be output on pin T6OUT. The overflows/underflows of timer T6 can also be used to clock the CAPCOM2 timers and to initiate a reload from the CAPREL register.

The CAPREL register can capture the contents of timer T5 based on an external signal transition on the corresponding port pin (CAPIN); timer T5 may optionally be cleared after the capture procedure. This allows the XE164 to measure absolute time differences or to perform pulse multiplication without software overhead.

The capture trigger (timer T5 to CAPREL) can also be generated upon transitions of GPT1 timer T3 inputs T3IN and/or T3EUD. This is especially advantageous when T3 operates in Incremental Interface Mode.

¹⁾ Exception: T5EUD is not connected to a pin.

3.10 A/D Converters

For analog signal measurement, up to two 10-bit A/D converters (ADC0, ADC1) with 11 + 5 multiplexed input channels and a sample and hold circuit have been integrated on-chip. They use the successive approximation method. The sample time (to charge the capacitors) and the conversion time are programmable so that they can be adjusted to the external circuit. The A/D converters can also operate in 8-bit conversion mode, further reducing the conversion time.

Several independent conversion result registers, selectable interrupt requests, and highly flexible conversion sequences provide a high degree of programmability to meet the application requirements. Both modules can be synchronized to allow parallel sampling of two input channels.

For applications that require more analog input channels, external analog multiplexers can be controlled automatically.

For applications that require fewer analog input channels, the remaining channel inputs can be used as digital input port pins.

The A/D converters of the XE164 support two types of request sources which can be triggered by several internal and external events.

- Parallel requests are activated at the same time and then executed in a predefined sequence.
- Queued requests are executed in a user-defined sequence.

In addition, the conversion of a specific channel can be inserted into a running sequence without disturbing that sequence. All requests are arbitrated according to the priority level assigned to them.

Data reduction features, such as limit checking or result accumulation, reduce the number of required CPU access operations allowing the precise evaluation of analoginputs (high conversion rate) even at a low CPU speed.

The Peripheral Event Controller (PEC) can be used to control the A/D converters or to automatically store conversion results to a table in memory for later evaluation, without requiring the overhead of entering and exiting interrupt routines for each data transfer. Each A/D converter contains eight result registers which can be concatenated to build a result FIFO. Wait-for-read mode can be enabled for each result register to prevent the loss of conversion data.

In order to decouple analog inputs from digital noise and to avoid input trigger noise, those pins used for analog input can be disconnected from the digital input stages under software control. This can be selected for each pin separately with registers P5_DIDIS and P15_DIDIS (Port x Digital Input Disable).

The Auto-Power-Down feature of the A/D converters minimizes the power consumption when no conversion is in progress.

MultiCAN Features

- CAN functionality conforming to CAN specification V2.0 B active for each CAN node (compliant to ISO 11898)
- Up to four independent CAN nodes
- 128 independent message objects (shared by the CAN nodes)
- Dedicated control registers for each CAN node
- Data transfer rate up to 1 Mbit/s, individually programmable for each node
- Flexible and powerful message transfer control and error handling capabilities
- Full-CAN functionality for message objects:
 - Can be assigned to one of the CAN nodes
 - Configurable as transmit or receive objects, or as message buffer FIFO
 - Handle 11-bit or 29-bit identifiers with programmable acceptance mask for filtering
 - Remote Monitoring Mode, and frame counter for monitoring
- Automatic Gateway Mode support
- 16 individually programmable interrupt nodes
- Analyzer mode for CAN bus monitoring

3.16 Instruction Set Summary

 Table 10 lists the instructions of the XE164.

The addressing modes that can be used with a specific instruction, the function of the instructions, parameters for conditional execution of instructions, and the opcodes for each instruction can be found in the "Instruction Set Manual".

This document also provides a detailed description of each instruction.

