E·XFL

Zilog - ZGP323LAH2016C00TR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	Z8
Core Size	8-Bit
Speed	8MHz
Connectivity	-
Peripherals	HLVD, POR, WDT
Number of I/O	16
Program Memory Size	16KB (16K x 8)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	237 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/zgp323lah2016c00tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Z8 GP[™] OTP MCU Family Product Specification

Table of Contents

Development Features 1
General Description
Pin Description
Absolute Maximum Ratings 10
Standard Test Conditions 10
DC Characteristics
AC Characteristics
Pin Functions 16 XTAL1 Crystal 1 (Time-Based Input) 16 XTAL2 Crystal 2 (Time-Based Output) 16 Port 0 (P07–P00) 16 Port 1 (P17–P10) 17 Port 2 (P27–P20) 18 Port 3 (P37–P30) 19 RESET (Input, Active Low) 23
Functional Description23Program Memory23RAM23Expanded Register File24Register File28Stack29Timers30Counter/Timer Functional Blocks38
Expanded Register File Control Registers (0D) 64
Expanded Register File Control Registers (0F) 69
Standard Control Registers
Package Information
Ordering Information
Precharacterization Product

- Port 1: 0–3 pull-up transistors
- Port 1: 4–7 pull-up transistors
- Port 2: 0–7 pull-up transistors
- EPROM Protection
- WDT enabled at POR
- **Note:** The mask option pull-up transistor has a *typical* equivalent resistance of 200 K Ω ±50% at V_{CC}=3 V and 450 K Ω ±50% at $V_{CC}=2$ V.

General Description

The Z8 GPTM OTP MCU Family is an OTP-based member of the MCU family of infrared microcontrollers. With 237B of general-purpose RAM and up to 32KB of OTP, ZiLOG[®]'s CMOS microcontrollers offer fast-executing, efficient use of memory, sophisticated interrupts, input/output bit manipulation capabilities, automated pulse generation/reception, and internal key-scan pull-up transistors.

The Z8 GPTM OTP MCU Family architecture (Figure 1) is based on ZiLOG's 8-bit microcontroller core with an Expanded Register File allowing access to registermapped peripherals, input/output (I/O) circuits, and powerful counter/timer circuitry. The Z8[®] offers a flexible I/O scheme, an efficient register and address space structure, and a number of ancillary features that are useful in many consumer, automotive, computer peripheral, and battery-operated hand-held applications.

There are three basic address spaces available to support a wide range of configurations: Program Memory, Register File and Expanded Register File. The register file is composed of 256 Bytes (B) of RAM. It includes 4 I/O port registers, 16 control and status registers, and 236 general-purpose registers. The Expanded Register File consists of two additional register groups (F and D).

To unburden the program from coping with such real-time problems as generating complex waveforms or receiving and demodulating complex waveform/pulses, the Z8 GP OTP MCU offers a new intelligent counter/timer architecture with 8-bit and 16-bit counter/timers (see Figure 2). Also included are a large number of userselectable modes and two on-board comparators to process analog signals with separate reference voltages.

Note: All signals with an overline, "", are active Low. For example, B/\overline{W} , in which WORD is active Low, and \overline{B}/W , in which BYTE is active Low.

Power connections use the conventional descriptions listed in Table 2.

Figure 2. Counter/Timers Diagram

Pin Description

The pin configuration for the 20-pin PDIP/SOIC/SSOP is illustrated in Figure 3 and described in Table 3. The pin configuration for the 28-pin PDIP/SOIC/SSOP are depicted in Figure 4 and described in Table 4. The pin configurations for the 40-pin PDIP and 48-pin SSOP versions are illustrated in Figure 5, Figure 6, and described in Table 5.

For customer engineering code development, a UV eraseable windowed cerdip packaging is offered in 20-pin, 28-pin, and 40-pin configurations. ZiLOG does not recommend nor guarantee these packages for use in production.

Absolute Maximum Ratings

Stresses greater than those listed in Table 7 might cause permanent damage to the device. This rating is a stress rating only. Functional operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for an extended period might affect device reliability.

Table 6. Absolute Maximum Ratings

Parameter	Minimum	Maximu	m Units	Notes
Ambient temperature under bias	0	+70	С	
Storage temperature	-65	+150	С	
Voltage on any pin with respect to V_{SS}	-0.3	+5.5	V	1
Voltage on V_{DD} pin with respect to V_{SS}	-0.3	+3.6	V	
Maximum current on input and/or inactive output pin	-5	+5	μA	
Maximum output current from active output pin	-25	+25	mA	
Maximum current into V_{DD} or out of V_{SS}		75	mA	
Notes:				

This voltage applies to all pins except the following: V_{DD}, P32, P33 and RESET.

