Zilog - ZGP323LAH2816C Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	Z8
Core Size	8-Bit
Speed	8MHz
Connectivity	-
Peripherals	HLVD, POR, WDT
Number of I/O	24
Program Memory Size	16KB (16K × 8)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	237 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/zgp323lah2816c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Development Features

Table 1 lists the features of $ZiLOG^{(R)}$'s Z8 GP^{TM} OTP MCU Family family members.

Table 1. Features

Device	OTP (KB)	RAM (Bytes)	I/O Lines	Voltage Range
ZGP323L OTP MCU Family	4, 8, 16, 32	237	32, 24 or 16	2.0V-3.6V

- Low power consumption–6mW (typical)
- T = Temperature
 - S = Standard 0° to +70°C
 - $E = Extended 40^{\circ} to + 105^{\circ}C$
 - A = Automotive -40° to $+125^{\circ}$ C
- Three standby modes:
 - STOP-2µA (typical)
 - HALT-0.8mA (typical)
 - Low voltage reset
- Special architecture to automate both generation and reception of complex pulses or signals:
 - One programmable 8-bit counter/timer with two capture registers and two load registers
 - One programmable 16-bit counter/timer with one 16-bit capture register pair and one 16-bit load register pair
 - Programmable input glitch filter for pulse reception
- Six priority interrupts
 - Three external
 - Two assigned to counter/timers
 - One low-voltage detection interrupt
- Low voltage detection and high voltage detection flags
- Programmable Watch-Dog Timer/Power-On Reset (WDT/POR) circuits
- Two independent comparators with programmable interrupt polarity
- Programmable EPROM options
 - Port 0: 0–3 pull-up transistors
 - Port 0: 4–7 pull-up transistors

Figure 3. 20-Pin PDIP/SOIC/SSOP/CDIP* Pin Configuration

Table 3.	20-Pin PDIP/SOIC/SSOP/CDIP*	Pin	Identification
			achtinoution

Pin #	Symbol	Function	Direction
1–3	P25–P27	Port 2, Bits 5,6,7	Input/Output
4	P07	Port 0, Bit 7	Input/Output
5	V _{DD}	Power Supply	
6	XTAL2	Crystal Oscillator Clock	Output
7	XTAL1	Crystal Oscillator Clock	Input
8–10	P31–P33	Port 3, Bits 1,2,3	Input
11,12	P34. P36	Port 3, Bits 4,6	Output
13	P00/Pref1/P30	Port 0, Bit 0/Analog reference input Port 3 Bit 0	Input/Output for P00 Input for Pref1/P30
14	P01	Port 0, Bit 1	Input/Output
15	V _{SS}	Ground	
16–20	P20-P24	Port 2, Bits 0,1,2,3,4	Input/Output

Note: *Windowed Cerdip. These units are intended to be used for engineering code development only. ZiLOG does not recommend/guarantee this package for production use.

>

Z8 GPTM **OTP MCU Family Product Specification**

11 ZILOG

Capacitance

Table 7 lists the capacitances.

Table 7. Capacitance

Parameter	Maximum
Input capacitance	12pF
Output capacitance	12pF
I/O capacitance	12pF
Note: $T_A = 25^{\circ} C$, $V_{CC} = GND = 0 V$, $f = 1.0 MH$	Iz, unmeasured pins returned to GND

DC Characteristics

Table 6. DC Characteristics	Table 8.	DC Characteristics
-----------------------------	----------	---------------------------

T _A = 0°C to +70°C								-	
Symbol	Parameter	V _{CC}	Min	Тур	Max	Units	Conditions	No	otes
V _{CC}	Supply Voltage		2.0		3.6	V	See Note 5	5	
V _{CH}	Clock Input High Voltage	2.0-3.6	0.8		V _{CC} +0.3	V	Driven by External Clock Generator		
V _{CL}	Clock Input Low Voltage	2.0-3.6	V _{SS} -0.3		0.5	V	Driven by External Clock Generator		
V _{IH}	Input High Voltage	2.0-3.6	0.7 V _{CC}		V _{CC} +0.3	V			
V _{IL}	Input Low Voltage	2.0-3.6	V _{SS} -0.3		$0.2 V_{CC}$	V			
V _{OH1}	Output High Voltage	2.0-3.6	V _{CC} -0.4			V	I _{OH} = -0.5mA		
V _{OH2}	Output High Voltage (P36, P37, P00, P01)	2.0-3.6	V _{CC} -0.8			V	I _{OH} = -7mA		
V _{OL1}	Output Low Voltage	2.0-3.6			0.4	V	$I_{OL} = 1.0 \text{mA}$ $I_{OL} = 4.0 \text{mA}$		
V _{OL2}	Output Low Voltage (P00, P01, P36, P37)	2.0-3.6			0.8	V	I _{OL} = 10mA		
V _{OFFSET}	Comparator Input Offset Voltage	2.0-3.6			25	mV			
V _{REF}	Comparator Reference Voltage	2.0-3.6	0		V _{DD} -1.75	V			
IIL	Input Leakage	2.0-3.6	-1		1	μΑ	V _{IN} = 0V, V _{CC} Pull-ups disabled		
IOL	Output Leakage	2.0-3.6	-1		1	μΑ	$V_{IN} = 0V, V_{CC}$		
ICC	Supply Current	2.0 3.6			10 15	mA mA	at 8.0 MHz at 8.0 MHz	1, 1 1, 1	2 2

AC Characteristics

Figure 8 and Table 10 describe the Alternating Current (AC) characteristics.

