

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Discontinued at Digi-Key
Core Processor	C166SV2
Core Size	16-Bit
Speed	66MHz
Connectivity	CANbus, EBI/EMI, I ² C, LINbus, SPI, SSC, UART/USART, USI
Peripherals	I ² S, POR, PWM, WDT
Number of I/O	75
Program Memory Size	576KB (576K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	50K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP Exposed Pad
Supplier Device Package	PG-LQFP-100-8
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xe164h72f66lacfxqma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Summary of Features

For a quick overview and easy reference, the features of the XE164 are summarized here.

- High-performance CPU with five-stage pipeline
 - 12.5 ns instruction cycle at 80 MHz CPU clock (single-cycle execution)
 - One-cycle 32-bit addition and subtraction with 40-bit result
 - One-cycle multiplication (16×16 bit)
 - Background division (32 / 16 bit) in 21 cycles
 - One-cycle multiply-and-accumulate (MAC) instructions
 - Enhanced Boolean bit manipulation facilities
 - Zero-cycle jump execution
 - Additional instructions to support HLL and operating systems
 - Register-based design with multiple variable register banks
 - Fast context switching support with two additional local register banks
 - 16 Mbytes total linear address space for code and data
 - 1024 Bytes on-chip special function register area (C166 Family compatible)
 - Interrupt system with 16 priority levels for up to 83 sources
 - Selectable external inputs for interrupt generation and wake-up
 - Fastest sample-rate 12.5 ns
- Eight-channel interrupt-driven single-cycle data transfer with Peripheral Event Controller (PEC), 24-bit pointers cover total address space
- Clock generation from internal or external clock sources, using on-chip PLL or prescaler
- On-chip memory modules
 - 1 Kbyte on-chip stand-by RAM (SBRAM)
 - 2 Kbytes on-chip dual-port RAM (DPRAM)
 - Up to 16 Kbytes on-chip data SRAM (DSRAM)
 - Up to 64 Kbytes on-chip program/data SRAM (PSRAM)
 - Up to 768 Kbytes on-chip program memory (Flash memory)
- On-Chip Peripheral Modules
 - Two Synchronizable A/D Converters with up to 16 channels, 10-bit resolution, conversion time below 1 μ s, optional data preprocessing (data reduction, range check)
 - 16-channel general purpose capture/compare unit (CAPCOM2)
 - Up to three capture/compare units for flexible PWM signal generation (CCU6x)
 - Multi-functional general purpose timer unit with 5 timers

٠

General Device Information

Table 4Pin Definitions and Functions (cont'd)				
Pin	Symbol	Ctrl.	Туре	Function
7	P7.3	O0 / I	St/B	Bit 3 of Port 7, General Purpose Input/Output
	EMUX1	01	St/B	External Analog MUX Control Output 1 (ADC1)
	U0C1_DOUT	02	St/B	USIC0 Channel 1 Shift Data Output
	U0C0_DOUT	O3	St/B	USIC0 Channel 0 Shift Data Output
	CCU62_ CCPOS1A	1	St/B	CCU62 Position Input 1
	TMS_C	I	St/B	JTAG Test Mode Selection Input
	U0C1_DX0F	I	St/B	USIC0 Channel 1 Shift Data Input
8	P7.1	O0 / I	St/B	Bit 1 of Port 7, General Purpose Input/Output
	EXTCLK	01	St/B	Programmable Clock Signal Output
	CCU62_ CTRAPA	1	St/B	CCU62 Emergency Trap Input
	BRKIN_C	I	St/B	OCDS Break Signal Input
9	P7.4	O0 / I	St/B	Bit 4 of Port 7, General Purpose Input/Output
	EMUX2	01	St/B	External Analog MUX Control Output 2 (ADC1)
	U0C1_DOUT	02	St/B	USIC0 Channel 1 Shift Data Output
	U0C1_ SCLKOUT	O3	St/B	USIC0 Channel 1 Shift Clock Output
	CCU62_ CCPOS2A	1	St/B	CCU62 Position Input 2
	TCK_C	I	St/B	JTAG Clock Input
	U0C0_DX0D	I	St/B	USIC0 Channel 0 Shift Data Input
	U0C1_DX1E	I	St/B	USIC0 Channel 1 Shift Clock Input
11	P6.0	O0 / I	St/A	Bit 0 of Port 6, General Purpose Input/Output
	EMUX0	01	St/A	External Analog MUX Control Output 0 (ADC0)
	BRKOUT	O3	St/A	OCDS Break Signal Output
_	ADCx_ REQGTyC	1	St/A	External Request Gate Input for ADC0/1
	U1C1_DX0E	I	St/A	USIC1 Channel 1 Shift Data Input