Standard Test Conditions

The characteristics listed in this product specification apply for standard test conditions as noted. All voltages are referenced to GND. Positive current flows into the referenced pin (see Figure 7).

Figure 7. Test Load Diagram

13

Table 9. EPROM/OTP Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Unit	Notes
	Erase Time	15			Minutes	1,3
	Data Retention @ use years		10		Years	2
	Program/Erase Endurance	25			Cycles	1

Notes:

1. For windowed cerdip package only.

2. Standard: 0°C to 70°C; Extended: -40°C to +105°C; Automotive: -40°C to +125°C. Determined using the Arrhenius model, which is an industry standard for estimating data retention of floating gate technologies:

AF = exp[(Ea/k)*(1/Tuse - 1/TStress)] Where: Ea is the intrinsic activation energy (eV; typ. 0.8) k is Boltzman's constant (8.67 x 10-5 eV/°K) °K = -273.16°C Tuse = Use Temperature in °K TStress = Stress Temperature in °K 3. At a stable UV Lamp output of 20mW/CM²

Figure 10. Port 1 Configuration

Port 2 (P27-P20)

Port 2 is an 8-bit, bidirectional, CMOS-compatible I/O port (see Figure 11). These eight I/O lines can be independently configured under software control as inputs or outputs. Port 2 is always available for I/O operation. A mask option is available to connect eight pull-up transistors on this port. Bits programmed as outputs are globally programmed as either push-pull or open-drain. The POR resets with the eight bits of Port 2 configured as inputs.

Port 2 also has an 8-bit input OR and AND gate, which can be used to wake up the part. P20 can be programmed to access the edge-detection circuitry in demodulation mode.

Figure 12. Port 3 Configuration

Two on-board comparators process analog signals on P31 and P32, with reference to the voltage on Pref1 and P33. The analog function is enabled by programming the Port 3 Mode Register (bit 1). P31 and P32 are programmable as rising, falling, or both edge triggered interrupts (IRQ register bits 6 and 7). Pref1 and P33 are the comparator reference voltage inputs. Access to the Counter Timer edgedetection circuit is through P31 or P20 (see "T8 and T16 Common Functions—

Comparator Inputs

In analog mode, P31 and P32 have a comparator front end. The comparator reference is supplied to P33 and Pref1. In this mode, the P33 internal data latch and its corresponding IRQ1 are diverted to the SMR sources (excluding P31, P32, and P33) as indicated in Figure 12 on page 20. In digital mode, P33 is used as D3 of the Port 3 input register, which then generates IRQ1.

Note: Comparators are powered down by entering Stop Mode. For P31–P33 to be used in a Stop Mode Recovery source, these inputs must be placed into digital mode.

Comparator Outputs

These channels can be programmed to be output on P34 and P37 through the PCON register.

RESET (Input, Active Low)

Reset initializes the MCU and is accomplished either through Power-On, Watch-Dog Timer, Stop Mode Recovery, Low-Voltage detection, or external reset. During Power-On Reset and Watch-Dog Timer Reset, the internally generated reset drives the reset pin Low for the POR time. Any devices driving the external reset line must be open-drain to avoid damage from a possible conflict during reset conditions. Pull-up is provided internally.

When the Z8 GP^{TM} asserts (Low) the RESET pin, the internal pull-up is disabled. The Z8 GP^{TM} does not assert the RESET pin when under VBO.

Note: The external Reset does not initiate an exit from STOP mode.

Functional Description

This device incorporates special functions to enhance the Z8[®], functionality in consumer and battery-operated applications.

Program Memory

This device addresses up to 32KB of OTP memory. The first 12 Bytes are reserved for interrupt vectors. These locations contain the six 16-bit vectors that correspond to the six available interrupts.

RAM

This device features 256B of RAM. See Figure 14.

