

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	Z8
Core Size	8-Bit
Speed	8MHz
Connectivity	-
Peripherals	HLVD, POR, WDT
Number of I/O	16
Program Memory Size	16KB (16K x 8)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	237 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	20-DIP (0.300", 7.62mm)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/zgp323lap2016g

This publication is subject to replacement by a later edition. To determine whether a later edition exists, or to request copies of publications, contact:

ZiLOG Worldwide Headquarters

532 Race Street San Jose, CA 95126-3432 Telephone: 408.558.8500

Fax: 408.558.8300 www.zilog.com

ZiLOG is a registered trademark of ZiLOG Inc. in the United States and in other countries. All other products and/or service names mentioned herein may be trademarks of the companies with which they are associated.

Document Disclaimer

©2004 by ZiLOG, Inc. All rights reserved. Information in this publication concerning the devices, applications, or technology described is intended to suggest possible uses and may be superseded. ZiLOG, INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZILOG ALSO DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. Devices sold by ZiLOG, Inc. are covered by warranty and limitation of liability provisions appearing in the ZiLOG, Inc. Terms and Conditions of Sale. ZiLOG, Inc. makes no warranty of merchantability or fitness for any purpose. Except with the express written approval of ZiLOG, use of information, devices, or technology as critical components of life support systems is not authorized. No licenses are conveyed, implicitly or otherwise, by this document under any intellectual property rights.

Z8 GPTM OTP MCU Family Product Specification

Figure 35.	Stop Mode Recovery Source	57
Figure 36.	Stop Mode Recovery Register 2 ((0F)DH:D2-D4, D6 Write Only) .	59
Figure 37.	Watch-Dog Timer Mode Register (Write Only)	60
Figure 38.	Resets and WDT	61
Figure 39.	TC8 Control Register ((0D)O0H: Read/Write Except Where Noted)	64
Figure 40.	T8 and T16 Common Control Functions ((0D)01H: Read/Write)	65
Figure 41.	T16 Control Register ((0D) 2H: Read/Write Except Where Noted) .	67
Figure 42.	T8/T16 Control Register (0D)03H: Read/Write (Except Where Noted)	68
Figure 43.	Voltage Detection Register	69
Figure 44.	Port Configuration Register (PCON)(0F)00H: Write Only)	70
Figure 45.	Stop Mode Recovery Register ((0F)0BH: D6–D0=Write Only, D7=Read Only)	71
Figure 46.	Stop Mode Recovery Register 2 ((0F)0DH:D2–D4, D6 Write Only)	72
Figure 47.	Watch-Dog Timer Register ((0F) 0FH: Write Only)	73
Figure 48.	Port 2 Mode Register (F6H: Write Only)	73
Figure 49.	Port 3 Mode Register (F7H: Write Only)	74
Figure 50.	Port 0 and 1 Mode Register (F8H: Write Only)	75
Figure 51.	Interrupt Priority Register (F9H: Write Only)	76
Figure 52.	Interrupt Request Register (FAH: Read/Write)	77
Figure 53.	Interrupt Mask Register (FBH: Read/Write)	77
Figure 54.	Flag Register (FCH: Read/Write)	78
Figure 55.	Register Pointer (FDH: Read/Write)	78
Figure 56.	Stack Pointer High (FEH: Read/Write)	79
Figure 57.	Stack Pointer Low (FFH: Read/Write)	79
Figure 58.	20-Pin CDIP Package	80
Figure 59.	20-Pin PDIP Package Diagram	81
Figure 60.	20-Pin SOIC Package Diagram	81
Figure 61.	20-Pin SSOP Package Diagram	82
Figure 62.	28-Pin CDIP Package	83
Figure 63.	28-Pin SOIC Package Diagram	84
Figure 64.	28-Pin PDIP Package Diagram	85
Figure 65.	28-Pin SSOP Package Diagram	86
Figure 66.	40-Pin CDIP Package	87
Figure 67.	40-Pin PDIP Package Diagram	87
Figure 68.	48-Pin SSOP Package Design	88

Development Features

Table 1 lists the features of ZiLOG®'s Z8 GPTM OTP MCU Family family members.

