

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Not For New Designs
Core Processor	C166SV2
Core Size	16-Bit
Speed	66MHz
Connectivity	EBI/EMI, I ² C, LINbus, SPI, SSC, UART/USART, USI
Peripherals	I ² S, POR, PWM, WDT
Number of I/O	75
Program Memory Size	768KB (768K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	82K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP Exposed Pad
Supplier Device Package	PG-LQFP-100-3
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xe164k96f66lacfxqma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Edition 2008-08 Published by Infineon Technologies AG 81726 Munich, Germany © 2008 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

1	Summary of Features	4
2 2.1	General Device Information	9 10
3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14	Functional Description Memory Subsystem and Organization External Bus Controller Central Processing Unit (CPU) Interrupt System On-Chip Debug Support (OCDS) Capture/Compare Unit (CAPCOM2) Capture/Compare Units CCU6x General Purpose Timer (GPT12E) Unit Real Time Clock A/D Converters Universal Serial Interface Channel Modules (USIC) MultiCAN Module Watchdog Timer Clock Generation	31 32 35 36 38 44 45 45 50 54 56 57 59 61 61
3.15 3.16	Parallel Ports	62 64
4 4.1 4.2 4.2.1 4.2.2 4.2.3 4.3 4.4 4.5 4.6 4.6.1 4.6.2 4.6.3 4.6.4 4.6.5 4.6.6 -	Electrical Parameters General Parameters DC Parameters for Upper Voltage Area DC Parameters for Lower Voltage Area Power Consumption Analog/Digital Converter Parameters System Parameters Flash Memory Parameters AC Parameters Testing Waveforms Definition of Internal Timing External Clock Input Parameters External Bus Timing Synchronous Serial Interface Timing JTAG Interface Timing	67 71 73 75 75 77 81 84 88 88 88 88 89 94 96 107
5 5.1 5.2	Package and Reliability Packaging Packaging Packaging Thermal Considerations Packaging	. 109 . 109 . 111

2 General Device Information

The XE164 series of real time signal controllers is a part of the Infineon XE166 Family of full-feature single-chip CMOS microcontrollers. These devices extend the functionality and performance of the C166 Family in terms of instructions (MAC unit), peripherals, and speed. They combine high CPU performance (up to 80 million instructions per second) with extended peripheral functionality and enhanced IO capabilities. Optimized peripherals can be adapted flexibly to meet the application requirements. These derivatives utilize clock generation via PLL and internal or external clock sources. On-chip memory modules include program Flash, program RAM, and data RAM.

Figure 1 Logic Symbol

Table	Table 4Pin Definitions and Functions (cont'd)							
Pin	Symbol	Ctrl.	Туре	Function				
7	P7.3	O0 / I	St/B	Bit 3 of Port 7, General Purpose Input/Output				
	EMUX1	01	St/B	External Analog MUX Control Output 1 (ADC1)				
	U0C1_DOUT	02	St/B	USIC0 Channel 1 Shift Data Output				
	U0C0_DOUT	O3	St/B	USIC0 Channel 0 Shift Data Output				
	CCU62_ CCPOS1A	1	St/B	CCU62 Position Input 1				
	TMS_C	I	St/B	JTAG Test Mode Selection Input				
	U0C1_DX0F	I	St/B	USIC0 Channel 1 Shift Data Input				
8	P7.1	O0 / I	St/B	Bit 1 of Port 7, General Purpose Input/Output				
	EXTCLK	01	St/B	Programmable Clock Signal Output				
	CCU62_ CTRAPA	1	St/B	CCU62 Emergency Trap Input				
	BRKIN_C	I	St/B	OCDS Break Signal Input				
9	P7.4	O0 / I	St/B	Bit 4 of Port 7, General Purpose Input/Output				
	EMUX2	01	St/B	External Analog MUX Control Output 2 (ADC1)				
	U0C1_DOUT	02	St/B	USIC0 Channel 1 Shift Data Output				
	U0C1_ SCLKOUT	O3	St/B	USIC0 Channel 1 Shift Clock Output				
	CCU62_ CCPOS2A	1	St/B	CCU62 Position Input 2				
	TCK_C	I	St/B	JTAG Clock Input				
	U0C0_DX0D	I	St/B	USIC0 Channel 0 Shift Data Input				
	U0C1_DX1E	I	St/B	USIC0 Channel 1 Shift Clock Input				
11	P6.0	O0 / I	St/A	Bit 0 of Port 6, General Purpose Input/Output				
	EMUX0	01	St/A	External Analog MUX Control Output 0 (ADC0)				
	BRKOUT	O3	St/A	OCDS Break Signal Output				
	ADCx_ REQGTyC	1	St/A	External Request Gate Input for ADC0/1				
	U1C1_DX0E	I	St/A	USIC1 Channel 1 Shift Data Input				

