

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	SMBus (2-Wire/I²C), SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number of I/O	21
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2.25K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VFQFN Exposed Pad
Supplier Device Package	28-MLP (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f321-gmr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2. Absolute Maximum Ratings

Table 2.1. Absolute Maximum Ratings

Parameter	Conditions	Min	Тур	Max	Units				
Ambient temperature under bias		-55	_	125	°C				
Storage Temperature		-65	_	150	°C				
Voltage on any Port I/O Pin or /RST with respect to GND		-0.3	_	5.8	V				
Voltage on VDD with respect to GND		-0.3	_	4.2	V				
Maximum Total current through VDD and GND		—	_	500	mA				
Maximum output current sunk by /RST or any Port pin		—	_	100	mA				
Note: Stresses above those listed under "Absolute This is a stress rating only and functional ope indicated in the operation listings of this spec extended periods may affect device reliability	Port pin Note: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the devices at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.								

SFR Definition 5.6. ADC0CN: ADC0 Control

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W Reset Val	ue			
AD0EN	I AD0TM	AD0INT	AD0BUSY	AD0WINT	AD0CM2	AD0CM1	AD0CM0 0000000	00			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0 SFR Addre	ess:			
						(bi	t addressable) 0xE8				
-		~									
Bit7:	ADOEN: ADO	CO Enable	Bit.		J						
			20 is in iow-p	ower shute	down. Ar data conv	oraiona					
Bite		CO Track M	o is active a	nu ready ic		ersions.					
Dito.	0. Normal Tr	ack Mode.	When ADC() is enabled	d tracking is	s continuou	s unless a conversio	'n			
	is in progres	S.	When Abou		a, traoking k	5 0011111000					
	1: Low-power Track Mode: Tracking Defined by AD0CM2-0 bits (see below).										
Bit5:	AD0INT: AD	C0 Conver	sion Comple	te Interrupt	Flag.	,	,				
	0: ADC0 has	not compl	leted a data o	conversion	since the la	ast time AD	DINT was cleared.				
	1: ADC0 has	s completed	d a data conv	version.							
Bit4:	AD0BUSY: A	ADC0 Busy	∕ Bit.								
	Read:				n in mot our			~ 1			
	to logic 1 on	the falling	edge of ADO		on is not cur	renuy in pr	Sgress. ADUINT IS SE	31			
		version is	in progress	0001.							
	Write:		in progreeo.								
	0: No Effect.										
	1: Initiates A	DC0 Conv	ersion if AD0	CM2 - 0 = 0	000b						
Bit3:	ADOWINT: A	DC0 Wind	ow Compare	Interrupt F	lag.						
	0: ADC0 Wir	ndow Com	parison Data	match has	not occurre	ed since this	s flag was last cleare	d.			
	1: ADC0 Wir	ndow Com	parison Data	match has	occurred.						
Bits2–0:	ADUCM2-0:	ADC0 Sta	rt of Convers	ion Mode S	Select.						
		VI = U: onversion ir	nitiated on ev	ary write of		ISV					
	001: ADC0 c	onversion ir	nitiated on over	erflow of Tir	ner 0.	501.					
	010: ADC0 c	onversion ir	nitiated on ove	erflow of Tir	mer 2.						
	011: ADC0 co	onversion ir	nitiated on ove	erflow of Tir	ner 1.						
	100: ADC0 c	onversion ir	nitiated on risi	ng edge of	external CN	VSTR.					
	101: ADC0 c	onversion ir	nitiated on ove	erflow of 1 ir	ner 3.						
	When ADOT	0. / _ 1·									
	000: Tracking	n initiated o	n write of '1' to	AD0BUS	Y and lasts 3	SAR clock	s. followed by conver-				
	sion.	,					,				
	001: Tracking	g initiated or	n overflow of	Timer 0 and	l lasts 3 SAF	R clocks, fol	owed by conversion.				
	010: Tracking	initiated or	n overflow of	Timer 2 and	l lasts 3 SAF	R clocks, fol	owed by conversion.				
		Initiated or	1 OVERTIOW OF	limer 1 and	a lasts 3 SAF	CIOCKS, TOIL	owed by conversion.				
	edge	aurs uniy M		x input is 10		version sidn	S OF HSING CINVOIR				
	101: Tracking	g initiated or	n overflow of	Timer 3 and	l lasts 3 SAF	R clocks, fol	owed by conversion.				
	11x: Reserve	d.				, -					

Table 5.1. ADC0 Electrical Characteristics

 V_{DD} = 3.0 V, VREF = 2.40 V, –40 to +85 °C unless otherwise specified.