Table 1. Features

Device	OTP (KB)	RAM (Bytes)	I/O Lines	Voltage Range
ZGP323L OTP MCU Family	4, 8, 16, 32	237	32, 24 or 16	2.0V-3.6V

- Low power consumption–6mW (typical)
- T = Temperature
 - $S = Standard 0^{\circ} to +70^{\circ}C$
 - $E = Extended -40^{\circ} to +105^{\circ}C$
 - $A = Automotive -40^{\circ} to +125^{\circ}C$
- Three standby modes:
 - STOP—2μA (typical)
 - HALT—0.8mA (typical)
 - Low voltage reset
- Special architecture to automate both generation and reception of complex pulses or signals:
 - One programmable 8-bit counter/timer with two capture registers and two load registers
 - One programmable 16-bit counter/timer with one 16-bit capture register pair and one 16-bit load register pair
 - Programmable input glitch filter for pulse reception
- Six priority interrupts
 - Three external
 - Two assigned to counter/timers
 - One low-voltage detection interrupt
- Low voltage detection and high voltage detection flags
- Programmable Watch-Dog Timer/Power-On Reset (WDT/POR) circuits
- Two independent comparators with programmable interrupt polarity
- Programmable EPROM options
 - Port 0: 0–3 pull-up transistors
 - Port 0: 4-7 pull-up transistors

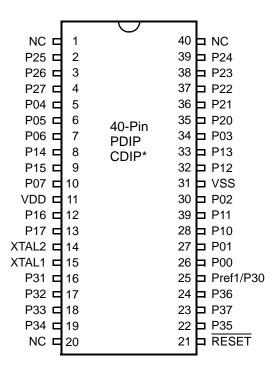


Figure 5. 40-Pin PDIP/CDIP* Pin Configuration

Note: *Windowed Cerdip. These units are intended to be used for engineering code development only. ZiLOG does not recommend/guarantee this package for production use.

Capacitance

Table 7 lists the capacitances.

Table 7. Capacitance

Parameter	Maximum			
Input capacitance	12pF			
Output capacitance	12pF			
I/O capacitance	12pF			
Note: $T_A = 25^{\circ}$ C, $V_{CC} = GND = 0$ V, $f = 1.0$ MHz, unmeasured pins returned to GND				

DC Characteristics

Table 8. DC Characteristics

$T_{\Delta} = 0$					0°C to +70°C			
Symbol	Parameter	v_{cc}	Min	Тур	Max	Units	Conditions	Notes
V _{CC}	Supply Voltage		2.0		3.6	V	See Note 5	5
V _{CH}	Clock Input High Voltage	2.0-3.6	0.8		V _{CC} +0.3	V	Driven by External Clock Generator	
V _{CL}	Clock Input Low Voltage	2.0-3.6	V _{SS} -0.3		0.5	V	Driven by External Clock Generator	
V _{IH}	Input High Voltage	2.0-3.6	0.7 V _{CC}		V _{CC} +0.3	V		
V _{IL}	Input Low Voltage	2.0-3.6	V _{SS} -0.3		0.2 V _{CC}	V		
V _{OH1}	Output High Voltage	2.0-3.6	V _{CC} -0.4			V	$I_{OH} = -0.5$ mA	
V _{OH2}	Output High Voltage (P36, P37, P00, P01)	2.0-3.6	V _{CC} -0.8			V	$I_{OH} = -7mA$	
V _{OL1}	Output Low Voltage	2.0-3.6			0.4	V	$I_{OL} = 1.0$ mA $I_{OL} = 4.0$ mA	
V _{OL2}	Output Low Voltage (P00, P01, P36, P37)	2.0-3.6			8.0	V	I _{OL} = 10mA	
V _{OFFSET}	Comparator Input Offset Voltage	2.0-3.6			25	mV		
V _{REF}	Comparator Reference Voltage	2.0-3.6	0		V _{DD} -1.75	V		
I _{IL}	Input Leakage	2.0-3.6	–1		1	μΑ	V _{IN} = 0V, V _{CC} Pull-ups disabled	
l _{OL}	Output Leakage	2.0-3.6	-1		1	μΑ	$V_{IN} = 0V, V_{CC}$	
Icc	Supply Current	2.0 3.6			10 15	mA mA	at 8.0 MHz at 8.0 MHz	1, 2 1, 2