General Device Information

Table	Fable 4Pin Definitions and Functions (cont'd)				
Pin	Symbol	Ctrl.	Туре	Function	
54	P2.7	O0 / I	St/B	Bit 7 of Port 2, General Purpose Input/Output	
	U0C1_ SELO0	01	St/B	USIC0 Channel 1 Select/Control 0 Output	
	U0C0_ SELO1	02	St/B	USIC0 Channel 0 Select/Control 1 Output	
	CC2_20	O3 / I	St/B	CAPCOM2 CC20IO Capture Inp./ Compare Out.	
	A20	ОН	St/B	External Bus Interface Address Line 20	
	U0C1_DX2C	I	St/B	USIC0 Channel 1 Shift Control Input	
	RxDC1C	1	St/B	CAN Node 1 Receive Data Input	
55	P0.1	O0 / I	St/B	Bit 1 of Port 0, General Purpose Input/Output	
	U1C0_DOUT	01	St/B	USIC1 Channel 0 Shift Data Output	
	TxDC0	O2	St/B	CAN Node 0 Transmit Data Output	
	CCU61_ CC61	O3 / I	St/B	CCU61 Channel 1 Input/Output	
	A1	OH	St/B	External Bus Interface Address Line 1	
	U1C0_DX0B	I	St/B	USIC1 Channel 0 Shift Data Input	
	U1C0_DX1A	I	St/B	USIC1 Channel 0 Shift Clock Input	
56	P2.8	O0 / I	DP/B	Bit 8 of Port 2, General Purpose Input/Output	
	U0C1_ SCLKOUT	01	DP/B	USIC0 Channel 1 Shift Clock Output	
	EXTCLK	02	DP/B	Programmable Clock Signal Output	
	CC2_21	O3 / I	DP/B	CAPCOM2 CC21IO Capture Inp./ Compare Out.	
	A21	OH	DP/B	External Bus Interface Address Line 21	
	U0C1_DX1D	I	DP/B	USIC0 Channel 1 Shift Clock Input	
57	P2.9	O0 / I	St/B	Bit 9 of Port 2, General Purpose Input/Output	
	U0C1_DOUT	01	St/B	USIC0 Channel 1 Shift Data Output	
	TxDC1	O2	St/B	CAN Node 1 Transmit Data Output	
	CC2_22	O3 / I	St/B	CAPCOM2 CC22IO Capture Inp./ Compare Out.	
	A22	OH	St/B	External Bus Interface Address Line 22	
	CLKIN1	1	St/B	Clock Signal Input	
	TCK_A	I	St/B	JTAG Clock Input	