Parameter	Conditions	Min	Тур	Max	Units
DC Accuracy				I	
Resolution			10		bits
Integral Nonlinearity		—	±0.5	±1	LSB
Differential Nonlinearity	Guaranteed Monotonic	-	±0.5	±1	LSB
Offset Error		-15	0	15	LSB
Full Scale Error		-15	-1	15	LSB
Offset Temperature Coefficient		—	10		ppm/°C
Dynamic Performance (10 kHz si	ine-wave Single-ended input,	1 dB belo	w Full Sc	ale, 200	ksps)
Signal-to-Noise Plus Distortion		53	55.5	—	dB
Total Harmonic Distortion	Up to the 5 th harmonic	—	-67	—	dB
Spurious-Free Dynamic Range		—	78		dB
Conversion Rate					
SAR Conversion Clock		—	—	3	MHz
Conversion Time in SAR Clocks		10	_	—	clocks
Track/Hold Acquisition Time		300		—	ns
Throughput Rate		—		200	ksps
Analog Inputs					
ADC Input Voltage Range	Single Ended (AIN+ – GND)	0		VREF	V
	Differential (AIN+ – AIN–)	-VREF		VREF	V
Absolute Pin Voltage with respect to GND	Single Ended or Differential	0		VDD	V
Input Capacitance		—	5		pF
Temperature Sensor		—			
Linearity ¹		—	±0.1		°C
Gain ²		—	2.86	—	mV/°C
Offset ^{1,2}	(Temp = 0 °C)	-	0.776 ±8.5	_	mV
Power Specifications				L	
Power Supply Current (V _{DD} supplied to ADC0)	Operating Mode, 200 ksps	-	400	900	μA
Power Supply Rejection		1 —	±0.3		mV/V
Notes: 1. Includes ADC offset, gain, and	linearity variations.	•	-	•	

2. Represents one standard deviation from the mean.

SFR Definition 7.2. CPT0MX: Comparator0 MUX Selection

	- • • •	5	-	-	5.44	5.44	5.44	5
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
-	-	CMX0N	1 CMX0N0	-	-	CMX0P1	CMX0P0	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0x9F
Bits7–6:	UNUSED.	Read = $00k$	o, Write = don	i't care.				
Bits5–4:	CMX0N1-	CMX0N0: C	Comparator0 I	Negative In	put MUX S	elect.		
	These bits	select whic	h Port pin is ι	used as the	Comparate	or0 negative	e input.	
	CMX0N1	CMX0N0	Negative In	put				
	0	0	P1.1					
	0	1	P1.5					
	1	0	P2.1					
	1	1	P2.5*					
Bits3–2: Bits1–0:	UNUSED. CMX0P1–0 These bits	Read = 00k CMX0P0: C select whic	o, Write = don comparator0 F h Port pin is u	i't care. Positive Inp used as the	ut MUX Sel Comparate	lect. or0 positive	input.	
	CMX0P1	CMX0P0	Positive In	put				
	0	0	P1.0	-				
	0	1	P1.4					
	1	0	P2.0					
	1	1	P2.4*					
	*Note: P2.	4 and P2.5 a	available only o	n				
	C80	51F320 devi	ices; selection					
	rese	erved on C80	51F321 device	es.				
	L							

9.2.6. Special Function Registers

The direct-access data memory locations from 0x80 to 0xFF constitute the special function registers (SFRs). The SFRs provide control and data exchange with the CIP-51's resources and peripherals. The CIP-51 duplicates the SFRs found in a typical 8051 implementation as well as implementing additional SFRs used to configure and access the sub-systems unique to the MCU. This allows the addition of new functionality while retaining compatibility with the MCS-51[™] instruction set. Table 9.2 lists the SFRs implemented in the CIP-51 System Controller.

The SFR registers are accessed anytime the direct addressing mode is used to access memory locations from 0x80 to 0xFF. SFRs with addresses ending in 0x0 or 0x8 (e.g. P0, TCON, SCON0, IE, etc.) are bit-addressable as well as byte-addressable. All other SFRs are byte-addressable only. Unoccupied addresses in the SFR space are reserved for future use. Accessing these areas will have an indeterminate effect and should be avoided. Refer to the corresponding pages of the datasheet, as indicated in Table 9.3, for a detailed description of each register.