XTAL1 Crystal 1 (Time-Based Input)

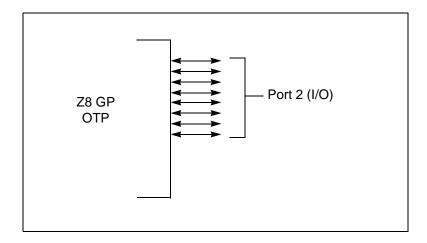
This pin connects a parallel-resonant crystal or ceramic resonator to the on-chip oscillator input. Additionally, an optional external single-phase clock can be coded to the on-chip oscillator input.

XTAL2 Crystal 2 (Time-Based Output)

This pin connects a parallel-resonant crystal or ceramic resonant to the on-chip oscillator output.

Port 0 (P07-P00)

Port 0 is an 8-bit, bidirectional, CMOS-compatible port. These eight I/O lines are configured under software control as a nibble I/O port. The output drivers are push-pull or open-drain controlled by bit D2 in the PCON register.


If one or both nibbles are needed for I/O operation, they must be configured by writing to the Port 0 mode register. After a hardware reset, Port 0 is configured as an input port.

An optional pull-up transistor is available as a mask option on all Port 0 bits with nibble select.

Notes: Internal pull-ups are disabled on any given pin or group of port pins when programmed into output mode.

The Port 0 direction is reset to be input following an SMR.

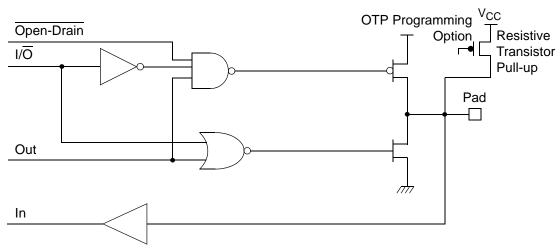


Figure 11. Port 2 Configuration

Port 3 (P37-P30)

Port 3 is a 8-bit, CMOS-compatible fixed I/O port (see Figure 12). Port 3 consists of four fixed input (P33–P30) and four fixed output (P37–P34), which can be configured under software control for interrupt and as output from the counter/timers. P30, P31, P32, and P33 are standard CMOS inputs; P34, P35, P36, and P37 are push-pull outputs.

The upper nibble of the register pointer (see Figure 16) selects which working register group, of 16 bytes in the register file, is accessed out of the possible 256. The lower nibble selects the expanded register file bank and, in the case of the Z8 GP family, banks 0, F, and D are implemented. A $_{0\mathrm{H}}$ in the lower nibble allows the normal register file (bank 0) to be addressed. Any other value from $_{1\mathrm{H}}$ to $_{\mathrm{FH}}$ exchanges the lower 16 registers to an expanded register bank.

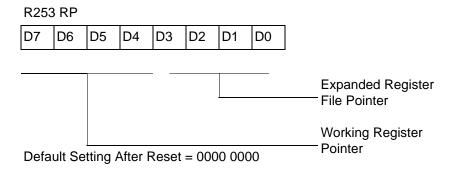


Figure 16. Register Pointer

Example: Z8 GP: (See Figure 15 on page 26)

R253 RP = 00h

R0 = Port 0

R1 = Port 1

R2 = Port 2

R3 = Port 3

But if:

R253 RP = 0Dh

R0 = CTRL0

R1 = CTRL1

R2 = CTRL2

R3 = Reserved

Table 12. CTR0(D)00H Counter/Timer8 Control Register (Continued)

Field	Bit Position		Value	Description
Counter_INT_Mask	1-	R/W	0 1	Disable Time-Out Interrupt Enable Time-Out Interrupt
P34_Out	0	R/W	0* 1	P34 as Port Output T8 Output on P34

Note:

T8 Enable

This field enables T8 when set (written) to 1.