General Device Information

Table 4Pin Definitions and Functions (cont'd)						
Pin	Symbol	Ctrl.	Туре	Function		
85	P10.12	O0 / I	St/B	Bit 12 of Port 10, General Purpose Input/Output		
	U1C0_DOUT	01	St/B	USIC1 Channel 0 Shift Data Output		
	TxDC2	02	St/B	CAN Node 2 Transmit Data Output		
	TDO_B	O3	St/B	JTAG Test Data Output		
	AD12	OH/I	St/B	External Bus Interface Address/Data Line 12		
	U1C0_DX0C	1	St/B	USIC1 Channel 0 Shift Data Input		
	U1C0_DX1E	1	St/B	USIC1 Channel 0 Shift Clock Input		
86	P10.13	O0 / I	St/B	Bit 13 of Port 10, General Purpose Input/Output		
	U1C0_DOUT	01	St/B	USIC1 Channel 0 Shift Data Output		
	TxDC3	O2	St/B	CAN Node 3 Transmit Data Output		
	U1C0_ SELO3	O3	St/B	USIC1 Channel 0 Select/Control 3 Output		
	WR/WRL	ОН	St/B	External Bus Interface Write Strobe Output Active for each external write access, when WR, active for ext. writes to the low byte, when WRL.		
	U1C0_DX0D	I	St/B	USIC1 Channel 0 Shift Data Input		
87	P1.3	O0 / I	St/B	Bit 3 of Port 1, General Purpose Input/Output		
	CCU62_ COUT63	01	St/B	CCU62 Channel 3 Output		
	U1C0_ SELO7	O2	St/B	USIC1 Channel 0 Select/Control 7 Output		
	U2C0_ SELO4	O3	St/B	USIC2 Channel 0 Select/Control 4 Output		
	A11	OH	St/B	External Bus Interface Address Line 11		
	ESR2_4	1	St/B	ESR2 Trigger Input 4		
	CCU62_ T12HRB	1	St/B	External Run Control Input for T12 of CCU62		
	EX3AINA	1	St/B	External Interrupt Trigger Input		

3 Functional Description

The architecture of the XE164 combines advantages of RISC, CISC, and DSP processors with an advanced peripheral subsystem in a well-balanced design. On-chip memory blocks allow the design of compact systems-on-silicon with maximum performance suited for computing, control, and communication.

The on-chip memory blocks (program code memory and SRAM, dual-port RAM, data SRAM) and the generic peripherals are connected to the CPU by separate high-speed buses. Another bus, the LXBus, connects additional on-chip resources and external resources (see **Figure 3**). This bus structure enhances overall system performance by enabling the concurrent operation of several subsystems of the XE164.

The block diagram gives an overview of the on-chip components and the advanced internal bus structure of the XE164.

Figure 3 Block Diagram

Table 6 XE164 Interrupt Nodes (cont'd) Source of Interrupt or PEC Control Vector Trap Location¹⁾ Number Service Request Register 41_н / 65_D CAN Request 1 CAN 1IC xx'0104_н CAN Request 2 CAN 2IC xx'0108_н 42_H / 66_D CAN Request 3 CAN 3IC xx'010C_н 43_H / 67_D **CAN Request 4** CAN 4IC 44_H / 68_D xx'0110_н CAN Request 5 CAN 5IC xx'0114_ц 45_H / 69_D CAN Request 6 CAN 6IC xx'0118_н 46_H / 70_D CAN Request 7 CAN 7IC xx'011C_н 47_H / 71_D CAN Request 8 CAN 8IC xx'0120_н 48_H / 72_D CAN Request 9 CAN 9IC xx'0124_н 49_H / 73_D CAN Request 10 CAN_10IC 4A_H / 74_D xx'0128_H 4B_н / 75_D CAN Request 11 CAN 11IC xx'012C_н CAN Request 12 CAN 12IC xx'0130_н 4C_H / 76_D CAN Request 13 CAN 13IC xx'0134_н 4D_H / 77_D CAN Request 14 CAN 14IC xx'0138_ц 4E_H / 78_D CAN Request 15 CAN 15IC xx'013C_н 4F_H / 79_D USIC0 Cannel 0, Request 0 **U0C0 0IC** xx'0140_н 50_H / 80_D USIC0 Cannel 0, Request 1 U0C0_1IC xx'0144_н 51_H / 81_D USIC0 Cannel 0, Request 2 U0C0 2IC xx'0148_н 52_н / 82_D USIC0 Cannel 1, Request 0 U0C1_0IC xx'014C_н 53_H / 83_D USIC0 Cannel 1, Request 1 U0C1 1IC xx'0150_н 54_H / 84_D USIC0 Cannel 1, Request 2 U0C1 2IC xx'0154_н 55_H / 85_D USIC1 Cannel 0, Request 0 U1C0 0IC xx'0158_н 56_H / 86_D USIC1 Cannel 0, Request 1 57_H / 87_D U1C0 1IC xx'015C_H USIC1 Cannel 0, Request 2 U1C0 2IC xx'0160_H 58_H / 88_D USIC1 Cannel 1, Request 0 U1C1 0IC xx'0164_н 59_H / 89_D USIC1 Cannel 1, Request 1 U1C1 1IC xx'0168_н 5A_H / 90_D USIC1 Cannel 1, Request 2 U1C1 2IC xx'016C_н 5B_H / 91_D USIC2 Cannel 0, Request 0 U2C0 0IC xx'0170_н 5C_н / 92_D USIC2 Cannel 0, Request 1 U2C0 1IC xx'0174_н 5D_н / 93_D USIC2 Cannel 0, Request 2 U2C0 2IC xx'0178_н 5E_H / 94_D