Tabl	Fable 4Pin Definitions and Functions (cont'd)							
Pin	Symbol	Ctrl.	Туре	Function				
47	P4.2	O0 / I	St/B	Bit 2 of Port 4, General Purpose Input/Output				
	TxDC2	02	St/B	CAN Node 2 Transmit Data Output				
	CC2_26	O3 / I	St/B	CAPCOM2 CC26IO Capture Inp./ Compare Out.				
	CS2	OH	St/B	External Bus Interface Chip Select 2 Output				
	T2IN	1	St/B	GPT1 Timer T2 Count/Gate Input				
48	P2.6	O0 / I	St/B	Bit 6 of Port 2, General Purpose Input/Output				
	U0C0_ SELO0	01	St/B	USIC0 Channel 0 Select/Control 0 Output				
	U0C1_ SELO1	O2	St/B	USIC0 Channel 1 Select/Control 1 Output				
	CC2_19	O3 / I	St/B	CAPCOM2 CC19IO Capture Inp./ Compare Out.				
	A19	OH	St/B	External Bus Interface Address Line 19				
	U0C0_DX2D	I	St/B	USIC0 Channel 0 Shift Control Input				
	RxDC0D	I	St/B	CAN Node 0 Receive Data Input				
49	P4.3	O0 / I	St/B	Bit 3 of Port 4, General Purpose Input/Output				
	CC2_27	O3 / I	St/B	CAPCOM2 CC27IO Capture Inp./ Compare Out.				
	CS3	OH	St/B	External Bus Interface Chip Select 3 Output				
	RxDC2A	1	St/B	CAN Node 2 Receive Data Input				
	T2EUD	1	St/B	GPT1 Timer T2 External Up/Down Control Input				
53	P0.0	O0 / I	St/B	Bit 0 of Port 0, General Purpose Input/Output				
	U1C0_DOUT	01	St/B	USIC1 Channel 0 Shift Data Output				
	CCU61_ CC60	O3 / I	St/B	CCU61 Channel 0 Input/Output				
	A0	OH	St/B	External Bus Interface Address Line 0				
	U1C0_DX0A	I	St/B	USIC1 Channel 0 Shift Data Input				

Table 4Pin Definitions and Functions (cont'd)							
Pin	Symbol	Ctrl.	Туре	Function			
58	P0.2	O0 / I	St/B	Bit 2 of Port 0, General Purpose Input/Output			
	U1C0_ SCLKOUT	01	St/B	USIC1 Channel 0 Shift Clock Output			
	TxDC0	O2	St/B	CAN Node 0 Transmit Data Output			
	CCU61_ CC62	O3 / I	St/B	CCU61 Channel 2 Input/Output			
	A2	OH	St/B	External Bus Interface Address Line 2			
	U1C0_DX1B	I	St/B	USIC1 Channel 0 Shift Clock Input			
59	P10.0	O0 / I	St/B	Bit 0 of Port 10, General Purpose Input/Output			
-	U0C1_DOUT	01	St/B	USIC0 Channel 1 Shift Data Output			
	CCU60_ CC60	02 / I	St/B	CCU60 Channel 0 Input/Output			
	AD0	OH/I	St/B	External Bus Interface Address/Data Line 0			
	ESR1_2	I	St/B	ESR1 Trigger Input 2			
	U0C0_DX0A	I	St/B	USIC0 Channel 0 Shift Data Input			
	U0C1_DX0A	I	St/B	USIC0 Channel 1 Shift Data Input			
60	P10.1	O0 / I	St/B	Bit 1 of Port 10, General Purpose Input/Output			
	U0C0_DOUT	01	St/B	USIC0 Channel 0 Shift Data Output			
	CCU60_ CC61	02 / I	St/B	CCU60 Channel 1 Input/Output			
	AD1	OH/I	St/B	External Bus Interface Address/Data Line 1			
	U0C0_DX0B	1	St/B	USIC0 Channel 0 Shift Data Input			
	U0C0_DX1A	1	St/B	USIC0 Channel 0 Shift Clock Input			