Single/Modulo-N

When set to 0 (Modulo-N), the counter reloads the initial value when the terminal count is reached. When set to 1 (single-pass), the counter stops when the terminal count is reached.

Timeout

This bit is set when T8 times out (terminal count reached). To reset this bit, write a 1 to its location.

Caution: Writing a 1 is the only way to reset the Terminal Count status condition. Reset this bit before using/enabling the counter/timers.

> The first clock of T8 might not have complete clock width and can occur any time when enabled.

Note: Take care when using the OR or AND commands to manipulate CTR0, bit 5 and CTR1, bits 0 and 1 (Demodulation Mode). These instructions use a Read-Modify-Write sequence in which the current status from the CTR0 and CTR1 registers is ORed or ANDed with the designated value and then written back into the registers.

T8 Clock

This bit defines the frequency of the input signal to T8.

^{*}Indicates the value upon Power-On Reset.

When T8 is enabled, the output T8_OUT switches to the initial value (CTR1, D1). If the initial value (CTR1, D1) is 0, TC8L is loaded; otherwise, TC8H is loaded into the counter. In SINGLE-PASS Mode (CTR0, D6), T8 counts down to 0 and stops, T8_OUT toggles, the timeout status bit (CTR0, D5) is set, and a timeout interrupt can be generated if it is enabled (CTR0, D1). In Modulo-N Mode, upon reaching terminal count, T8_OUT is toggled, but no interrupt is generated. From that point, T8 loads a new count (if the T8_OUT level now is 0), TC8L is loaded; if it is 1, TC8H is loaded. T8 counts down to 0, toggles T8_OUT, and sets the timeout status bit (CTR0, D5), thereby generating an interrupt if enabled (CTR0, D1). One cycle is thus completed. T8 then loads from TC8H or TC8L according to the T8_OUT level and repeats the cycle. See Figure 20.

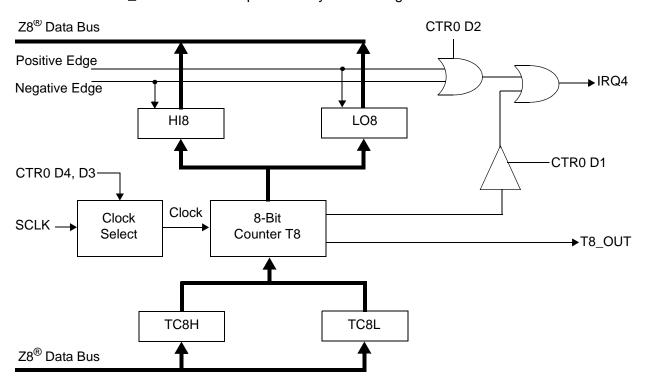


Figure 20. 8-Bit Counter/Timer Circuits

You can modify the values in TC8H or TC8L at any time. The new values take effect when they are loaded.

<u>^</u>

Caution:

To ensure known operation do not write these registers at the time the values are to be loaded into the counter/timer. *An initial count of 1 is not allowed (a non-function occurs).* An initial count of 0 causes TC8 to count from 0 to FFH to FEH.

Note: The letter h denotes hexadecimal values.

Transition from 0 to FFh is not a timeout condition.

Caution: Using the same instructions for stopping the counter/timers and setting the status bits is not recommended.

Two successive commands are necessary. First, the counter/timers must be stopped. Second, the status bits must be reset. These commands are required because it takes one counter/timer clock interval for the initiated event to actually occur. See Figure 21 and Figure 22.