3.8 General Purpose Timer (GPT12E) Unit

The GPT12E unit is a very flexible multifunctional timer/counter structure which can be used for many different timing tasks such as event timing and counting, pulse width and duty cycle measurements, pulse generation, or pulse multiplication.

The GPT12E unit incorporates five 16-bit timers organized in two separate modules, GPT1 and GPT2. Each timer in each module may either operate independently in a number of different modes or be concatenated with another timer of the same module.

Each of the three timers T2, T3, T4 of **module GPT1** can be configured individually for one of four basic modes of operation: Timer, Gated Timer, Counter, and Incremental Interface Mode. In Timer Mode, the input clock for a timer is derived from the system clock and divided by a programmable prescaler. Counter Mode allows timer clocking in reference to external events.

Pulse width or duty cycle measurement is supported in Gated Timer Mode, where the operation of a timer is controlled by the 'gate' level on an external input pin. For these purposes each timer has one associated port pin $(TxIN^{1})$ which serves as a gate or clock input. The maximum resolution of the timers in module GPT1 is 4 system clock cycles.

The counting direction (up/down) for each timer can be programmed by software or altered dynamically by an external signal on a port pin (TxEUD¹), e.g. to facilitate position tracking.

In Incremental Interface Mode the GPT1 timers¹⁾ can be directly connected to the incremental position sensor signals A and B through their respective inputs TxIN and TxEUD. Direction and counting signals are internally derived from these two input signals, so that the contents of the respective timer Tx corresponds to the sensor position. The third position sensor signal TOP0 can be connected to an interrupt input.

Timer T3 has an output toggle latch (T3OTL) which changes its state on each timer overflow/underflow. The state of this latch may be output on pin T3OUT e.g. for time out monitoring of external hardware components. It may also be used internally to clock timers T2 and T4 for measuring long time periods with high resolution.

In addition to the basic operating modes, T2 may be configured as reload or capture register for timer T3. A timer used as capture or reload register is stopped. The contents of timer T3 is captured into T2 in response to a signal at the associated input pin (TxIN). Timer T3 is reloaded with the contents of T2, triggered either by an external signal or a selectable state transition of its toggle latch T3OTL.

¹⁾ Exception: Timer T4 is not connected to pins.

Figure 7 Block Diagram of GPT1

The RTC module can be used for different purposes:

- System clock to determine the current time and date
- Cyclic time-based interrupt, to provide a system time tick independent of CPU frequency and other resources
- 48-bit timer for long-term measurements
- Alarm interrupt at a defined time

Target Protocols

Each USIC channel can receive and transmit data frames with a selectable data word width from 1 to 16 bits in each of the following protocols:

- **UART** (asynchronous serial channel)
 - maximum baud rate: f_{SYS} / 4
 - data frame length programmable from 1 to 63 bits
 - MSB or LSB first
- LIN Support (Local Interconnect Network)
 - maximum baud rate: f_{SYS} / 16
 - checksum generation under software control
 - baud rate detection possible by built-in capture event of baud rate generator
- SSC/SPI/QSPI (synchronous serial channel with or without data buffer)
 - maximum baud rate in slave mode: $f_{\rm SYS}$
 - maximum baud rate in master mode: f_{SYS} / 2, limited by loop delay
 - number of data bits programmable from 1 to 63, more with explicit stop condition
 - MSB or LSB first
 - optional control of slave select signals
- IIC (Inter-IC Bus)
 - supports baud rates of 100 kbit/s and 400 kbit/s
- **IIS** (Inter-IC Sound Bus)
 - maximum baud rate: f_{SYS} / 2 for transmitter, f_{SYS} for receiver
- Note: Depending on the selected functions (such as digital filters, input synchronization stages, sample point adjustment, etc.), the maximum achievable baud rate can be limited. Please note that there may be additional delays, such as internal or external propagation delays and driver delays (e.g. for collision detection in UART mode, for IIC, etc.).