Z8 GP[™] OTP MCU Family Product Specification

Z8 [®] Standard Control Registers					litio	n	
Expanded Reg. Bank 0/Group 15*	* D7 D6	D5	D4	D3	D2	D1	D0
		1					
			0	0	0	0	0
		0	0	0	0	0	0
Register Pointer /	0 0	0	0	0	0	0	0
7 6 5 4 3 2 1 0	00	0	0	0	0	0	0
	00	U	U	U	U	U	U
Working Register Expanded Register	0 0	0	0	0	0	0	0
Group Pointer Bank Pointer F9 IPK		U	U	U	U	U	U
	1 1	0	0	1	1	1	1
* F7 P3M	0 0	0	0	0	0	0	0
* F6 P2M	1 1	1	1	1	1	1	1
F5 Reserved	UU	U	U	U	U	U	U
F4 Reserved	UU	U	U	U	U	U	U
F3 Reserved	UU	U	U	U	U	U	U
Register File (Bank 0)** / F2 Reserved	UU	U	U	U	U	U	U
FF F1 Reserved	UU	U	U	U	U	U	U
F0 Reserved	υυ	U	U	U	U	U	U
Expanded Reg. Bank F/Group 0**							
L (F) OF WDTMR		0	0	1	1	0	1
(F) OF Reserved	0 0	0	0	-	-	0	-
* (F) 0D_SMR2	0.0	0	0	0	0	0	0
(F) OC Reserved	00	-	0	-	•	•	0
		4	0	0	0		0
7F	0 0	-	0	0	0	0	0
		-		_	_	-	_
				_		_	
				_		_	
				-		_	
				-		_	
				-		_	
				_	-	-	_
				_	-	-	_
				_	-	-	_
			4	-	4	-	~
Expanded Reg. Bank 0/Group (0)	1 1		ſ	1	1	1	0
(0) 03 P3 0 U Hxpanded\Reg. Bank D/Group 0							_
(0) 02 P2 U (D) 0C LVD		U	U	U	U	U	0
* (0) 01 P1 U V * (D) 04 L 08	0 0	0	0	0	0	0	0
(0) 01 1 1 0 (D) 02 100 (D) 02 116	0 0	0	0	0	0	0	0
(0) 00 P0 U (D) 08 LO16	0 0	0	0	0	0	0	0
U = Unknown	0 0	0	0	0	0	0	0
* Is not reset with a Stop-Mode Recovery	0 0	0	0	0	0	0	0
** All addresses are in hexadecimal	0 0	0	0	0	0	0	0
↑ Is not reset with a Stop-Mode Recovery, except Bit 0	0 0	0	0	0	0	0	0
↑↑ Bit 5 Is not reset with a Stop-Mode Recovery	0 0	0	1	1	1	1	1
↑↑↑ Bits 5.4.3.2 not reset with a Stop-Mode Recovery	0 0	0	0	0	0	0	0
↑↑↑↑ Bits 5 and 4 not reset with a Stop-Mode Recovery	0 0	0	0	0	0	0	0
1111 Dia 5 4 2 2 4 not react with a Stan Made Decouvery	0 0	0	0	0	0	0	0

Figure 15. Expanded Register File Architecture

34

Field	Bit Position		Value	Description
Transmit_Submode/	32	R/W		Transmit Mode
Glitch_Filter			00*	Normal Operation
			01	Ping-Pong Mode
			10	T16_Out = 0
			11	T16_Out = 1
				Demodulation Mode
			00*	No Filter
			01	4 SCLK Cycle
			10	8 SCLK Cycle
			11	Reserved
Initial_T8_Out/	1-			Transmit Mode
Rising Edge		R/W	0*	T8_OUT is 0 Initially
			1	T8_OUT is 1 Initially
				Demodulation Mode
		R	0*	No Rising Edge
			1	Rising Edge Detected
		W	0	No Effect
			1	Reset Flag to 0
Initial_T16_Out/	0			Transmit Mode
Falling_Edge		R/W	0*	T16_OUT is 0 Initially
			1	T16_OUT is 1 Initially
				Demodulation Mode
		R	0*	No Falling Edge
			1	Falling Edge Detected
		W	0	No Effect
			1	Reset Flag to 0

Table 13. CTR1(0D)01H T8 and T16 Common Functions (Continued)

Note:

*Default at Power-On Reset.

**Default at Power-On Reset.Not reset with Stop Mode recovery.

Mode

If the result is 0, the counter/timers are in TRANSMIT mode; otherwise, they are in DEMODULATION mode.

P36_Out/Demodulator_Input

In TRANSMIT Mode, this bit defines whether P36 is used as a normal output pin or the combined output of T8 and T16.

In DEMODULATION Mode, this bit defines whether the input signal to the Counter/Timers is from P20 or P31.

If the input signal is from Port 31, a capture event may also generate an IRQ2 interrupt. To prevent generating an IRQ2, either disable the IRQ2 interrupt by clearing its IMR bit D2 or use P20 as the input.

Figure 19. Transmit Mode Flowchart

Figure 28. Ping-Pong Mode Diagram

Initiating PING-PONG Mode

First, make sure both counter/timers are not running. Set T8 into Single-Pass mode (CTR0, D6), set T16 into SINGLE-PASS mode (CTR2, D6), and set the Ping-Pong mode (CTR1, D2; D3). These instructions can be in random order. Finally, start PING-PONG mode by enabling either T8 (CTR0, D7) or T16 (CTR2, D7). See Figure 29.

The initial value of T8 or T16 must not be 1. Stopping the timer and restarting the timer reloads the initial value to avoid an unknown previous value.