Table 4Pin Definitions and Functions (cont'd)							
Pin	Symbol	Ctrl.	Туре	Function			
73	P10.7	O0 / I	St/B	Bit 7 of Port 10, General Purpose Input/Output			
	U0C1_DOUT	01	St/B	USIC0 Channel 1 Shift Data Output			
	CCU60_ COUT63	02	St/B	CCU60 Channel 3 Output			
	AD7	OH/I	St/B	External Bus Interface Address/Data Line 7			
	U0C1_DX0B	I	St/B	USIC0 Channel 1 Shift Data Input			
	CCU60_ CCPOS0A	I	St/B	CCU60 Position Input 0			
74	P0.7	O0 / I	St/B	Bit 7 of Port 0, General Purpose Input/Output			
	U1C1_DOUT	01	St/B	USIC1 Channel 1 Shift Data Output			
	U1C0_ SELO3	02	St/B	USIC1 Channel 0 Select/Control 3 Output			
	A7	OH	St/B	External Bus Interface Address Line 7			
	U1C1_DX0B	I	St/B	USIC1 Channel 1 Shift Data Input			
	CCU61_ CTRAPB	I	St/B	CCU61 Emergency Trap Input			
78	P1.0	O0 / I	St/B	Bit 0 of Port 1, General Purpose Input/Output			
	U1C0_ MCLKOUT	01	St/B	USIC1 Channel 0 Master Clock Output			
	U1C0_ SELO4	02	St/B	USIC1 Channel 0 Select/Control 4 Output			
	A8	ОН	St/B	External Bus Interface Address Line 8			
	ESR1_3	1	St/B	ESR1 Trigger Input 3			
	EX0BINA	1	St/B	External Interrupt Trigger Input			
	CCU62_ CTRAPB	I	St/B	CCU62 Emergency Trap Input			

This common memory space consists of 16 Mbytes organized as 256 segments of 64 Kbytes; each segment contains four data pages of 16 Kbytes. The entire memory space can be accessed bytewise or wordwise. Portions of the on-chip DPRAM and the register spaces (ESFR/SFR) additionally are directly bit addressable.

The internal data memory areas and the Special Function Register areas (SFR and ESFR) are mapped into segment 0, the system segment.

The Program Management Unit (PMU) handles all code fetches and, therefore, controls access to the program memories such as Flash memory and PSRAM.

The Data Management Unit (DMU) handles all data transfers and, therefore, controls access to the DSRAM and the on-chip peripherals.

Both units (PMU and DMU) are connected to the high-speed system bus so that they can exchange data. This is required if operands are read from program memory, code or data is written to the PSRAM, code is fetched from external memory, or data is read from or written to external resources. These include peripherals on the LXBus such as USIC or MultiCAN. The system bus allows concurrent two-way communication for maximum transfer performance.

Up to 64 Kbytes of on-chip Program SRAM (PSRAM) are provided to store user code or data. The PSRAM is accessed via the PMU and is optimized for code fetches. A section of the PSRAM with programmable size can be write-protected.

Note: The actual size of the PSRAM depends on the chosen derivative (see Table 1).

Up to 16 Kbytes of on-chip Data SRAM (DSRAM) are used for storage of general user data (12 Kbytes for devices with 192 Kbytes of Flash). The DSRAM is accessed via a separate interface and is optimized for data access.