3.12 MultiCAN Module

The MultiCAN module contains up to four independently operating CAN nodes with Full-CAN functionality which are able to exchange Data and Remote Frames using a gateway function. Transmission and reception of CAN frames is handled in accordance with CAN specification V2.0 B (active). Each CAN node can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers.

All CAN nodes share a common set of 128 message objects. Each message object can be individually allocated to one of the CAN nodes. Besides serving as a storage container for incoming and outgoing frames, message objects can be combined to build gateways between the CAN nodes or to set up a FIFO buffer.

The message objects are organized in double-chained linked lists, where each CAN node has its own list of message objects. A CAN node stores frames only into message objects that are allocated to its own message object list and it transmits only messages belonging to this message object list. A powerful, command-driven list controller performs all message object list operations.

Figure 11 Block Diagram of MultiCAN Module

3.15 Parallel Ports

The XE164 provides up to 75 I/O lines which are organized into 7 input/output ports and 2 input ports. All port lines are bit-addressable, and all input/output lines can be individually (bit-wise) configured via port control registers. This configuration selects the direction (input/output), push/pull or open-drain operation, activation of pull devices, and edge characteristics (shape) and driver characteristics (output current) of the port drivers. The I/O ports are true bidirectional ports which are switched to high impedance state when configured as inputs. During the internal reset, all port pins are configured as inputs without pull devices active.

All port lines have alternate input or output functions associated with them. These alternate functions can be programmed to be assigned to various port pins to support the best utilization for a given application. For this reason, certain functions appear several times in **Table 9**.

All port lines that are not used for alternate functions may be used as general purpose I/O lines.

Port	Width	Alternate Functions
Port 0	8	Address lines, Serial interface lines of USIC1, CAN0, and CAN1, Input/Output lines for CCU61
Port 1	8	Address lines, Serial interface lines of USIC1 and USIC2, Input/Output lines for CCU62, OCDS control, interrupts
Port 2	13	Address and/or data lines, bus control, Serial interface lines of USIC0, CAN0, and CAN1, Input/Output lines for CCU60 and CAPCOM2, Timer control signals, JTAG, interrupts, system clock output
Port 4	8	Chip select signals, Serial interface lines of CAN2, Input/Output lines for CAPCOM2, Timer control signals
Port 5	16	Analog input channels to ADC0, Input/Output lines for CCU6x, Timer control signals, JTAG, OCDS control, interrupts

Table 9 Summary of the XE164's Parallel Ports

Parameter Interpretation

The parameters listed in the following include both the characteristics of the XE164 and its demands on the system. To aid in correctly interpreting the parameters when evaluating them for a design, they are marked accordingly in the column "Symbol":

CC (Controller Characteristics):

The logic of the XE164 provides signals with the specified characteristics.

SR (System Requirement):

The external system must provide signals with the specified characteristics to the XE164.

Pullup/Pulldown Device Behavior

Most pins of the XE164 feature pullup or pulldown devices. For some special pins these are fixed; for the port pins they can be selected by the application.

The specified current values indicate how to load the respective pin depending on the intended signal level. **Figure 12** shows the current paths.

The shaded resistors shown in the figure may be required to compensate system pull currents that do not match the given limit values.