F8	SPI0CN	PCA0L	PCA0H	PCA0CPL0	PCA0CPH0	PCA0CPL4	PCA0CPH4	VDM0CN
F0	В	P0MDIN	P1MDIN	P2MDIN	P3MDIN		EIP1	EIP2
E8	ADC0CN	PCA0CPL1	PCA0CPH1	PCA0CPL2	PCA0CPH2	PCA0CPL3	PCA0CPH3	RSTSRC
E0	ACC	XBR0	XBR1		IT01CF		EIE1	EIE2
80	PCAOCN		PCA0CPM	PCA0CPM	PCA0CPM	PCA0CPM	PCA0CPM	
00			0	1	2	3	4	
D0	PSW	REF0CN			P0SKIP	P1SKIP	P2SKIP	USB0XCN
C8	TMR2CN	REG0CN	TMR2RLL	TMR2RLH	TMR2L	TMR2H		
C0	SMB0CN	SMB0CF	SMB0DAT	ADC0GTL	ADC0GTH	ADC0LTL	ADC0LTH	
B8	IP	CLKMUL	AMX0N	AMX0P	ADC0CF	ADC0L	ADC0H	
B0	P3	OSCXCN	OSCICN	OSCICL			FLSCL	FLKEY
A8	IE	CLKSEL	EMI0CN					
A0	P2	SPI0CFG	SPI0CKR	SPI0DAT	POMDOUT	P1MDOUT	P2MDOUT	P3MDOUT
98	SCON0	SBUF0	CPT1CN	CPT0CN	CPT1MD	CPT0MD	CPT1MX	CPT0MX
90	P1	TMR3CN	TMR3RLL	TMR3RLH	TMR3L	TMR3H	USB0ADR	USB0DAT
88	TCON	TMOD	TL0	TL1	TH0	TH1	CKCON	PSCTL
80	P0	SP	DPL	DPH				PCON
-	0(8)	1(9)	2(A)	3(B)	4(C)	5(D)	6(E)	7(F)

Table 9.2. Special Function Register (SFR) Memory Map

(bit addressable)

Interrupt Source	Interrupt Vector	Priority Order	Pending Flag	Bit addressable?	Cleared by HW?	Enable Flag	Priority Control
ADC0 Conversion Complete	0x0053	10	AD0INT (ADC0CN.5)	Y	N	EADC0 (EIE1.3)	PADC0 (EIP1.3)
Programmable Counter Array	0x005B	11	CF (PCA0CN.7) CCFn (PCA0CN.n)	Y	Ν	EPCA0 (EIE1.4)	PPCA0 (EIP1.4)
Comparator0	0x0063	12	CP0FIF (CPT0CN.4) CP0RIF (CPT0CN.5)	Ν	Ν	ECP0 (EIE1.5)	PCP0 (EIP1.5)
Comparator1	0x006B	13	CP1FIF (CPT1CN.4) CP1RIF (CPT1CN.5)	Ν	N	ECP1 (EIE1.6)	PCP1 (EIP1.6)
Timer 3 Overflow	0x0073	14	TF3H (TMR3CN.7) TF3L (TMR3CN.6)	Ν	Ν	ET3 (EIE1.7)	PT3 (EIP1.7)
VBUS Level	0x007B	15	N/A	N/A	N/A	EVBUS (EIE2.0)	PVBUS (EIP2.0)

Table 9.4. Interrupt Summary (Continued)

9.3.5. Interrupt Register Descriptions

The SFRs used to enable the interrupt sources and set their priority level are described below. Refer to the datasheet section associated with a particular on-chip peripheral for information regarding valid interrupt conditions for the peripheral and the behavior of its interrupt-pending flag(s).

10.3. External Reset

The external /RST pin provides a means for external circuitry to force the device into a reset state. Asserting an active-low signal on the /RST pin generates a reset; an external pull-up and/or decoupling of the /RST pin may be necessary to avoid erroneous noise-induced resets. See Table 10.1 for complete /RST pin specifications. The PINRSF flag (RSTSRC.0) is set on exit from an external reset.

