

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Not For New Designs
Core Processor	C166SV2
Core Size	16-Bit
Speed	80MHz
Connectivity	CANbus, EBI/EMI, I ² C, LINbus, SPI, SSC, UART/USART, USI
Peripherals	I ² S, POR, PWM, WDT
Number of I/O	75
Program Memory Size	768KB (768K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	82K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP Exposed Pad
Supplier Device Package	PG-LQFP-100-3
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xe164f96f80lacfxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

XE164 Revision History: V2.1, 2008-08

Previous Version(s): V2.0, 2008-03, Preliminary V0.1, 2007-09, Preliminary

Page	Subjects (major changes since last revision)
several	Maximum frequency changed to 80 MHz
8	Specification of 6 ADC0 channels corrected
14 f	Missing ADC0 channels added
28	Voltage domain for XTAL1/XTAL2 corrected to M
<mark>68</mark>	Coupling factors corrected
73, 75	Improved leakage parameters
74, 76	Pin leakage formula corrected
81	Improved ADC error values
94 f	Improved definition of external clock parameters
107	JTAG clock speed corrected

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to:

mcdocu.comments@infineon.com

Table	Fable 4Pin Definitions and Functions (cont'd)						
Pin	Symbol	Ctrl.	Туре	Function			
35	P5.15	I	In/A	Bit 15 of Port 5, General Purpose Input			
	ADC0_CH15	I	In/A	Analog Input Channel 15 for ADC0			
36	P2.12	O0 / I	St/B	Bit 12 of Port 2, General Purpose Input/Output			
	U0C0_ SELO4	01	St/B	USIC0 Channel 0 Select/Control 4 Output			
	U0C1_ SELO3	02	St/B	USIC0 Channel 1 Select/Control 3 Output			
	READY	I	St/B	External Bus Interface READY Input			
37	P2.11	O0 / I	St/B	Bit 11 of Port 2, General Purpose Input/Output			
	U0C0_ SELO2	01	St/B	USIC0 Channel 0 Select/Control 2 Output			
	U0C1_ SELO2	02	St/B	USIC0 Channel 1 Select/Control 2 Output			
	BHE/WRH	ОН	St/B	External Bus Interf. High-Byte Control Output Can operate either as Byte High Enable (BHE) of as Write strobe for High Byte (WRH).			
39	P2.0	O0 / I	St/B	Bit 0 of Port 2, General Purpose Input/Output			
	AD13	OH/I	St/B	External Bus Interface Address/Data Line 13			
	RxDC0C	1	St/B	CAN Node 0 Receive Data Input			
40	P2.1	O0 / I	St/B	Bit 1 of Port 2, General Purpose Input/Output			
	TxDC0	01	St/B	CAN Node 0 Transmit Data Output			
	AD14	OH/I	St/B	External Bus Interface Address/Data Line 14			
	ESR1_5	I	St/B	ESR1 Trigger Input 5			
	EX0AINA	1	St/B	External Interrupt Trigger Input			
41	P2.2	O0 / I	St/B	Bit 2 of Port 2, General Purpose Input/Output			
	TxDC1	01	St/B	CAN Node 1 Transmit Data Output			
	AD15	OH/I	St/B	External Bus Interface Address/Data Line 15			
	ESR2_5	1	St/B	ESR2 Trigger Input 5			
	EX1AINA	1	St/B	External Interrupt Trigger Input			
42	P4.0	O0 / I	St/B	Bit 0 of Port 4, General Purpose Input/Output			
	CC2_24	O3 / I	St/B	CAPCOM2 CC24IO Capture Inp./ Compare Out.			
	CS0	OH	St/B	External Bus Interface Chip Select 0 Output			