2 Kbytes of on-chip Dual-Port RAM (DPRAM) provide storage for user-defined variables, for the system stack, and for general purpose register banks. A register bank can consist of up to 16 word-wide (R0 to R15) and/or byte-wide (RL0, RH0, ..., RL7, RH7) General Purpose Registers (GPRs).

The upper 256 bytes of the DPRAM are directly bit addressable. When used by a GPR, any location in the DPRAM is bit addressable.

1 Kbyte of on-chip Stand-By SRAM (SBRAM) provides storage for system-relevant user data that must be preserved while the major part of the device is powered down. The SBRAM is accessed via a specific interface and is powered in domain M.

3.7 Capture/Compare Units CCU6x

The XE164 features up to three CCU6 units (CCU60, CCU61, CCU62).

The CCU6 is a high-resolution capture and compare unit with application-specific modes. It provides inputs to start the timers synchronously, an important feature in devices with several CCU6 modules.

The module provides two independent timers (T12, T13), that can be used for PWM generation, especially for AC motor control. Additionally, special control modes for block commutation and multi-phase machines are supported.

Timer 12 Features

- Three capture/compare channels, where each channel can be used either as a capture or as a compare channel.
- Supports generation of a three-phase PWM (six outputs, individual signals for highside and low-side switches)
- 16-bit resolution, maximum count frequency = peripheral clock
- Dead-time control for each channel to avoid short circuits in the power stage
- Concurrent update of the required T12/13 registers
- Center-aligned and edge-aligned PWM can be generated
- Single-shot mode supported
- Many interrupt request sources
- Hysteresis-like control mode
- Automatic start on a HW event (T12HR, for synchronization purposes)

Timer 13 Features

- One independent compare channel with one output
- 16-bit resolution, maximum count frequency = peripheral clock
- Can be synchronized to T12
- Interrupt generation at period match and compare match
- Single-shot mode supported
- Automatic start on a HW event (T13HR, for synchronization purposes)

Additional Features

- Block commutation for brushless DC drives implemented
- Position detection via Hall sensor pattern
- Automatic rotational speed measurement for block commutation
- Integrated error handling
- Fast emergency stop without CPU load via external signal (CTRAP)
- · Control modes for multi-channel AC drives
- Output levels can be selected and adapted to the power stage

With its maximum resolution of 2 system clock cycles, the **GPT2 module** provides precise event control and time measurement. It includes two timers (T5, T6) and a capture/reload register (CAPREL). Both timers can be clocked with an input clock which is derived from the CPU clock via a programmable prescaler or with external signals. The counting direction (up/down) for each timer can be programmed by software or altered dynamically with an external signal on a port pin (TxEUD¹). Concatenation of the timers is supported with the output toggle latch (T6OTL) of timer T6, which changes its state on each timer overflow/underflow.

The state of this latch may be used to clock timer T5, and/or it may be output on pin T6OUT. The overflows/underflows of timer T6 can also be used to clock the CAPCOM2 timers and to initiate a reload from the CAPREL register.

The CAPREL register can capture the contents of timer T5 based on an external signal transition on the corresponding port pin (CAPIN); timer T5 may optionally be cleared after the capture procedure. This allows the XE164 to measure absolute time differences or to perform pulse multiplication without software overhead.

The capture trigger (timer T5 to CAPREL) can also be generated upon transitions of GPT1 timer T3 inputs T3IN and/or T3EUD. This is especially advantageous when T3 operates in Incremental Interface Mode.

¹⁾ Exception: T5EUD is not connected to a pin.

The RTC module can be used for different purposes:

- System clock to determine the current time and date
- Cyclic time-based interrupt, to provide a system time tick independent of CPU frequency and other resources
- 48-bit timer for long-term measurements
- Alarm interrupt at a defined time

4.2.1 DC Parameters for Upper Voltage Area

These parameters apply to the upper IO voltage range, 4.5 V $\leq V_{\text{DDP}} \leq$ 5.5 V.