10.4. Missing Clock Detector Reset

The Missing Clock Detector (MCD) is a one-shot circuit that is triggered by the system clock. If more than 100 µs pass between rising edges on the system clock, the one-shot will time out and generate a reset. After a MCD reset, the MCDRSF flag (RSTSRC.2) will read '1', signifying the MCD as the reset source; otherwise, this bit reads '0'. Writing a '1' to the MCDRSF bit enables the Missing Clock Detector; writing a '0' disables it. The state of the /RST pin is unaffected by this reset.

10.5. Comparator0 Reset

Comparator0 can be configured as a reset source by writing a '1' to the CORSEF flag (RSTSRC.5). Comparator0 should be enabled and allowed to settle prior to writing to CORSEF to prevent any turn-on chatter on the output from generating an unwanted reset. The Comparator0 reset is active-low: if the non-inverting input voltage (on CP0+) is less than the inverting input voltage (on CP0-), a system reset is generated. After a Comparator0 reset, the CORSEF flag (RSTSRC.5) will read '1' signifying Comparator0 as the reset source; otherwise, this bit reads '0'. The state of the /RST pin is unaffected by this reset.

Note: When Comparator0 is not enabled but is enabled as a reset source, a reset will not be generated.

10.6. PCA Watchdog Timer Reset

The programmable Watchdog Timer (WDT) function of the Programmable Counter Array (PCA) can be used to prevent software from running out of control during a system malfunction. The PCA WDT function can be enabled or disabled by software as described in Section "20.3. Watchdog Timer Mode" on page 236; the WDT is enabled and clocked by SYSCLK / 12 following any reset. If a system malfunction prevents user software from updating the WDT, a reset is generated and the WDTRSF bit (RSTSRC.5) is set to '1'. The state of the /RST pin is unaffected by this reset.

10.7. Flash Error Reset

If a Flash read/write/erase or program read targets an illegal address, a system reset is generated. This may occur due to any of the following:

- A Flash write or erase is attempted above user code space. This occurs when PSWE is set to '1' and a MOVX write operation is attempted above address 0x3DFF.
- A Flash read is attempted above user code space. This occurs when a MOVC operation is attempted above address 0x3DFF.
- A Program read is attempted above user code space. This occurs when user code attempts to branch to an address above 0x3DFF.
- A Flash read, write or erase attempt is restricted due to a Flash security setting (see Section "11.3. Security Options" on page 108).

The FERROR bit (RSTSRC.6) is set following a Flash error reset. The state of the /RST pin is unaffected by this reset.

Internal Oscillator										
Clock Signal	Input Source Selection	Register Bit Settings								
USB Clock	Internal Oscillator/2	USBCLK = 001b								
Internal Oscillator	Divide by 1	IFCN = 11b								
External Oscillator										
Clock Signal	Input Source Selection	Register Bit Settings								
USB Clock	External Oscillator/4	USBCLK = 101b								
External Oscillator	Crystal Oscillator Mode 24 MHz Crystal	XOSCMD = 110b XFCN = 111b								

Table 13.2. Typical USB Low Speed Clock Settings

SFR Definition 13.5. CLKSEL: Clock Select

DAA	D 444	DAA	DAA		DAA	D 444	DAA				
R/W	R/VV	K/W	R/W	R/W	R/W	R/W					
-		USBCLK		-	-	CLK	.SL	00000000			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address			
								0xA9			
Bit 7 [.]	Unused Rea	ad = 0b [.] Writ	e = don't d	care							
Bits6–4:	USBCLK2-0	USB Clock	Select	Jaron							
2.100	These bits se	elect the cloc	k supplied	d to USB0. V	Vhen opera	tina USB0 ii	ר full-spe	ed mode, the			
	selected cloc	k should be	48 MHz. \	When opera	ting USB0	in low-speed	d mode. tl	he selected			
	clock should	be 6 MHz.			J -		, .				
	0										
	0	01		Interna							
	010		010 External Öscillator								
	0	11		Extern	al Oscillato	r/2					
	100		100		Extern	al Oscillato	r/3				
	1	01		Extern	al Oscillato	r/4					
	1	10		RE	SERVED						
	1	11		RE	SERVED						
BITS3-2:	Unused. Rea	ad = 000; vvr	ite = don't	care.							
DIIS $I=0$.	CLKSLI-U.	System Cloc	k Select	0.01180.0							
		elect the sys	Lenn Clock	source.							
	CL	KSL		Sele	cted Clock	[
		3									
	()1		Exter	nal Oscillato	or					
	1	10		4x Clo	ck Multiplie	r/2					
		11		RE	SERVED						