Tabl	able 4 Pin Definitions and Functions (cont'd)					
Pin	Symbol	Ctrl.	Туре	Function		
47	P4.2	O0 / I	St/B	Bit 2 of Port 4, General Purpose Input/Output		
	TxDC2	02	St/B	CAN Node 2 Transmit Data Output		
	CC2_26	O3 / I	St/B	CAPCOM2 CC26IO Capture Inp./ Compare Out.		
	CS2	OH	St/B	External Bus Interface Chip Select 2 Output		
	T2IN	I	St/B	GPT1 Timer T2 Count/Gate Input		
48	P2.6	O0 / I	St/B	Bit 6 of Port 2, General Purpose Input/Output		
	U0C0_ SELO0	01	St/B	USIC0 Channel 0 Select/Control 0 Output		
	U0C1_ SELO1	O2	St/B	USIC0 Channel 1 Select/Control 1 Output		
	CC2_19	O3 / I	St/B	CAPCOM2 CC19IO Capture Inp./ Compare Out.		
	A19	OH	St/B	External Bus Interface Address Line 19		
	U0C0_DX2D	I	St/B	USIC0 Channel 0 Shift Control Input		
	RxDC0D	I	St/B	CAN Node 0 Receive Data Input		
49	P4.3	O0 / I	St/B	Bit 3 of Port 4, General Purpose Input/Output		
	CC2_27	O3 / I	St/B	CAPCOM2 CC27IO Capture Inp./ Compare Out.		
	CS3	OH	St/B	External Bus Interface Chip Select 3 Output		
	RxDC2A	1	St/B	CAN Node 2 Receive Data Input		
	T2EUD	1	St/B	GPT1 Timer T2 External Up/Down Control Input		
53	P0.0	O0 / I	St/B	Bit 0 of Port 0, General Purpose Input/Output		
	U1C0_DOUT	01	St/B	USIC1 Channel 0 Shift Data Output		
	CCU61_ CC60	O3 / I	St/B	CCU61 Channel 0 Input/Output		
	A0	OH	St/B	External Bus Interface Address Line 0		
	U1C0_DX0A	I	St/B	USIC1 Channel 0 Shift Data Input		

Table 4Pin Definitions and Functions (cont'd)						
Pin	Symbol	Ctrl.	Туре	Function		
58	P0.2	O0 / I	St/B	Bit 2 of Port 0, General Purpose Input/Output		
	U1C0_ SCLKOUT	01	St/B	USIC1 Channel 0 Shift Clock Output		
	TxDC0	O2	St/B	CAN Node 0 Transmit Data Output		
	CCU61_ CC62	O3 / I	St/B	CCU61 Channel 2 Input/Output		
	A2	OH	St/B	External Bus Interface Address Line 2		
	U1C0_DX1B	I	St/B	USIC1 Channel 0 Shift Clock Input		
59	P10.0	O0 / I	St/B	Bit 0 of Port 10, General Purpose Input/Output		
-	U0C1_DOUT	01	St/B	USIC0 Channel 1 Shift Data Output		
	CCU60_ CC60	02 / I	St/B	CCU60 Channel 0 Input/Output		
	AD0	OH/I	St/B	External Bus Interface Address/Data Line 0		
	ESR1_2	I	St/B	ESR1 Trigger Input 2		
	U0C0_DX0A	I	St/B	USIC0 Channel 0 Shift Data Input		
	U0C1_DX0A	I	St/B	USIC0 Channel 1 Shift Data Input		
60	P10.1	O0 / I	St/B	Bit 1 of Port 10, General Purpose Input/Output		
	U0C0_DOUT	01	St/B	USIC0 Channel 0 Shift Data Output		
	CCU60_ CC61	02 / I	St/B	CCU60 Channel 1 Input/Output		
	AD1	OH/I	St/B	External Bus Interface Address/Data Line 1		
	U0C0_DX0B	1	St/B	USIC0 Channel 0 Shift Data Input		
	U0C0_DX1A	1	St/B	USIC0 Channel 0 Shift Clock Input		