Figure 12 Pullup/Pulldown Current Definition

- 4) As a rule, with decreasing output current the output levels approach the respective supply level ($V_{OL} \rightarrow V_{SS}$, $V_{OH} \rightarrow V_{DDP}$). However, only the levels for nominal output currents are verified.
- 5) This specification is not valid for outputs which are switched to open drain mode. In this case the respective output will float and the voltage is determined by the external circuit.
- 6) An additional error current (*I*_{INJ}) will flow if an overload current flows through an adjacent pin. Please refer to the definition of the overload coupling factor *K*_{OV}.
 The leakage current value is not tested in the lower voltage range but only in the upper voltage range. This parameter is ensured by correlation.
- 7) The given values are worst-case values. In production test, this leakage current is only tested at 125°C; other values are ensured by correlation. For derating, please refer to the following descriptions:

Leakage derating depending on temperature (T_{J} = junction temperature [°C]):

 $I_{OZ} = 0.03 \times e^{(1.35 + 0.028 \times TJ)}$ [µA]. For example, at a temperature of 95°C the resulting leakage current is 1.65 µA. Leakage derating depending on voltage level (DV = V_{DDP} - V_{PIN} [V]):

 $I_{OZ} = I_{OZtempmax} - (1.3 \times DV) [\mu A]$

This voltage derating formula is an approximation which applies for maximum temperature.

Because pin P2.8 is connected to two pads (standard pad and high-speed clock pad), it has twice the normal leakage.

8) Keep current: Limit the current through this pin to the indicated value so that the enabled pull device can keep the default pin level: V_{PIN} ≥ V_{IH} for a pullup; V_{PIN} ≤ V_{IL} for a pulldown. Force current: Drive the indicated minimum current through this pin to change the default pin level driven by

the enabled pull device: $V_{\text{PIN}} \leq V_{\text{IL}}$ for a pullup; $V_{\text{PIN}} \geq V_{\text{IH}}$ for a pulldown. These values apply to the fixed pull-devices in dedicated pins and to the user-selectable pull-devices in

general purpose IO pins.9) Not subject to production test - verified by design/characterization.

Because pin P2.8 is connected to two pads (standard pad and high-speed clock pad), it has twice the normal capacitance.

4.6 AC Parameters

These parameters describe the dynamic behavior of the XE164.

4.6.1 Testing Waveforms

These values are used for characterization and production testing (except pin XTAL1).

Figure 16 Input Output Waveforms

Figure 17 Floating Waveforms

4.6.2 Definition of Internal Timing

The internal operation of the XE164 is controlled by the internal system clock f_{SYS} .

Because the system clock signal $f_{\rm SYS}$ can be generated from a number of internal and external sources using different mechanisms, the duration of the system clock periods (TCSs) and their variation (as well as the derived external timing) depend on the mechanism used to generate $f_{\rm SYS}$. This must be considered when calculating the timing for the XE164.

Figure 18 Generation Mechanisms for the System Clock

Note: The example of PLL operation shown in **Figure 18** uses a PLL factor of 1:4; the example of prescaler operation uses a divider factor of 2:1.

The specification of the external timing (AC Characteristics) depends on the period of the system clock (TCS).

Variable Memory Cycles

External bus cycles of the XE164 are executed in five consecutive cycle phases (AB, C, D, E, F). The duration of each cycle phase is programmable (via the TCONCSx registers) to adapt the external bus cycles to the respective external module (memory, peripheral, etc.).

The duration of the access phase can optionally be controlled by the external module using the READY handshake input.

This table provides a summary of the phases and the ranges for their length.

Table 28	Programmable Bus	Cycle Phases	(see timing	diagrams)
----------	------------------	--------------	-------------	-----------

Bus Cycle Phase	Parameter	Valid Values	Unit
Address setup phase, the standard duration of this phase (1 2 TCS) can be extended by 0 3 TCS if the address window is changed	tpAB	1 2 (5)	TCS
Command delay phase	tpC	03	TCS
Write Data setup/MUX Tristate phase	tpD	0 1	TCS
Access phase	tpE	1 32	TCS
Address/Write Data hold phase	tpF	03	TCS

Note: The bandwidth of a parameter (from minimum to maximum value) covers the whole operating range (temperature, voltage) as well as process variations. Within a given device, however, this bandwidth is smaller than the specified range. This is also due to interdependencies between certain parameters. Some of these interdependencies are described in additional notes (see standard timing).

Timing values are listed in **Table 29** and **Table 30**. The shaded parameters have been verified by characterization. They are not subject to production test.

XE164x XE166 Family Derivatives

Electrical Parameters