Note / Parameter Symbol Values Unit **Test Condition** Min. Тур. Max. V Input low voltage V_{\parallel} SR -0.3 $0.3 \times$ _ _ (all except XTAL1) $V_{\rm DDP}$ $V_{\rm IH}\,{\rm SR}$ Input high voltage 0.7 × V V_{DDP} _ _ (all except XTAL1) + 0.3 V_{DDP} Input Hysteresis²⁾ HYS CC 0.11 V V_{DDP} in [V], _ _ Series $\times V_{\text{DDP}}$ resistance = 0Ω $I_{\rm OL} \leq I_{\rm OLmax}^{3)}$ V_{OI} CC V Output low voltage 1.0 _ _ $I_{\rm OL} \leq I_{\rm OLnom}^{3)4)}$ V Output low voltage V_{OI} CC 0.4 $I_{OH} \ge I_{OHmax}^{3)}$ $V_{\rm OH}$ CC Output high voltage⁵⁾ V $V_{\rm DDP}$ _ - 1.0 $I_{\text{OH}} \ge I_{\text{OHnom}}^{3)4)}$ V_{OH} CC Output high voltage⁵⁾ $V_{\rm DDP}$ V _ _ - 0.4 $0 V < V_{IN} < V_{DDP}$ Input leakage current I_{O71} CC _ ±10 ±200 nA (Port 5, Port 15)⁶⁾ $T_{\rm J} \le 110^{\circ} {\rm C},$ Input leakage current I_{072} CC _ ± 0.2 ±5 μA (all other)⁶⁾⁷⁾ $0.45 V < V_{INI}$ $< V_{\rm DDP}$ $V_{\mathsf{PIN}} \ge V_{\mathsf{IH}} \ (\mathsf{up})^{\mathsf{8}}$ Pull level keep current ±30 μA I_{PLK} _ _ $V_{\text{PIN}} \le V_{\text{IL}}$ (dn) $V_{\mathsf{PIN}} \le V_{\mathsf{IL}} \ (\mathsf{up})^{\mathsf{8}}$ Pull level force current I_{PLF} ±250 _ _ μA $V_{\text{PIN}} \ge V_{\text{IH}} (\text{dn})$ Pin capacitance⁹⁾ $C_{\rm IO}$ CC 10 pF _ _ (digital inputs/outputs)

Table 14DC Characteristics for Upper Voltage Range
(Operating Conditions apply)¹⁾

1) Keeping signal levels within the limits specified in this table ensures operation without overload conditions. For signal levels outside these specifications, also refer to the specification of the overload current I_{OV} .

 Not subject to production test - verified by design/characterization. Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It cannot suppress switching due to external system noise under all conditions.

 The maximum deliverable output current of a port driver depends on the selected output driver mode, see Table 13, Current Limits for Port Output Drivers. The limit for pin groups must be respected.

4.2.2 DC Parameters for Lower Voltage Area

These parameters apply to the lower IO voltage range, 3.0 V $\leq V_{\text{DDP}} \leq$ 4.5 V.