Mnemonic	Description	Bytes
ADD(B)	Add word (byte) operands	2/4
ADDC(B)	Add word (byte) operands with Carry	2/4
SUB(B)	Subtract word (byte) operands	2/4
SUBC(B)	Subtract word (byte) operands with Carry	2/4
MUL(U)	(Un)Signed multiply direct GPR by direct GPR (16- \times 16-bit)	2
DIV(U)	(Un)Signed divide register MDL by direct GPR (16-/16-bit)	2
DIVL(U)	(Un)Signed long divide reg. MD by direct GPR (32-/16-bit)	2
CPL(B)	Complement direct word (byte) GPR	2
NEG(B)	Negate direct word (byte) GPR	2
AND(B)	Bitwise AND, (word/byte operands)	2/4
OR(B)	Bitwise OR, (word/byte operands)	2/4
XOR(B)	Bitwise exclusive OR, (word/byte operands)	2/4
BCLR/BSET	Clear/Set direct bit	2
BMOV(N)	Move (negated) direct bit to direct bit	4
BAND/BOR/BXOR	AND/OR/XOR direct bit with direct bit	4
BCMP	Compare direct bit to direct bit	4
BFLDH/BFLDL	Bitwise modify masked high/low byte of bit-addressable direct word memory with immediate data	4
CMP(B)	Compare word (byte) operands	2/4
CMPD1/2	Compare word data to GPR and decrement GPR by 1/2	2/4
CMPI1/2	Compare word data to GPR and increment GPR by 1/2	2/4
PRIOR	Determine number of shift cycles to normalize direct word GPR and store result in direct word GPR	2
SHL/SHR	Shift left/right direct word GPR	2

Table 10Instruction Set Summary

- 4) As a rule, with decreasing output current the output levels approach the respective supply level ($V_{OL} \rightarrow V_{SS}$, $V_{OH} \rightarrow V_{DDP}$). However, only the levels for nominal output currents are verified.
- 5) This specification is not valid for outputs which are switched to open drain mode. In this case the respective output will float and the voltage is determined by the external circuit.
- 6) An additional error current (I_{INJ}) will flow if an overload current flows through an adjacent pin. Please refer to the definition of the overload coupling factor K_{OV} .
- 7) The given values are worst-case values. In production test, this leakage current is only tested at 125°C; other values are ensured by correlation. For derating, please refer to the following descriptions:

Leakage derating depending on temperature (T_1 = junction temperature [°C]):

 $I_{OZ} = 0.05 \times e^{(1.5 + 0.028 \times TJ)} [\mu A]$. For example, at a temperature of 95°C the resulting leakage current is 3.2 μA . Leakage derating depending on voltage level (DV = V_{DDP} - V_{PIN} [V]):

 $I_{OZ} = I_{OZtempmax} - (1.6 \times DV) [\mu A]$

This voltage derating formula is an approximation which applies for maximum temperature.

Because pin P2.8 is connected to two pads (standard pad and high-speed clock pad), it has twice the normal leakage.

8) Keep current: Limit the current through this pin to the indicated value so that the enabled pull device can keep the default pin level: V_{PIN} ≥ V_{IH} for a pullup; V_{PIN} ≤ V_{IL} for a pulldown. Force current: Drive the indicated minimum current through this pin to change the default pin level driven by

the enabled pull device: $V_{\text{PIN}} \le V_{\text{IL}}$ for a pullup; $V_{\text{PIN}} \ge V_{\text{IH}}$ for a pulldown. These values apply to the fixed pull-devices in dedicated pins and to the user-selectable pull-devices in

These values apply to the fixed pull-devices in dedicated pins and to the user-selectable pull-devices in general purpose IO pins.

 Not subject to production test - verified by design/characterization. Because pin P2.8 is connected to two pads (standard pad and high-speed clock pad), it has twice the normal capacitance.

4.3 Analog/Digital Converter Parameters

These parameters describe the conditions for optimum ADC performance.