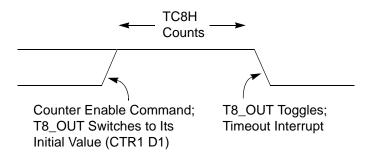


Figure 21. T8_OUT in Single-Pass Mode

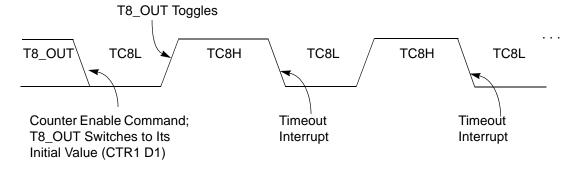


Figure 22. T8_OUT in Modulo-N Mode

T8 Demodulation Mode

The user must program TC8L and TC8H to FFH. After T8 is enabled, when the first edge (rising, falling, or both depending on CTR1, D5; D4) is detected, it starts to count down. When a subsequent edge (rising, falling, or both depending on CTR1, D5; D4) is detected during counting, the current value of T8 is complemented and put into one of the capture registers. If it is a positive edge, data is put

Power-On Reset

A timer circuit clocked by a dedicated on-board RC-oscillator is used for the Power-On Reset (POR) timer function. The POR time allows V_{DD} and the oscillator circuit to stabilize before instruction execution begins.

The POR timer circuit is a one-shot timer triggered by one of three conditions:

- Power Fail to Power OK status, including Waking up from V_{BO} Standby
- Stop-Mode Recovery (if D5 of SMR = 1)
- WDT Timeout

The POR timer is 2.5 ms minimum. Bit 5 of the Stop-Mode Register determines whether the POR timer is bypassed after Stop-Mode Recovery (typical for external clock).

HALT Mode

This instruction turns off the internal CPU clock, but not the XTAL oscillation. The counter/timers and external interrupts IRQ0, IRQ1, IRQ2, IRQ3, IRQ4, and IRQ5 remain active. The devices are recovered by interrupts, either externally or internally generated. An interrupt request must be executed (enabled) to exit HALT Mode. After the interrupt service routine, the program continues from the instruction after HALT Mode.

STOP Mode

This instruction turns off the internal clock and external crystal oscillation, reducing the standby current to 10 μ A or less. STOP Mode is terminated only by a reset, such as WDT timeout, POR, SMR or external reset. This condition causes the processor to restart the application program at address 000CH. To enter STOP (or HALT) mode, first flush the instruction pipeline to avoid suspending execution in mid-instruction. Execute a NOP (Opcode = FFH) immediately before the appropriate sleep instruction, as follows:

Table 19. Stop Mode Recovery Source

SMR:432			Operation		
D4	D3	D2	Description of Action		
0	0	0	POR and/or external reset recovery		
0	0	1	Reserved		
0	1	0	P31 transition		
0	1	1	P32 transition		
1	0	0	P33 transition		
1	0	1	P27 transition		
1	1	0	Logical NOR of P20 through P23		
1	1	1	Logical NOR of P20 through P27		

Note: Any Port 2 bit defined as an output drives the corresponding input to the default state. For example, if the NOR of P23-P20 is selected as the recovery source and P20 is configured as an output, the remaining SMR pins (P23-P21) form the NOR equation. This condition allows the remaining inputs to control the AND/OR function. Refer to SMR2 register on page 59 for other recover sources.

Stop Mode Recovery Delay Select (D5)

This bit, if Low, disables the T_{POR} delay after Stop Mode Recovery. The default configuration of this bit is 1. If the "fast" wake up is selected, the Stop Mode Recovery source must be kept active for at least 5 TpC.

Note: It is recommended that this bit be set to 1 if using a crystal or resonator clock source. The T_{POR} delay allows the clock source to stabilize before executing instructions.

Stop Mode Recovery Edge Select (D6)

A 1 in this bit position indicates that a High level on any one of the recovery sources wakes the device from Stop Mode. A 0 indicates Low level recovery. The default is 0 on POR.