Note / Parameter Symbol Values Unit **Test Condition** Min. Тур. Max. V Input low voltage V_{\parallel} SR -0.3 $0.3 \times$ _ _ (all except XTAL1) V_{DDP} $V_{\rm IH}\,{\rm SR}$ Input high voltage 0.7 × V V_{DDP} _ _ (all except XTAL1) + 0.3 V_{DDP} Input Hysteresis²⁾ HYS CC 0.07 V V_{DDP} in [V], _ _ Series $\times V_{\text{DDP}}$ resistance = 0Ω $I_{\rm OL} \leq I_{\rm OLmax}^{3)}$ V_{OI} CC V Output low voltage 1.0 _ _ $I_{\rm OL} \leq I_{\rm OLnom}^{3)4)}$ V Output low voltage V_{OI} CC 0.4 $I_{OH} \ge I_{OHmax}^{3)}$ Output high voltage⁵⁾ $V_{OH} CC$ V $V_{\rm DDP}$ _ - 1.0 $I_{\text{OH}} \ge I_{\text{OHnom}}^{3)4)}$ V_{OH} CC Output high voltage⁵⁾ $V_{\rm DDP}$ V _ _ - 0.4 $0 V < V_{IN} < V_{DDP}$ Input leakage current I_{O71} CC _ ±10 ±200 nA (Port 5, Port 15)⁶⁾ $T_{\rm J} \le 110^{\circ} {\rm C},$ Input leakage current I_{072} CC _ ± 0.2 ± 2.5 μA (all other)⁶⁾⁷⁾ $0.45 V < V_{INI}$ $< V_{\rm DDP}$ $V_{\mathsf{PIN}} \ge V_{\mathsf{IH}} \ (\mathsf{up})^{\mathsf{8}}$ Pull level keep current ±10 μA I_{PLK} _ _ $V_{\text{PIN}} \le V_{\text{IL}}$ (dn) $V_{\mathsf{PIN}} \le V_{\mathsf{IL}} \ (\mathsf{up})^{\mathsf{8}}$ Pull level force current I_{PLF} ±150 _ _ μA $V_{\text{PIN}} \ge V_{\text{IH}} (\text{dn})$ Pin capacitance⁹⁾ $C_{\rm IO}$ CC 10 pF _ _ (digital inputs/outputs)

Table 15DC Characteristics for Lower Voltage Range
(Operating Conditions apply)¹⁾

1) Keeping signal levels within the limits specified in this table ensures operation without overload conditions. For signal levels outside these specifications, also refer to the specification of the overload current I_{OV} .

 Not subject to production test - verified by design/characterization. Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It cannot suppress switching due to external system noise under all conditions.

 The maximum deliverable output current of a port driver depends on the selected output driver mode, see Table 13, Current Limits for Port Output Drivers. The limit for pin groups must be respected.

4.2.3 **Power Consumption**

The power consumed by the XE164 depends on several factors such as supply voltage, operating frequency, active circuits, and operating temperature. The power consumption specified here consists of two components:

- The switching current $I_{\rm S}$ depends on the device activity
- The leakage current $I_{\rm LK}$ depends on the device temperature

To determine the actual power consumption, always both components, switching current $I_{\rm S}$ (**Table 16**) and leakage current $I_{\rm LK}$ (**Table 17**) must be added:

 $I_{\text{DDP}} = I_{\text{S}} + I_{\text{LK}}.$

Note: The power consumption values are not subject to production test. They are verified by design/characterization.

To determine the total power consumption for dimensioning the external power supply, also the pad driver currents must be considered.

The given power consumption parameters and their values refer to specific operating conditions:

Active mode:

Regular operation, i.e. peripherals are active, code execution out of Flash.

Stopover mode:

Crystal oscillator and PLL stopped, Flash switched off, clock in domain DMP_1 stopped.

Note: The maximum values cover the complete specified operating range of all manufactured devices.

The typical values refer to average devices under typical conditions, such as nominal supply voltage, room temperature, application-oriented activity.

After a power reset, the decoupling capacitors for V_{DDI} are charged with the maximum possible current, see parameter I_{CC} in **Table 20**.

For additional information, please refer to Section 5.2, Thermal Considerations.

4.5 Flash Memory Parameters

The XE164 is delivered with all Flash sectors erased and with no protection installed.

The data retention time of the XE164's Flash memory (i.e. the time after which stored data can still be retrieved) depends on the number of times the Flash memory has been erased and programmed.

Note: These parameters are not subject to production test but verified by design and/or characterization.

Parameter	Symbol	Li	mit Valu	es	Unit	Note / Test
		Min.	Тур.	Max.	-	Condition
Programming time per 128-byte page	t _{PR}	-	3 ¹⁾	3.5	ms	ms
Erase time per sector/page	t _{ER}	-	4 ¹⁾	5	ms	ms
Data retention time	t _{RET}	20	_	-	years	1,000 erase / program cycles
Flash erase endurance for user sectors ²⁾	N_{ER}	15,000	-	_	cycles	Data retention time 5 years
Flash erase endurance for security pages	$N_{\rm SEC}$	10	-	-	cycles	Data retention time 20 years
Drain disturb limit	N_{DD}	64	-	-	cycles	3)

Table 23Flash Characteristics(Operating Conditions apply)

 Programming and erase times depend on the internal Flash clock source. The control state machine needs a few system clock cycles. This requirement is only relevant for extremely low system frequencies. In the XE164 erased areas must be programmed completely (with actual code/data or dummy values) before that area is read.