C8051F320/1

Figure 14.2. Port I/O Cell Block Diagram

SFR Definition 14.12. P2MDIN: Port2 Input Mode Register

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value			
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Addres 0xF3											
 Bits7–0: Analog Input Configuration Bits for P2.7–P2.0 (respectively). Port pins configured as analog inputs have their weak pull-up, digital driver, and digital receiver disabled. 0: Corresponding P2.n pin is configured as an analog input. 1: Corresponding P2.n pin is not configured as an analog input. 											
Note: P2.7–P2.4 only available on C8051F320 devices.											

SFR Definition 14.13. P2MDOUT: Port2 Output Mode Register

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: 0xA6			
 Bits7–0: Output Configuration Bits for P2.7–P2.0 (respectively): ignored if corresponding bit in register P2MDIN is logic 0. 0: Corresponding P2.n Output is open-drain. 1: Corresponding P2.n Output is push-pull. 											
Note: P2.7–P2.4 only available on C8051F320 devices.											

SFR Definition 14.14. P2SKIP: Port2 Skip Register

15.3. USB Register Access

The USB0 controller registers listed in Table 15.2 are accessed through two SFRs: USB0 Address (USB0ADR) and USB0 Data (USB0DAT). The USB0ADR register selects which USB register is targeted by reads/writes of the USB0DAT register. See Figure 15.2.

Endpoint control/status registers are accessed by first writing the USB register INDEX with the target endpoint number. Once the target endpoint number is written to the INDEX register, the control/status registers associated with the target endpoint may be accessed. See the "Indexed Registers" section of Table 15.2 for a list of endpoint control/status registers.

Figure 15.2. USB0 Register Access Scheme

USB Register Definition 15.9. FRAMEL: USB0 Frame Number Low										
R	R	R	R	R	R	R	R	Reset Value		
Frame Number Low										
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	USB Address: 0x0C		
Bits7-0: Frame Number Low This register contains bits7-0 of the last received frame number.										

USB Register Definition 15.10. FRAMEH: USB0 Frame Number High

15.8. Interrupts

The read-only USB0 interrupt flags are located in the USB registers shown in Figure 15.11 through Figure 15.13. The associated interrupt enable bits are located in the USB registers shown in Figure 15.14 through Figure 15.16. A USB0 interrupt is generated when any of the USB interrupt flags is set to '1'. The USB0 interrupt is enabled via the EIE1 SFR (see Section "9.3. Interrupt Handler" on page 87).

Note: Reading a USB interrupt flag register resets all flags in that register to '0'.

-- - -

USB Register Definition 15.17. E0CSR: USB0 Endpoint0 Control

R/W	R/W	R/W	R	R/W	R/W	R/W	R	Reset Value			
SSUEN	D SOPRDY	SDSTL	SUEND	DATAEND	STSTL	INPRDY	OPRDY	00000000			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	USB Address:			
								0x11			
Bit7:	SSUEND: Se	erviced Set	up End								
	Write: Softw	are should	Set this bit	to '1' after se	ervicing a		It SUEND) event.			
	Hardware cle	ears the Su	DIT DIT W	nen soltware	writes 1	to SSUEND	•				
Bit6 [.]	SOPRDY Se	erviced OP	RDY								
Bito.	Write: Softw	are should	write '1' to	this bit after	servicina a	a received E	ndpoint0 r	acket. The			
	OPRDY bit v	vill be clear	ed by a wr	ite of '1' to S	OPRDY.						
	Read: This b	oit always re	eads '0'.								
Bit5:	SDSTL: Sen	d Stall									
	Software car	n write '1' to	this bit to	terminate the	e current tr	ansfer (due	to an error	r condition,			
	unexpected	transfer req	juest, etc.).	Hardware w	vill clear thi	s bit to '0' w	hen the S	TALL hand-			
Dit 1 ·	Shake is tran	ismitted.									
DIL4.	Hardware se	up Enu its this read	l-only hit to	'1' when a c	ontrol tran	saction ends	s hefore sc	oftware has			
	written '1' to	written '1' to the DATAEND bit Hardware clears this bit when software writes '1' to SSU-									
	END.										
Bit3:	DATAEND: D	Data End									
	Software sho	ould write '1	' to this bit	:							
	1. When wri	ting '1' to IN	NPRDY for	the last outg	oing data	packet.					
	2. When wri	ting '1' to IP		a zero-lengt	h data pac	ket.					
	3. when wh	ting 1 to S	CPRD1 al	ter servicing	the last inc	coming data	раскет.				
Bit2 [.]	STSTI · Seni	t Stall	cleared by	naiuwaie.							
DILL.	Hardware se	ts this bit to	o '1' after tr	ansmitting a	STALL ha	ndshake siq	nal. This fl	ag must be			
	cleared by so	oftware.		J				- g			
Bit1:	INPRDY: IN	Packet Rea	ady								
	Software sho	ould write '1	' to this bit	after loading) a data pa	cket into the	Endpoint	0 FIFO for			
	transmit. Hai	rdware clea	irs this bit a	and generate	s an interr	upt under eit	ther of the	following			
	conditions:	t is transmi	ittad								
	2 The packe	t is overwri	itten hv an	incoming SE	TI IP nack	ot					
	3 The packe	et is overwri	itten by an	incoming OL	JT packet	C I.					
Bit0:	OPRDY: OU	T Packet R	eady	liteening ee	or puolion						
	Hardware se	ts this read	l-only bit ar	nd generates	an interru	pt when a da	ata packet	has been			
	received. Th	is bit is clea	ared only w	hen software	e writes '1'	to the SOPF	२DY bit.				