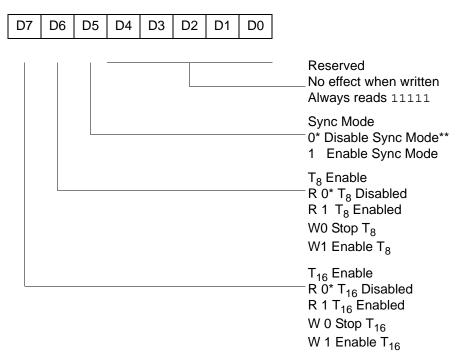
Cold or Warm Start (D7)

This bit is read only. It is set to 1 when the device is recovered from Stop Mode. The bit is set to 0 when the device reset is other than Stop Mode Recovery (SMR).

Low-Voltage Detection Register—LVD(D)0Ch

Note: Voltage detection does not work at Stop mode. It must be disabled during Stop mode in order to reduce current.

Field	Bit Position			Description
LVD	76543			Reserved No Effect
	2	R	1 0*	HVD flag set HVD flag reset
	1-	R	1 0*	LVD flag set LVD flag reset
	0	R/W	1 0*	Enable VD Disable VD
*Default	after POR			

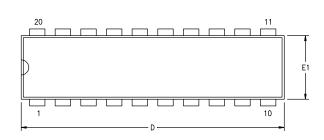

Note: Do not modify register P01M while checking a low-voltage condition. Switching noise of both ports 0 and 1 together might trigger the LVD flag.

Voltage Detection and Flags

The Voltage Detection register (LVD, register <code>0CH</code> at the expanded register bank <code>0Dh</code>) offers an option of monitoring the V_{CC} voltage. The Voltage Detection is enabled when bit 0 of LVD register is set. Once Voltage Detection is enabled, the the V_{CC} level is monitored in real time. The flags in the LVD register valid 20uS after Voltage Detection is enabled. The HVD flag (bit 2 of the LVD register) is set only if V_{CC} is higher than V_{HVD}. The LVD flag (bit 1 of the LVD register) is set only if V_{CC} is lower than the V_{LVD}. When Voltage Detection is enabled, the LVD flag also triggers IRQ5. The IRQ bit 5 latches the low voltage condition until it is cleared by instructions or reset. The IRQ5 interrupt is served if it is enabled in the IMR register. Otherwise, bit 5 of IRQ register is latched as a flag only.

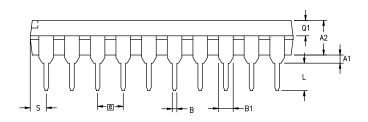
Notes: If it is necessary to receive an LVD interrupt upon power-up at an operating voltage lower than the low battery detect threshold, enable interrupts using the Enable Interrupt instruction (EI) prior to enabling the voltage detection.

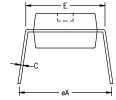
CTR3(0D)03H



^{*} Default setting after reset.

Figure 42. T8/T16 Control Register (0D)03H: Read/Write (Except Where Noted)


Note: If Sync Mode is enabled, the first pulse of T8 carrier is always synchronized with T16 (demodulated signal). It can always provide a full carrier pulse.


^{**} Default setting after reset. Not reset with Stop Mode recovery.

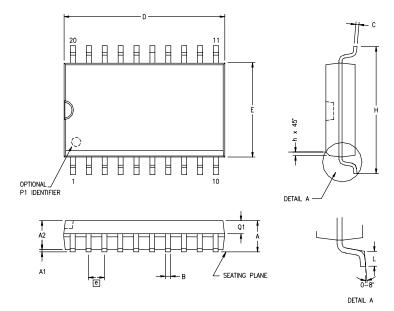
SYMBOL	MILLIN	METER	INCH	
STMIDOL	MIN	MAX	MIN	MAX
A1	0.38	0.81	.015	.032
A2	3.25	3.68	.128	.145
В	0.41	0.51	.016	.020
B1	1.47	1.57	.058	.062
С	0.20	0.30	.008	.012
D	25.65	26.16	1.010	1.030
E	7.49	8.26	.295	.325
E1	6.10	6.65	.240	.262
е	2.54	BSC	.100	BSC
eA	7.87	9.14	.310	.360
L	3.18	3.43	.125	.135
Q1	1.42	1.65	.056	.065
S	1.52	1.65	.060	.065