Table	Fable 4Pin Definitions and Functions (cont'd)						
Pin	Symbol	Ctrl.	Туре	Function			
61	P0.3	O0 / I	St/B	Bit 3 of Port 0, General Purpose Input/Output			
	U1C0_ SELO0	01	St/B	USIC1 Channel 0 Select/Control 0 Output			
	U1C1_ SELO1	02	St/B	USIC1 Channel 1 Select/Control 1 Output			
	CCU61_ COUT60	O3	St/B	CCU61 Channel 0 Output			
	A3	ОН	St/B	External Bus Interface Address Line 3			
	U1C0_DX2A	I	St/B	USIC1 Channel 0 Shift Control Input			
_	RxDC0B	I	St/B	CAN Node 0 Receive Data Input			
62	P10.2	O0 / I	St/B	Bit 2 of Port 10, General Purpose Input/Output			
-	U0C0_ SCLKOUT	O1	St/B	USIC0 Channel 0 Shift Clock Output			
	CCU60_ CC62	02 / I	St/B	CCU60 Channel 2 Input/Output			
	AD2	OH/I	St/B	External Bus Interface Address/Data Line 2			
	U0C0_DX1B	1	St/B	USIC0 Channel 0 Shift Clock Input			
63	P0.4	O0 / I	St/B	Bit 4 of Port 0, General Purpose Input/Output			
	U1C1_ SELO0	01	St/B	USIC1 Channel 1 Select/Control 0 Output			
	U1C0_ SELO1	02	St/B	USIC1 Channel 0 Select/Control 1 Output			
	CCU61_ COUT61	O3	St/B	CCU61 Channel 1 Output			
	A4	ОН	St/B	External Bus Interface Address Line 4			
	U1C1_DX2A	I	St/B	USIC1 Channel 1 Shift Control Input			
	RxDC1B	1	St/B	CAN Node 1 Receive Data Input			
65	TRef	IO	Sp/1	Control Pin for Core Voltage Generation			

Tabl	Fable 4Pin Definitions and Functions (cont'd)						
Pin	Symbol	Ctrl.	Туре	Function			
85	P10.12	O0 / I	St/B	Bit 12 of Port 10, General Purpose Input/Output			
	U1C0_DOUT	01	St/B	USIC1 Channel 0 Shift Data Output			
	TxDC2	02	St/B	CAN Node 2 Transmit Data Output			
	TDO_B	O3	St/B	JTAG Test Data Output			
	AD12	OH/I	St/B	External Bus Interface Address/Data Line 12			
	U1C0_DX0C	1	St/B	USIC1 Channel 0 Shift Data Input			
	U1C0_DX1E	1	St/B	USIC1 Channel 0 Shift Clock Input			
86	P10.13	O0 / I	St/B	Bit 13 of Port 10, General Purpose Input/Output			
	U1C0_DOUT	01	St/B	USIC1 Channel 0 Shift Data Output			
	TxDC3	O2	St/B	CAN Node 3 Transmit Data Output			
	U1C0_ SELO3	O3	St/B	USIC1 Channel 0 Select/Control 3 Output			
	WR/WRL	ОН	St/B	External Bus Interface Write Strobe Output Active for each external write access, when WR, active for ext. writes to the low byte, when WRL.			
	U1C0_DX0D	I	St/B	USIC1 Channel 0 Shift Data Input			
87	P1.3	O0 / I	St/B	Bit 3 of Port 1, General Purpose Input/Output			
	CCU62_ COUT63	01	St/B	CCU62 Channel 3 Output			
	U1C0_ SELO7	O2	St/B	USIC1 Channel 0 Select/Control 7 Output			
	U2C0_ SELO4	O3	St/B	USIC2 Channel 0 Select/Control 4 Output			
	A11	OH	St/B	External Bus Interface Address Line 11			
	ESR2_4	1	St/B	ESR2 Trigger Input 4			
	CCU62_ T12HRB	1	St/B	External Run Control Input for T12 of CCU62			
	EX3AINA	1	St/B	External Interrupt Trigger Input			