C8051F320/1

A Bulk or Interrupt pipe can be shut down (or Halted) by writing '1' to the SDSTL bit (EINCSRL.4). While SDSTL = '1', hardware will respond to all IN requests with a STALL condition. Each time hardware generates a STALL condition, an interrupt will be generated and the STSTL bit (EINCSRL.5) set to '1'. The STSTL bit must be reset to '0' by firmware.

Hardware will automatically reset INPRDY to '0' when a packet slot is open in the endpoint FIFO. Note that if double buffering is enabled for the target endpoint, it is possible for firmware to load two packets into the IN FIFO at a time. In this case, hardware will reset INPRDY to '0' immediately after firmware loads the first packet into the FIFO and sets INPRDY to '1'. An interrupt will not be generated in this case; an interrupt will only be generated when a data packet is transmitted.

When firmware writes '1' to the FCDT bit (EINCSRH.3), the data toggle for each IN packet will be toggled continuously, regardless of the handshake received from the host. This feature is typically used by Interrupt endpoints functioning as rate feedback communication for Isochronous endpoints. When FCDT = '0', the data toggle bit will only be toggled when an ACK is sent from the host in response to an IN packet.

15.12.2.Endpoints1-3 IN Isochronous Mode

When the ISO bit (EINCSRH.6) is set to '1', the target endpoint operates in Isochronous (ISO) mode. Once an endpoint has been configured for ISO IN mode, the host will send one IN token (data request) per frame; the location of data within each frame may vary. Because of this, it is recommended that double buffering be enabled for ISO IN endpoints.

Hardware will automatically reset INPRDY (EINCSRL.0) to '0' when a packet slot is open in the endpoint FIFO. Note that if double buffering is enabled for the target endpoint, it is possible for firmware to load two packets into the IN FIFO at a time. In this case, hardware will reset INPRDY to '0' immediately after firmware loads the first packet into the FIFO and sets INPRDY to '1'. An interrupt will not be generated in this case; an interrupt will only be generated when a data packet is transmitted.

If there is not a data packet ready in the endpoint FIFO when USB0 receives an IN token from the host, USB0 will transmit a zero-length data packet and set the UNDRUN bit (EINCSRL.2) to '1'.

The ISO Update feature (see Section 15.7) can be useful in starting a double buffered ISO IN endpoint. If the host has already set up the ISO IN pipe (has begun transmitting IN tokens) when firmware writes the first data packet to the endpoint FIFO, the next IN token may arrive and the first data packet sent before firmware has written the second (double buffered) data packet to the FIFO. The ISO Update feature ensures that any data packet written to the endpoint FIFO will not be transmitted during the current frame; the packet will only be sent after a SOF signal has been received.