CONTROLLING DIMENSIONS : INCH

SYMBOL

A1

A2


В

С

D

е

Figure 59. 20-Pin PDIP Package Diagram

h	0.30	0.40	.012	.016
L	0.60	1.00	.024	.039
Q1	0.97	1.07	.038	.042

MILLIMETER

MAX

2.65

0.30

2.44

0.30

12.95

7.60

MIN

.094

.004

.088

.009

496

.291

.050 BSC

MAX

.104

.012

.096

.018

.012

.510

.299

.016

MIN

2.40

0.10

2.24

0.36

0.23

12.60

7.40

1.27 BSC

CONTROLLING DIMENSIONS : MM LEADS ARE COPLANAR WITHIN .004 INCH.

Figure 60. 20-Pin SOIC Package Diagram

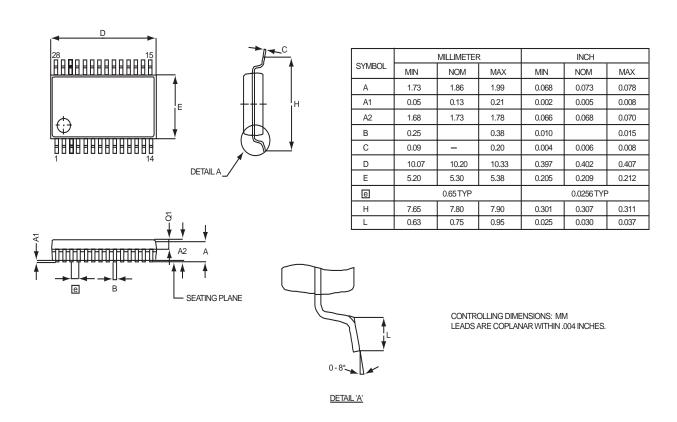


Figure 65. 28-Pin SSOP Package Diagram

8KB Standard Temperature: 0° to +70°C						
Part Number	Description	Part Number	Description			
ZGP323LSH4808C	48-pin SSOP 8K OTP	ZGP323LSS2808C	28-pin SOIC 8K OTP			
ZGP323LSP4008C	40-pin PDIP 8K OTP	ZGP323LSH2008C	20-pin SSOP 8K OTP			
ZGP323LSH2808C	28-pin SSOP 8K OTP	ZGP323LSP2008C	20-pin PDIP 8K OTP			
ZGP323LSP2808C	28-pin PDIP 8K OTP	ZGP323LSS2008C	20-pin SOIC 8K OTP			

8KB Extended Temperature: -40° to +105°C							
Part Number	Description	Part Number	Description				
ZGP323LEH4808C	48-pin SSOP 8K OTP	ZGP323LES2808C	28-pin SOIC 8K OTP				
ZGP323LEP4008C	40-pin PDIP 8K OTP	ZGP323LEH2008C	20-pin SSOP 8K OTP				
ZGP323LEH2808C	28-pin SSOP 8K OTP	ZGP323LEP2008C	20-pin PDIP 8K OTP				
ZGP323LEP2808C	28-pin PDIP 8K OTP	ZGP323LES2008C	20-pin SOIC 8K OTP				

8KB Automotive Temperature: -40° to +125°C			
Part Number	Description	Part Number	Description
ZGP323LAH4808C	48-pin SSOP 8K OTP	ZGP323LAS2808C	28-pin SOIC 8K OTP
ZGP323LAP4008C	40-pin PDIP 8K OTP	ZGP323LAH2008C	20-pin SSOP 8K OTP
ZGP323LAH2808C	28-pin SSOP 8K OTP	ZGP323LAP2008C	20-pin PDIP 8K OTP
ZGP323LAP2808C	28-pin PDIP 8K OTP	ZGP323LAS2008C	20-pin SOIC 8K OTP