Pin	Symbol	Ctrl.	Туре	Function
2, 25, 27,	V _{DDPB}	-	PS/B	Digital Pad Supply Voltage for Domain B Connect decoupling capacitors to adjacent $V_{\text{DDP}}/V_{\text{SS}}$ pin pairs as close as possible to the pins.
50, 52, 75, 77, 100				Note: The on-chip voltage regulators and all ports except P5, P6, and P15 are fed from supply voltage V_{DDPB} .
1, 26, 51,	V _{SS}	-	PS/	Digital Ground All V_{SS} pins must be connected to the ground-line or ground-plane.
76				Note: Also the exposed pad is connected to $V_{\rm SS}$. The respective board area must be connected to ground (if soldered) or left free.

Table 4Pin Definitions and Functions (cont'd)

1) To generate the reference clock output for bus timing measurement, f_{SYS} must be selected as source for EXTCLK and P2.8 must be selected as output pin. Also the high-speed clock pad must be enabled. This configuration is referred to as reference clock output signal CLKOUT.

2) Pin TRef was used to control the core voltage generation in step AA. For that step, pin TRef must be connected to V_{DDPB}.

This connection is no more required from step AB on. For the current step, pin TRef is logically not connected. Future derivatives will feature an additional general purpose IO pin at this position.

3 Functional Description

The architecture of the XE164 combines advantages of RISC, CISC, and DSP processors with an advanced peripheral subsystem in a well-balanced design. On-chip memory blocks allow the design of compact systems-on-silicon with maximum performance suited for computing, control, and communication.

The on-chip memory blocks (program code memory and SRAM, dual-port RAM, data SRAM) and the generic peripherals are connected to the CPU by separate high-speed buses. Another bus, the LXBus, connects additional on-chip resources and external resources (see **Figure 3**). This bus structure enhances overall system performance by enabling the concurrent operation of several subsystems of the XE164.

The block diagram gives an overview of the on-chip components and the advanced internal bus structure of the XE164.

Figure 3 Block Diagram

3.1 Memory Subsystem and Organization

The memory space of the XE164 is configured in the von Neumann architecture. In this architecture all internal and external resources, including code memory, data memory, registers and I/O ports, are organized in the same linear address space.

Address Area	Start Loc.	End Loc.	Area Size ¹⁾	Notes
IMB register space	FF'FF00 _H	FF'FFFF _H	256 Bytes	-
Reserved (Access trap)	F0'0000 _H	FF'FEFF _H	<1 Mbyte	Minus IMB registers
Reserved for EPSRAM	E9'0000 _H	EF'FFFF _H	448 Kbytes	Mirrors EPSRAM
Emulated PSRAM	E8'0000 _H	E8'FFFF _H	64 Kbytes	Flash timing
Reserved for PSRAM	E1'0000 _H	E7'FFFF _H	448 Kbytes	Mirrors PSRAM
Program SRAM	E0'0000 _H	E0'FFFF _H	64 Kbytes	Maximum speed
Reserved for pr. mem.	CC'0000 _H	DF'FFFF _H	<1.25 Mbytes	-
Program Flash 2	C8'0000 _H	CB'FFFF _H	256 Kbytes	-
Program Flash 1	C4'0000 _H	C7'FFFF _H	256 Kbytes	-
Program Flash 0	C0'0000 _H	C3'FFFF _H	256 Kbytes	2)
External memory area	40'0000 _H	BF'FFFF _H	8 Mbytes	-
Available Ext. IO area ³⁾	20'5800 _H	3F'FFFF _H	< 2 Mbytes	Minus USIC/CAN
USIC registers	20'4000 _H	20'57FF _H	6 Kbytes	Accessed via EBC
MultiCAN registers	20'0000 _H	20'3FFF _H	16 Kbytes	Accessed via EBC
External memory area	01'0000 _H	1F'FFFF _H	< 2 Mbytes	Minus segment 0
SFR area	00'FE00 _H	00'FFFF _H	0.5 Kbyte	-
Dual-Port RAM	00'F600 _H	00'FDFF _H	2 Kbytes	-
Reserved for DPRAM	00'F200 _H	00'F5FF _H	1 Kbyte	-
ESFR area	00'F000 _H	00'F1FF _H	0.5 Kbyte	-
XSFR area	00'E000 _H	00'EFFF _H	4 Kbytes	-
Data SRAM	00'A000 _H	00'DFFF _H	16 Kbytes	-
Reserved for DSRAM	00'8000 _H	00'9FFF _H	8 Kbytes	_
External memory area	00'000 _H	00'7FFF _H	32 Kbytes	-