C8051F320/1

slower. When the SPI is configured as a slave, the maximum data transfer rate (bits/sec) for full-duplex operation is 1/10 the system clock frequency, provided that the master issues SCK, NSS (in 4-wire slave mode), and the serial input data synchronously with the slave's system clock. If the master issues SCK, NSS, and the serial input data asynchronously, the maximum data transfer rate (bits/sec) must be less than 1/10 the system clock frequency. In the special case where the master only wants to transmit data to the slave and does not need to receive data from the slave (i.e. half-duplex operation), the SPI slave can receive data at a maximum data transfer rate (bits/sec) of 1/4 the system clock frequency. This is provided that the master issues SCK, NSS, and the serial input data synchronously with the slave's system clock.

Figure 18.5. Master Mode Data/Clock Timing

SFR Definition 19.3. CKCON: Clock Control

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value			
T3MH	T3ML	T2MH	T2ML	T1M	TOM	SCA1	SCA0	00000000			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:			
								0x8E			
Bit7:	T3MH: Tim	er 3 High By	te Clock Se	lect.							
	This bit sel	ects the cloc	k supplied t	o the Timer	3 high byte	e if Timer 3 i	s configur	ed in split 8-			
	bit timer mo	ode. T3MH is	s ignored if	Timer 3 is ir	any other	mode.					
	0: Timer 3 high byte uses the clock defined by the T3XCLK bit in TMR3CN.										
Dite	1: Timer 3 I	nign byte use	es the syste	m clock.							
DILO.		ers the cloc	k supplied t	o Timor 3 I	f Timor 3 is	configured	in split 8-h	vit timor			
	mode this	bit selects th	e clock sun	nlied to the	lower 8-bit	timer	in spin o-c				
	0: Timer 3 I	ow byte use	s the clock	defined by t	he T3XCL	K bit in TMR	3CN.				
	1: Timer 3 I	ow byte use	s the syster	n clock.							
Bit5:	T2MH: Tim	er 2 Ĥigh By	te Clock Se	lect.							
	This bit sel	ects the cloc	k supplied t	o the Timer	2 high byte	e if Timer 2 i	s configur	ed in split 8-			
	bit timer mo	ode. T2MH is	s ignored if	Timer 2 is ir	any other	mode.					
	0: Timer 2 I	high byte use	es the clock	defined by	the T2XCL	.K bit in TMF	R2CN.				
D:44	1: Timer 2 I	high byte use	es the syste	m clock.							
Bit4:	T2IVIL: TIM	er 2 Low Byt	e Clock Sel	ect. o Timor 2 J	Timor 2 io	oonfigurad	in onlit 0 h	it timor			
	mode this	bit solocts th	k supplied i o clock sup	o Timer 2. I plied to the	l Himer 2 is	timor	in spin o-d	ni umer			
	0. Timer 2 l	ow byte use	s the clock oup	defined by t		timer.	2CN				
	1: Timer 2 I	ow byte use	ses the system clock.								
Bit3:	T1M: Time	1 Clock Sel	ect.								
	This select	This select the clock source supplied to Timer 1. T1M is ignored when C/T1 is set to logic 1.									
	0: Timer 1 uses the clock defined by the prescale bits, SCA1-SCA0.										
	1: Timer 1	uses the syst	tem clock.								
Bit2:	T0M: Time	0 Clock Sel	ect.								
	This bit sel	ects the cloc	k source su	pplied to Ti	mer 0. TOM	l is ignored v	when C/TC) is set to			
	logic 1.	Timor O upor	the clock	defined by t	no propode	bita SCA1	8040				
	1: Counter/	1: Counter/Timer 0 uses the system clock									
Bits1–0 [.]	SCA1–SCA	0. Timer 0/1	Prescale F	Sits							
2.10. 01	These bits	control the d	ivision of th	e clock sup	olied to Tim	ner 0 and/or	Timer 1 if	configured			
	to use pres	caled clock i	nputs.	•				5			
	SCA1	SCA0	Presc	aled Clock							
	0	0	System clo	ck divided k	by 12						
	0	1	System clo	ock divided	by 4						
	1	0	System clo	ck divided k	by 48						
	1	1	External cl	OCK DIVIDED	ру 8						
	Note: Exte	rnal clock divi	ded by 8 is s	ynchronized	with the						
	Syste	ETT CIUCK.									