Note: Replace C with G for Lead-Free Packaging

Index

Numerics	Counter/timer
16-bit counter/timer circuits 44	16-bit circuits 44
20-pin DIP package diagram 81	8-bit circuits 40
20-pin SSOP package diagram 82	brown-out voltage/standby 62
28-pin DIP package diagram 85	clock 51
28-pin SOICpackage diagram 84	demodulation mode count capture flow-
28-pin SSOP package diagram 86	chart 42
40-pin DIP package diagram 87	demodulation mode flowchart 43
48-pin SSOP package diagram 88	EPROM selectable options 62
8-bit counter/timer circuits 40	glitch filter circuitry 38
	halt instruction 52
	input circuit 38
A	interrupt block diagram 49
absolute maximum ratings 10	interrupt types, sources and vectors 50
AC	oscillator configuration 51
characteristics 14	output circuit 47
timing diagram 14	ping-pong mode 46
address spaces, basic 2	port configuration register 53
architecture 2	resets and WDT 61
expanded register file 26	SCLK circuit 56
	stop instruction 52
	stop mode recovery register 55
В	stop mode recovery register 2 59
basic address spaces 2	stop mode recovery source 57
block diagram, ZLP32300 functional 3	T16 demodulation mode 45
block diagram, ZEI 32300 farictional 3	T16 transmit mode 44
	T16_OUT in modulo-N mode 45
C	T16_OUT in single-pass mode 45
capacitance 11	T8 demodulation mode 41
characteristics	T8 transmit mode 38
AC 14	T8_OUT in modulo-N mode 41
DC 11	T8_OUT in single-pass mode 41
clock 51	transmit mode flowchart 39
comparator inputs/outputs 23	voltage detection and flags 63
configuration	watch-dog timer mode register 60
port 0 17	watch-dog timer time select 61
port 1 18	CTR(D)01h T8 and T16 Common Functions 33
port 2 19	
port 3 20	
port 3 counter/timer 22	
port o counter/timer ZZ	

D	functional description	
DC characteristics 11	counter/timer functional blocks 38	
demodulation mode	CTR(D)01h register 33	
count capture flowchart 42	CTR0(D)00h register 31	
flowchart 43	CTR2(D)02h register 35	
T16 45	CTR3(D)03h register 37	
T8 41	expanded register file 24	
description	expanded register file architecture 26	
functional 23	HI16(D)09h register 30	
general 2	HI8(D)0Bh register 30	
pin 4	L08(D)0Ah register 30	
'	L0I6(D)08h register 30	
	program memory map 24	
E	RAM 23	
EPROM	register description 63	
selectable options 62	register file 28	
expanded register file 24	register pointer 27	
expanded register file architecture 26	register pointer detail 29	
expanded register file control registers 69	SMR2(F)0D1h register 38	
flag 78	stack 29	
interrupt mask register 77	TC16H(D)07h register 30	
interrupt priority register 76	TC16L(D)06h register 31	
interrupt request register 77	TC8H(D)05h register 31	
port 0 and 1 mode register 75	TC8L(D)04h register 31	
port 2 configuration register 73		
port 3 mode register 74	C	
port configuration register 73	G	
register pointer 78	glitch filter circuitry 38	
stack pointer high register 79		
stack pointer low register 79		
stop-mode recovery register 71	Н	
stop-mode recovery register 2 72	halt instruction, counter/timer 52	
T16 control register 67		
T8 and T16 common control functions reg-		
ister 65		
T8/T16 control register 68	input circuit 38	
TC8 control register 64	interrupt block diagram, counter/timer 49	
watch-dog timer register 73	interrupt types, sources and vectors 50	
F	ı	
features	low-voltage detection register 63	
standby modes 1	iow-voilage delection register to	
cta. raby inicaco i		