Table 5XE164 Memory Map

1) The areas marked with "<" are slightly smaller than indicated. See column "Notes".

2) The uppermost 4-Kbyte sector of the first Flash segment is reserved for internal use (C0'F000_H to C0'FFFF_H).

3) Several pipeline optimizations are not active within the external IO area. This is necessary to control external peripherals properly.

3.3 Central Processing Unit (CPU)

The core of the CPU consists of a 5-stage execution pipeline with a 2-stage instructionfetch pipeline, a 16-bit arithmetic and logic unit (ALU), a 32-bit/40-bit multiply and accumulate unit (MAC), a register-file providing three register banks, and dedicated SFRs. The ALU features a multiply-and-divide unit, a bit-mask generator, and a barrel shifter.

Figure 4 CPU Block Diagram

When a capture/compare register has been selected for capture mode, the current contents of the allocated timer will be latched ('captured') into the capture/compare register in response to an external event at the port pin associated with this register. In addition, a specific interrupt request for this capture/compare register is generated. Either a positive, a negative, or both a positive and a negative external signal transition at the pin can be selected as the triggering event.

The contents of all registers selected for one of the five compare modes are continuously compared with the contents of the allocated timers.

When a match occurs between the timer value and the value in a capture/compare register, specific actions will be taken based on the compare mode selected.

Pullup/Pulldown Device Behavior

Most pins of the XE164 feature pullup or pulldown devices. For some special pins these are fixed; for the port pins they can be selected by the application.

The specified current values indicate how to load the respective pin depending on the intended signal level. **Figure 12** shows the current paths.

The shaded resistors shown in the figure may be required to compensate system pull currents that do not match the given limit values.

Figure 12 Pullup/Pulldown Current Definition

- 4) As a rule, with decreasing output current the output levels approach the respective supply level ($V_{OL} \rightarrow V_{SS}$, $V_{OH} \rightarrow V_{DDP}$). However, only the levels for nominal output currents are verified.
- 5) This specification is not valid for outputs which are switched to open drain mode. In this case the respective output will float and the voltage is determined by the external circuit.
- 6) An additional error current (I_{INJ}) will flow if an overload current flows through an adjacent pin. Please refer to the definition of the overload coupling factor K_{OV} .
- 7) The given values are worst-case values. In production test, this leakage current is only tested at 125°C; other values are ensured by correlation. For derating, please refer to the following descriptions:

Leakage derating depending on temperature (T_1 = junction temperature [°C]):

 $I_{OZ} = 0.05 \times e^{(1.5 + 0.028 \times TJ)} [\mu A]$. For example, at a temperature of 95°C the resulting leakage current is 3.2 μA . Leakage derating depending on voltage level (DV = V_{DDP} - V_{PIN} [V]):

 $I_{OZ} = I_{OZtempmax} - (1.6 \times DV) [\mu A]$

This voltage derating formula is an approximation which applies for maximum temperature.

Because pin P2.8 is connected to two pads (standard pad and high-speed clock pad), it has twice the normal leakage.