2) A maximum of 64 Flash sectors can be cycled 15,000 times. For all other sectors the limit is 1,000 cycles.

3) This parameter limits the number of subsequent programming operations within a physical sector. The drain disturb limit is applicable if wordline erase is used repeatedly. For normal sector erase/program cycles this limit will not be violated.

Access to the XE164 Flash modules is controlled by the IMB. Built-in prefetch mechanisms optimize the performance for sequential access.

Flash access waitstates only affect non-sequential access. Due to prefetch mechanisms, the performance for sequential access (depending on the software structure) is only partially influenced by waitstates.

4.6.2 Definition of Internal Timing

The internal operation of the XE164 is controlled by the internal system clock f_{SYS} .

Because the system clock signal $f_{\rm SYS}$ can be generated from a number of internal and external sources using different mechanisms, the duration of the system clock periods (TCSs) and their variation (as well as the derived external timing) depend on the mechanism used to generate $f_{\rm SYS}$. This must be considered when calculating the timing for the XE164.

Figure 18 Generation Mechanisms for the System Clock

Note: The example of PLL operation shown in **Figure 18** uses a PLL factor of 1:4; the example of prescaler operation uses a divider factor of 2:1.

The specification of the external timing (AC Characteristics) depends on the period of the system clock (TCS).

4.6.3 External Clock Input Parameters

These parameters specify the external clock generation for the XE164. The clock can be generated in two ways:

- By connecting a crystal or ceramic resonator to pins XTAL1/XTAL2.
- By supplying an **external clock signal**. This clock signal can be supplied either to pin XTAL1 (core voltage domain) or to pin CLKIN1 (IO voltage domain).

If connected to CLKIN1, the input signal must reach the defined input levels $V_{\rm IL}$ and $V_{\rm IH}$. In connected to XTAL1, a minimum amplitude $V_{\rm AX1}$ (peak-to-peak voltage) is sufficient for the operation of the on-chip oscillator.

Note: The given clock timing parameters $(t_1 \dots t_4)$ are only valid for an external clock input signal.

Symbol	Li	imit Val	ues	Unit	Note / Test
	Min. Typ.		Max.	1	Condition
V _{IX1} SR	-1.7 + V _{DDI}	-	1.7	V	1)
V _{AX1} SR	$0.3 \times V_{ m DDI}$	-	-	V	Peak-to-peak voltage ²⁾
$I_{\rm IL}$ CC	-	-	±20	μA	$0 V < V_{IN} < V_{DDI}$
$f_{\rm OSC}$ CC	4	-	40	MHz	Clock signal
	4	-	16	MHz	Crystal or Resonator
t ₁ SR	6	-	-	ns	
$t_2 \mathrm{SR}$	6	-	_	ns	
t_3 SR	-	8	8	ns	
t_4 SR	-	8	8	ns	
	Symbol V_{IX1} SR V_{AX1} SR I_{IL} CC f_{OSC} CC t_1 SR t_2 SR t_3 SR t_4 SR	Symbol Li Min. Min. V_{IX1} SR -1.7 + V_{DDI} V_{AX1} SR 0.3 × V_{DDI} I_{IL} CC - f_{OSC} CC 4 4 4 t_1 SR 6 t_2 SR 6 t_3 SR - t_4 SR -	Symbol Limit Val Min. Typ. V_{IX1} SR -1.7 + V_{DDI} - V_{AX1} SR $0.3 \times V_{DDI}$ - I_{IL} CC - - f_{OSC} CC 4 - t_1 SR 6 - t_2 SR 6 - t_3 SR - 8 t_4 SR - 8	Symbol Limit Values Min. Typ. Max. V_{IX1} SR -1.7 + V_{DDI} - 1.7 V_{AX1} SR $0.3 \times V_{DDI}$ - - I_{IL} CC - - ±20 f_{OSC} CC 4 - 40 t_1 SR 6 - - t_2 SR 6 - - t_3 SR - 8 8 t_4 SR - 8 8	Symbol Limit Values Unit Min. Typ. Max. Unit V_{IX1} SR $-1.7 + V_{DDI}$ -1.7 V V_{AX1} SR $0.3 \times V_{DDI}$ -1.7 V I_{IL} CC $ V$ I_{IL} CC $ \pm 20$ μ A f_{OSC} CC 4 $ 40$ MHz f_{OSC} CC 4 $ 16$ MHz t_1 SR 6 $ ns$ t_2 SR 6 $ ns$ t_3 SR $ 8$ 8 ns t_4 SR $ 8$ 8 ns