CTR1(0D)01H" on page 33). Other edge detect and IRQ modes are described in Table 11.

Note: Comparators are powered down by entering Stop Mode. For P31–P33 to be used in a Stop Mode Recovery (SMR) source, these inputs must be placed into digital mode.

Pin	I/O	Counter/Timers	Comparator	Interrupt
Pref1/P30	IN		RF1	
P31	IN	IN	AN1	IRQ2
P32	IN		AN2	IRQ0
P33	IN		RF2	IRQ1
P34	OUT	Т8	AO1	
P35	OUT	T16		
P36	OUT	T8/16		
P37	OUT		AO2	
P20	I/O	IN		

Table 11. Port 3 Pin Function Summary

>

Port 3 also provides output for each of the counter/timers and the AND/OR Logic (see Figure 13). Control is performed by programming bits D5–D4 of CTR1, bit 0 of CTR0, and bit 0 of CTR2.

Figure 13. Port 3 Counter/Timer Output Configuration

ERF (Expanded Register File). Bits 7–4 of register RP select the working register group. Bits 3–0 of register RP select the expanded register file bank.

>

Note: An expanded register bank is also referred to as an expanded register group (see Figure 15).

* RP = 00: Selects Register Bank 0, Working Register Group 0

Figure 17. Register Pointer—Detail

Stack

The internal register file is used for the stack. An 8-bit Stack Pointer SPL (R255) is used for the internal stack that resides in the general-purpose registers (R4–R239). SPH (R254) can be used as a general-purpose register.

Note: The letter h denotes hexadecimal values.

Transition from 0 to FFh is not a timeout condition.

Caution: Using the same instructions for stopping the counter/timers and setting the status bits is not recommended.

Two successive commands are necessary. First, the counter/timers must be stopped. Second, the status bits must be reset. These commands are required because it takes one counter/timer clock interval for the initiated event to actually occur. See Figure 21 and Figure 22.

Figure 22. T8_OUT in Modulo-N Mode

T8 Demodulation Mode

The user must program TC8L and TC8H to FFH. After T8 is enabled, when the first edge (rising, falling, or both depending on CTR1, D5; D4) is detected, it starts to count down. When a subsequent edge (rising, falling, or both depending on CTR1, D5; D4) is detected during counting, the current value of T8 is complemented and put into one of the capture registers. If it is a positive edge, data is put

into LO8; if it is a negative edge, data is put into HI8. From that point, one of the edge detect status bits (CTR1, D1; D0) is set, and an interrupt can be generated if enabled (CTR0, D2). Meanwhile, T8 is loaded with FFh and starts counting again. If T8 reaches 0, the timeout status bit (CTR0, D5) is set, and an interrupt can be generated if enabled (CTR0, D1). T8 then continues counting from FFH (see Figure 23 and Figure 24).

Figure 23. Demodulation Mode Count Capture Flowchart

SMR(0F)0BH

* Default after Power On Reset or Watch-Dog Reset

- * * Set after STOP Mode Recovery
- * * * At the XOR gate input

* * * * Default setting after reset. Must be 1 if using a crystal or resonator clock source.

Figure 33. STOP Mode Recovery Register

SCLK/TCLK Divide-by-16 Select (D0)

D0 of the SMR controls a divide-by-16 prescaler of SCLK/TCLK (Figure 34). This control selectively reduces device power consumption during normal processor execution (SCLK control) and/or Halt Mode (where TCLK sources interrupt logic). After Stop Mode Recovery, this bit is set to a 0.

Stop-Mode Recovery Source (D2, D3, and D4)

These three bits of the SMR specify the wake-up source of the Stop recovery (Figure 35 and Table 19).

Stop-Mode Recovery Register 2—SMR2(F)0DH

Table 18 lists and briefly describes the fields for this register.