8) Keep current: Limit the current through this pin to the indicated value so that the enabled pull device can keep the default pin level: V_{PIN} ≥ V_{IH} for a pullup; V_{PIN} ≤ V_{IL} for a pulldown. Force current: Drive the indicated minimum current through this pin to change the default pin level driven by

the enabled pull device: $V_{\text{PIN}} \le V_{\text{IL}}$ for a pullup; $V_{\text{PIN}} \ge V_{\text{IH}}$ for a pulldown. These values apply to the fixed pull-devices in dedicated pins and to the user-selectable pull-devices in

These values apply to the fixed pull-devices in dedicated pins and to the user-selectable pull-devices in general purpose IO pins.

 Not subject to production test - verified by design/characterization. Because pin P2.8 is connected to two pads (standard pad and high-speed clock pad), it has twice the normal capacitance.

Table 18A/D Converter Characteristics (cont'd)(Operating Conditions apply)

Parameter	Symbol		Lim	nit Values	Unit	Test	
			Min.	Max.		Condition	
Switched capacitance of the reference input	C_{AREFS}	CC	_	7	pF	6)7)	
Resistance of the reference input path	R _{AREF}	CC	_	2	kΩ	6)7)	

1) TUE is tested at $V_{AREFx} = V_{DDPA}$, $V_{AGND} = 0$ V. It is verified by design for all other voltages within the defined voltage range.

The specified TUE is valid only if the absolute sum of input overload currents on Port 5 or Port 15 pins (see I_{OV} specification) does not exceed 10 mA, and if V_{AREF} and V_{AGND} remain stable during the measurement time.

- 2) V_{AIN} may exceed V_{AGND} or V_{AREFx} up to the absolute maximum ratings. However, the conversion result in these cases will be X000_H or X3FF_H, respectively.
- 3) The limit values for f_{ADCI} must not be exceeded when selecting the peripheral frequency and the prescaler setting.
- 4) This parameter includes the sample time (also the additional sample time specified by STC), the time to determine the digital result and the time to load the result register with the conversion result. Values for the basic clock t_{ADCI} depend on programming and are found in Table 19.
- 5) The total unadjusted error TUE is the maximum deviation from the ideal ADC transfer curve, not the sum of individual errors.

All error specifications are based on measurement methods standardized by IEEE 1241.2000.

- 6) Not subject to production test verified by design/characterization.
- 7) These parameter values cover the complete operating range. Under relaxed operating conditions (temperature, supply voltage) typical values can be used for calculation. At room temperature and nominal supply voltage the following typical values can be used:

 $C_{AINTtyp}$ = 12 pF, $C_{AINStyp}$ = 5 pF, R_{AINtyp} = 1.0 k Ω , $C_{AREFTtyp}$ = 15 pF, $C_{AREFStyp}$ = 10 pF, $R_{AREFtyp}$ = 1.0 k Ω .

Figure 15 Equivalent Circuitry for Analog Inputs

4.5 Flash Memory Parameters

The XE164 is delivered with all Flash sectors erased and with no protection installed.

The data retention time of the XE164's Flash memory (i.e. the time after which stored data can still be retrieved) depends on the number of times the Flash memory has been erased and programmed.

Note: These parameters are not subject to production test but verified by design and/or characterization.

Parameter	Symbol	Li	mit Valu	es	Unit	Note / Test	
		Min.	Тур.	Max.	-	Condition	
Programming time per 128-byte page	t _{PR}	-	3 ¹⁾	3.5	ms	ms	
Erase time per sector/page	t _{ER}	-	4 ¹⁾	5	ms	ms	
Data retention time	t _{RET}	20	_	-	years	1,000 erase / program cycles	
Flash erase endurance for user sectors ²⁾	N_{ER}	15,000	-	_	cycles	Data retention time 5 years	
Flash erase endurance for security pages	$N_{\rm SEC}$	10	-	-	cycles	Data retention time 20 years	
Drain disturb limit	N_{DD}	64	-	-	cycles	3)	

Table 23Flash Characteristics(Operating Conditions apply)

 Programming and erase times depend on the internal Flash clock source. The control state machine needs a few system clock cycles. This requirement is only relevant for extremely low system frequencies. In the XE164 erased areas must be programmed completely (with actual code/data or dummy values) before that area is read.