Table 26External Clock Input Characteristics
(Operating Conditions apply)

1) Overload conditions must not occur on pin XTAL1.

2) The amplitude voltage V_{AX1} refers to the offset voltage V_{OFF} . This offset voltage must be stable during the operation and the resulting voltage peaks must remain within the limits defined by V_{IX1} .

4.6.4 External Bus Timing

The following parameters specify the behavior of the XE164 bus interface.

Table 27 CLKOUT Reference Signal

Parameter	Sym	bol		Limits	Unit	Note / Test
			Min.	Max.		Condition
CLKOUT cycle time	t_5	CC	40	/25/12.5 ¹⁾	ns	
CLKOUT high time	t ₆	CC	3	_	ns	
CLKOUT low time	<i>t</i> ₇	CC	3	_	ns	
CLKOUT rise time	<i>t</i> ₈	CC	_	3	ns	
CLKOUT fall time	<i>t</i> 9	CC	_	3	ns	

1) The CLKOUT cycle time is influenced by the PLL jitter (given values apply to f_{SYS} = 25/40/80 MHz). For longer periods the relative deviation decreases (see PLL deviation formula).

Figure 21 CLKOUT Signal Timing

Note: The term CLKOUT refers to the reference clock output signal which is generated by selecting f_{SYS} as the source signal for the clock output signal EXTCLK on pin P2.8 and by enabling the high-speed clock driver on this pin.

Figure 25 USIC - SSC Master/Slave Mode Timing

Note: This timing diagram shows a standard configuration where the slave select signal is low-active and the serial clock signal is not shifted and not inverted.

4.6.6 JTAG Interface Timing

The following parameters are applicable for communication through the JTAG debug interface. The JTAG module is fully compliant with IEEE1149.1-2000.

Note: These parameters are not subject to production test but verified by design and/or characterization.

Parameter	Symbol		Values		Unit	Note /	
		Min.	Тур.	Max.		Test Condition	
TCK clock period	t ₁ SR	60	50	-	ns	-	
TCK high time	$t_2 \mathrm{SR}$	16	-	-	ns	-	
TCK low time	t_3 SR	16	-	-	ns	-	
TCK clock rise time	t_4 SR	-	-	8	ns	-	
TCK clock fall time	t ₅ SR	-	-	8	ns	-	
TDI/TMS setup to TCK rising edge	t ₆ SR	6	-	-	ns	_	
TDI/TMS hold after TCK rising edge	t ₇ SR	6	-	-	ns	_	
TDO valid	t ₈ CC	-	-	30	ns	C _L = 50 pF	
after TCK falling edge ¹⁾	t ₈ CC	10	-	-	ns	C _L = 20 pF	
TDO high imped. to valid from TCK falling edge ¹⁾²⁾	t ₉ CC	-	-	30	ns	C _L = 50 pF	
TDO valid to high imped. from TCK falling edge ¹⁾	<i>t</i> ₁₀ CC	-	-	30	ns	C _L = 50 pF	

Table 33JTAG Interface Timing Parameters
(Operating Conditions apply)

1) The falling edge on TCK is used to generate the TDO timing.

2) The setup time for TDO is given implicitly by the TCK cycle time.