SFR Definition 19.9. TMR2RLL: Timer 2 Reload Register Low Byte R/W R/W R/W R/W R/W R/W R/W R/W **Reset Value** 0000000 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address: 0xCA

Bits 7–0: TMR2RLL: Timer 2 Reload Register Low Byte. TMR2RLL holds the low byte of the reload value for Timer 2 when operating in auto-reload mode, or the captured value of the TMR2L register in capture mode.

SFR Definition 19.10. TMR2RLH: Timer 2 Reload Register High Byte

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: 0xCB
Bits 7–0: TMR2RLH: Timer 2 Reload Register High Byte. The TMR2RLH holds the high byte of the reload value for Timer 2 when or reload mode, or the captured value of the TMR2H register in capture mod							en operat mode.	ing in auto-

SFR Definition 19.11. TMR2L: Timer 2 Low Byte

SFR Definition 19.12. TMR2H Timer 2 High Byte

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: 0xCD
Bits 7–0: TMR2H: Timer 2 High Byte. In 16-bit mode, the TMR2H register contains the high byte of the 16-bit Timer 2. In 8-bit mode, TMR2H contains the 8-bit high byte timer value.								. In 8-bit

19.3. Timer 3

Timer 3 is a 16-bit timer formed by two 8-bit SFRs: TMR3L (low byte) and TMR3H (high byte). Timer 3 may operate in 16-bit auto-reload mode, (split) 8-bit auto-reload mode, or USB Start-of-Frame (SOF) capture mode. The Timer 3 operation mode is defined by the T3SPLIT (TMR3CN.3) and T3SOF (TMR2CN.4) bits.

Timer 3 may be clocked by the system clock, the system clock divided by 12, or the external oscillator source divided by 8. The external clock mode is ideal for real-time clock (RTC) functionality, where the internal oscillator drives the system clock while Timer 3 (and/or the PCA) is clocked by an external precision oscillator. Note that the external oscillator source divided by 8 is synchronized with the system clock.

19.3.1. 16-bit Timer with Auto-Reload

When T3SPLIT (TMR3CN.3) is zero, Timer 3 operates as a 16-bit timer with auto-reload. Timer 3 can be clocked by SYSCLK, SYSCLK divided by 12, or the external oscillator clock source divided by 8. As the 16-bit timer register increments and overflows from 0xFFFF to 0x0000, the 16-bit value in the Timer 3 reload registers (TMR3RLH and TM3RLL) is loaded into the Timer 3 register as shown in Figure 19.4, and the Timer 3 High Byte Overflow Flag (TMR3CN.7) is set. If Timer 3 interrupts are enabled, an interrupt will be generated on each Timer 3 overflow. Additionally, if Timer 3 interrupts are enabled and the TF3LEN bit is set (TMR3CN.5), an interrupt will be generated each time the lower 8 bits (TMR3L) overflow from 0xFF to 0x000.

Figure 19.8. Timer 3 16-Bit Mode Block Diagram

222

19.3.3. USB Start-of-Frame Capture

When T3SOF = '1', Timer 3 operates in USB Start-of-Frame (SOF) capture mode. When T3SPLIT = '0', Timer 3 counts up and overflows from 0xFFFF to 0x0000. Each time a USB SOF is received, the contents of the Timer 3 registers (TMR3H:TMR3L) are latched into the Timer 3 Reload registers (TMR3RLH:TMR3RLL). A Timer 3 interrupt is generated if enabled. This mode can be used to calibrate the system clock or external oscillator against the known USB host SOF clock.

Figure 19.10. Timer 3 SOF Capture Mode (T3SPLIT = '0')

When T3SPLIT = '1', the Timer 3 registers (TMR3H and TMR3L) act as two 8-bit counters. Each counter counts up independently and overflows from 0xFF to 0x00. Each time a USB SOF is received, the contents of the Timer 3 registers are latched into the Timer 3 Reload registers (TMR3RLH and TMR3RLL). A Timer 3 interrupt is generated if enabled.

Figure 19.11. Timer 3 SOF Capture Mode (T3SPLIT = '1')

SFR Definition 20.4. PCA0L: PCA Counter/Timer Low Byte

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: 0xF9
Bits 7–0: I	PCA0L: PCA The PCA0L	Counter/T register hol	imer Low B	oyte. oyte (LSB) o	of the 16-bit	PCA Coun	ter/Timer.	

SFR Definition 20.5. PCA0H: PCA Counter/Timer High Byte

SFR Definition 20.6. PCA0CPLn: PCA Capture Module Low Byte