Table 18A/D Converter Characteristics
(Operating Conditions apply)

Parameter	Symbol		Limit Values		Unit	Test
			Min.	Max.		Condition
Analog reference supply	V _{AREF}	SR	V _{AGND} + 1.0	V _{DDPA} + 0.05	V	1)
Analog reference ground	V_{AGND}	SR	V _{SS} - 0.05	V _{AREF} - 1.0	V	_
Analog input voltage range	V_{AIN}	SR	V _{AGND}	V _{AREF}	V	2)
Analog clock frequency	$f_{\sf ADCI}$		0.5	20	MHz	3)
Conversion time for 10-bit result ⁴⁾	<i>t</i> _{C10}	CC	(13 + STC) + 2 × t_{SYS}	$1 \times t_{ADCI}$	-	_
Conversion time for 8-bit result ⁴⁾	t _{C8}	CC	$(11 + STC) \times t_{ADCI} + 2 \times t_{SYS}$		_	_
Wakeup time from analog powerdown, fast mode	t _{WAF}	CC	_	1	μS	_
Wakeup time from analog powerdown, slow mode	t _{WAS}	CC	_	10	μS	_
Total unadjusted error ⁵⁾	TUE	CC	_	±2	LSB	$V_{\rm AREF}$ = 5.0 V ¹⁾
DNL error	EA_DNL	CC	_	±1	LSB	
INL error	EA _{INL}	CC	_	±1.2	LSB	
Gain error	EA_GAIN	CC	-	±0.8	LSB	
Offset error	EA_{OFF}	CC	-	±0.8	LSB	
Total capacitance of an analog input	C_{AINT}	СС	_	10	pF	6)7)
Switched capacitance of an analog input	C_{AINS}	CC	-	4	pF	6)7)
Resistance of the analog input path	R _{AIN}	CC	-	1.5	kΩ	6)7)
Total capacitance of the reference input	C_{AREFT}	CC	_	15	pF	6)7)

Figure 20 External Clock Drive XTAL1

Note: For crystal/resonator operation, it is strongly recommended to measure the oscillation allowance (negative resistance) in the final target system (layout) to determine the optimum parameters for oscillator operation. Please refer to the limits specified by the crystal/resonator supplier.

4.6.6 JTAG Interface Timing

The following parameters are applicable for communication through the JTAG debug interface. The JTAG module is fully compliant with IEEE1149.1-2000.

Note: These parameters are not subject to production test but verified by design and/or characterization.

Parameter	Symbol		Values		Unit	Note / Test Condition
		Min.	Тур.	Max.		
TCK clock period	t ₁ SR	60	50	-	ns	-
TCK high time	$t_2 \mathrm{SR}$	16	-	-	ns	-
TCK low time	t_3 SR	16	-	_	ns	-
TCK clock rise time	t_4 SR	-	-	8	ns	-
TCK clock fall time	t ₅ SR	-	-	8	ns	-
TDI/TMS setup to TCK rising edge	t ₆ SR	6	_	-	ns	_
TDI/TMS hold after TCK rising edge	t ₇ SR	6	-	-	ns	_
TDO valid after TCK falling edge ¹⁾	t ₈ CC	-	-	30	ns	C _L = 50 pF
	t ₈ CC	10	-	-	ns	C _L = 20 pF
TDO high imped. to valid from TCK falling edge ¹⁾²⁾	t ₉ CC	-	-	30	ns	C _L = 50 pF
TDO valid to high imped. from TCK falling edge ¹⁾	<i>t</i> ₁₀ CC	-	-	30	ns	C _L = 50 pF

Table 33JTAG Interface Timing Parameters
(Operating Conditions apply)

1) The falling edge on TCK is used to generate the TDO timing.

2) The setup time for TDO is given implicitly by the TCK cycle time.

Package and Reliability

Package Outlines

Figure 28 PG-LQFP-100-3 (Plastic Green Thin Quad Flat Package)

All dimensions in mm.

You can find complete information about Infineon packages, packing and marking in our Infineon Internet Page "Packages": http://www.infineon.com/packages

www.infineon.com