2) A maximum of 64 Flash sectors can be cycled 15,000 times. For all other sectors the limit is 1,000 cycles.

3) This parameter limits the number of subsequent programming operations within a physical sector. The drain disturb limit is applicable if wordline erase is used repeatedly. For normal sector erase/program cycles this limit will not be violated.

Access to the XE164 Flash modules is controlled by the IMB. Built-in prefetch mechanisms optimize the performance for sequential access.

Flash access waitstates only affect non-sequential access. Due to prefetch mechanisms, the performance for sequential access (depending on the software structure) is only partially influenced by waitstates.

XE164x XE166 Family Derivatives

Electrical Parameters

Figure 24 READY Timing

Note: If the READY input is sampled inactive at the indicated sampling point ("Not Rdy") a READY-controlled waitstate is inserted (tpRDY), sampling the READY input active at the indicated sampling point ("Boady")

sampling the READY input active at the indicated sampling point ("Ready") terminates the currently running bus cycle.

Note the different sampling points for synchronous and asynchronous READY. This example uses one mandatory waitstate (see tpE) before the READY input value is used.

4.6.5 Synchronous Serial Interface Timing

The following parameters are applicable for a USIC channel operated in SSC mode.

Note: These parameters are not subject to production test but verified by design and/or characterization.

Table 31SSC Master/Slave Mode Timing for Upper Voltage Range
(Operating Conditions apply), $C_1 = 50 \text{ pF}$

Parameter	Symbol		Value	Unit	Note /	
		Min.	Тур.	Max.		Test Co ndition
Master Mode Timing						
Slave select output SELO active to first SCLKOUT transmit edge	t ₁ CC	0	-	1)	ns	2)
Slave select output SELO inactive after last SCLKOUT receive edge	t ₂ CC	$0.5 \times t_{\rm BIT}$	-	3)	ns	
Transmit data output valid time	t ₃ CC	-6	-	13	ns	
Receive data input setup time to SCLKOUT receive edge	t_4 SR	31	-	-	ns	
Data input DX0 hold time from SCLKOUT receive edge	$t_5 \mathrm{SR}$	-7	-	-	ns	
Slave Mode Timing		1	I	I		<u> </u>
Select input DX2 setup to first clock input DX1 transmit edge	<i>t</i> ₁₀ SR	7	-	-	ns	4)
Select input DX2 hold after last clock input DX1 receive edge	<i>t</i> ₁₁ SR	5	-	-	ns	4)
Data input DX0 setup time to clock input DX1 receive edge	<i>t</i> ₁₂ SR	7	-	-	ns	4)
Data input DX0 hold time from clock input DX1 receive edge	<i>t</i> ₁₃ SR	5	-	-	ns	4)
Data output DOUT valid time	<i>t</i> ₁₄ CC	8	-	29	ns	4)

1) The maximum value further depends on the settings for the slave select output leading delay.

2) $t_{SYS} = 1/f_{SYS}$ (= 12.5ns @ 80 MHz)

- The maximum value depends on the settings for the slave select output trailing delay and for the shift clock output delay.
- 4) These input timings are valid for asynchronous input signal handling of slave select input, shift clock input, and receive data input (bits DXnCR.DSEN = 0).

Figure 25 USIC - SSC Master/Slave Mode Timing

Note: This timing diagram shows a standard configuration where the slave select signal is low-active and the serial clock signal is not shifted and not inverted.

Package and Reliability

Package Outlines

Figure 28 PG-LQFP-100-3 (Plastic Green Thin Quad Flat Package)

All dimensions in mm.

You can find complete information about Infineon packages, packing and marking in our Infineon Internet Page "Packages": http://www.infineon.com/packages