During PING-PONG Mode

The enable bits of T8 and T16 (CTR0, D7; CTR2, D7) are set and cleared alternately by hardware. The timeout bits (CTR0, D5; CTR2, D5) are set every time the counter/timers reach the terminal count.

Timer Output

The output logic for the timers is illustrated in Figure 29. P34 is used to output T8-OUT when D0 of CTR0 is set. P35 is used to output the value of TI6-OUT when D0 of CTR2 is set. When D6 of CTR1 is set, P36 outputs the logic combination of T8-OUT and T16-OUT determined by D5 and D4 of CTR1.

Interrupts

The Z8 GPTM OTP MCU Family features six different interrupts (Table 16). The interrupts are maskable and prioritized (Figure 30). The six sources are divided as follows: three sources are claimed by Port 3 lines P33–P31, two by the counter/ timers (Table 16) and one for low voltage detection. The Interrupt Mask Register (globally or individually) enables or disables the six interrupt requests.

The source for IRQ is determined by bit 1 of the Port 3 mode register (P3M). When in digital mode, Pin P33 is the source. When in analog mode the output of the Stop mode recovery source logic is used as the source for the interrupt. See Figure 35, Stop Mode Recovery Source, on page 57.

Figure 30. Interrupt Block Diagram

Z8 GPTM OTP MCU Family Product Specification

Figure 35. Stop Mode Recovery Source

CTR2(0D)02H

Figure 41. T16 Control Register ((0D) 2H: Read/Write Except Where Noted)

WDTMR(0F)0FH

* Default setting after reset

Figure 47. Watch-Dog Timer Register ((0F) 0FH: Write Only)

Standard Control Registers

R246 P2M(F6H)

* Default setting after reset

Figure 48. Port 2 Mode Register (F6H: Write Only)

Figure 62. 28-Pin CDIP Package

93

For fast results, contact your local ZiLOG sales office for assistance in ordering the part desired.

Codes

ZG = ZiLOG General Purpose Family

P = OTP

- 323 = Family Designation
- L = Voltage Range

2V to 3.6V

T = Temperature Range:

S = 0 to 70 degrees C (Standard)

- E = -40 to +105 degrees C (Extended)
- A = -40 to +125 degrees C (Automotive)
- P = Package Type:
 - K = Windowed Cerdip
 - P = PDIP
 - H = SSOP
 - S = SOIC
- ## = Number of Pins
- CC = Memory Size
- M = Packaging Options
 - C = Non Lead-Free
 - G = Lead-Free
 - E = CDIP

Z8 GP[™] OTP MCU Family Product Specification

Μ

memory, program 23 modulo-N mode T16_OUT 45 T8_OUT 41

0

oscillator configuration 51 output circuit, counter/timer 47

Ρ

package information 20-pin DIP package diagram 81 20-pin SSOP package diagram 82 28-pin DIP package diagram 85 28-pin SOIC package diagram 84 28-pin SSOP package diagram 86 40-pin DIP package diagram 87 48-pin SSOP package diagram 88 pin configuration 20-pin DIP/SOIC/SSOP 5 28-pin DIP/SOIC/SSOP 6 40- and 48-pin 8 40-pin DIP 7 48-pin SSOP 8 pin functions port 0 (P07 - P00) 16 port 0 (P17 - P10) 17 port 0 configuration 17 port 1 configuration 18 port 2 (P27 - P20) 18 port 2 (P37 - P30) 19 port 2 configuration 19 port 3 configuration 20 port 3 counter/timer configuration 22 reset) 23 XTAL1 (time-based input 16 XTAL2 (time-based output) 16 ping-pong mode 46 port 0 configuration 17 port 0 pin function 16

port 1 configuration 18 port 1 pin function 17 port 2 configuration 19 port 2 pin function 18 port 3 configuration 20 port 3 pin function 19 port 3counter/timer configuration 22 port configuration register 53 power connections 3 power supply 5 precharacterization product 95 program memory 23 map 24

R

ratings, absolute maximum 10 register 59 CTR(D)01h 33 CTR0(D)00h 31 CTR2(D)02h 35 CTR3(D)03h 37 flag 78 HI16(D)09h 30 HI8(D)0Bh 30 interrupt priority 76 interrupt request 77 interruptmask 77 L016(D)08h 30 L08(D)0Ah 30 LVD(D)0Ch 63 pointer 78 port 0 and 1 75 port 2 configuration 73 port 3 mode 74 port configuration 53, 73 SMR2(F)0Dh 38 stack pointer high 79 stack pointer low 79 stop mode recovery 55 stop mode recovery 2 59 stop-mode recovery 71 stop-mode recovery 2 72 T16 control 67