Field	Bit Position		Value	Description
Reserved	7		0	Reserved (Must be 0)
Recovery Level	-6	W	0 [†]	Low
-			1	High
Reserved	5		0	Reserved (Must be 0)
Source	432	W	000†	A. POR Only
			001	B. NAND of P23–P20
			010	C. NAND of P27–P20
			011	D. NOR of P33–P31
			100	E. NAND of P33–P31
			101	F. NOR of P33–P31, P00, P07
			110	G. NAND of P33–P31, P00, P07
			111	H. NAND of P33–P31, P22–P20
Reserved	10		00	Reserved (Must be 0)

Table 18. SMR2(F)0DH:Stop Mode Recovery Register 2*

Notes:

* Port pins configured as outputs are ignored as a SMR recovery source. † Indicates the value upon Power-On Reset

SMR(0F)0BH

- * Default setting after Reset
- * * Set after STOP Mode Recovery
- * * * At the XOR gate input
- **** Default setting after Reset. Must be 1 if using a crystal or resonator clock source.
- * * * * * Default setting after Power On Reset. Not Reset with a Stop Mode recovery.

Figure 45. Stop Mode Recovery Register ((0F)0BH: D6–D0=Write Only, D7=Read Only)

R248 P01M(F8H)

* Default setting after reset; only P00, P01 and P07 are available in 20-pin configurations.

Figure 50. Port 0 and 1 Mode Register (F8H: Write Only)

R250 IRQ(FAH)

Figure 52. Interrupt Request Register (FAH: Read/Write)

R251 IMR(FBH)

* Default setting after reset

* * Only by using EI, DI instruction; DI is required before changing the IMR register

Figure 53. Interrupt Mask Register (FBH: Read/Write)

R252 Flags(FCH)

Figure 54. Flag Register (FCH: Read/Write)

R253 RP(FDH)

Default setting after reset = 0000 0000

Figure 55. Register Pointer (FDH: Read/Write)

Figure 59. 20-Pin PDIP Package Diagram

CONTROLLING DIMENSIONS : INCH

Figure 60. 20-Pin SOIC Package Diagram

CYNDOL	MILLI	METER	INCH		
STMBOL	MIN	MAX	MIN	MAX	
A	2.40	2.65	.094	.104	
A1	0.10	0.30	.004	.012	
A2	2.24	2.44	.088	.096	
в	0.36	0.46	.014	.018	
С	0.23	0.30	.009	.012	
D	12.60	12.95	.496	.510	
E	7.40	7.60	.291	.299	
e	1.27	BSC	.050 BSC		
н	10.00	10.65	.394	.419	
h	0.30	0.40	.012	.016	
L	0.60	1.00	.024	.039	
Q1	0.97	1.07	.038	.042	

CONTROLLING DIMENSIONS : MM LEADS ARE COPLANAR WITHIN .004 INCH.

Z8 GP[™] OTP MCU Family Product Specification

044004		MILLIMETER		INCH		
SIMBOL	MIN	NOM	MAX	MIN	NOM	MAX
A	1.73	1.85	1.98	0.068	0.073	0.078
A1	0.05	0.13	0.21	0.002	0.005	0.008
A2	1.68	1.73	1.83	0.066	0.068	0.072
В	0.25	0.30	0.38	0.010	0.012	0.015
С	0.13	0.15	0.22	0.005	0.006	0.009
D	7.07	7.20	7.33	0.278	0.283	0.289
E	5.20	5.30	5.38	0.205	0.209	0.212
e	0.65 BSC				0.0256 BSC	;
Н	7.65	7.80	7.90	0.301	0.307	0.311
L	0.56	0.75	0.94	0.022	0.030	0.037
Q1	0.74	0.78	0.82	0.029	0.031	0.032

CONTROLLING DIMENSIONS : MM LEADS ARE COPLANAR WITHIN .004 INCH.

Figure 61. 20-Pin SSOP Package Diagram

Н

0-"8

DETAIL A

Figure 66. 40-Pin CDIP Package

MILLIMETER INCH SYMBOL MIN MAX MIN MAX .040 A1 0.51 .020 A2 3.94 .125 .155 3.18 В 0.38 0.53 .015 .021 B1 .040 .060 1.02 1.52 С 0.38 .009 .015 0.23 D 2.050 2.070 52.07 52.58 Ε 15.24 15.75 .600 .620 .100 TYP E1 13.59 .59 14.22 2.54 TYP .535 e .660 eA 15.49 16.76 .610 3.81 .120 .150 L 3.05 Q1 1.91 .075 1.40 .055 S .060 1.52 2.29 .090

Figure 67. 40-Pin PDIP Package Diagram

CONTROLLING DIMENSIONS : INCH

93

For fast results, contact your local ZiLOG sales office for assistance in ordering the part desired.

Codes

ZG = ZiLOG General Purpose Family

P = OTP

- 323 = Family Designation
- L = Voltage Range

2V to 3.6V

T = Temperature Range:

S = 0 to 70 degrees C (Standard)

- E = -40 to +105 degrees C (Extended)
- A = -40 to +125 degrees C (Automotive)
- P = Package Type:
 - K = Windowed Cerdip
 - P = PDIP
 - H = SSOP
 - S = SOIC
- ## = Number of Pins
- CC = Memory Size
- M = Packaging Options
 - C = Non Lead-Free
 - G = Lead-Free
 - E = CDIP