

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	Z8
Core Size	8-Bit
Speed	8MHz
Connectivity	-
Peripherals	HLVD, POR, WDT
Number of I/O	24
Program Memory Size	4KB (4K x 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	237 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/zgp323las2804g

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Development Features

Table 1 lists the features of $ZiLOG^{(R)}$'s Z8 GP^{TM} OTP MCU Family family members.

Table 1. Features

Device	OTP (KB)	RAM (Bytes)	I/O Lines	Voltage Range
ZGP323L OTP MCU Family	4, 8, 16, 32	237	32, 24 or 16	2.0V–3.6V

- Low power consumption–6mW (typical)
- T = Temperature
 - S = Standard 0° to +70°C
 - $E = Extended 40^{\circ} to + 105^{\circ}C$
 - A = Automotive -40° to $+125^{\circ}$ C
- Three standby modes:
 - STOP-2µA (typical)
 - HALT-0.8mA (typical)
 - Low voltage reset
- Special architecture to automate both generation and reception of complex pulses or signals:
 - One programmable 8-bit counter/timer with two capture registers and two load registers
 - One programmable 16-bit counter/timer with one 16-bit capture register pair and one 16-bit load register pair
 - Programmable input glitch filter for pulse reception
- Six priority interrupts
 - Three external
 - Two assigned to counter/timers
 - One low-voltage detection interrupt
- Low voltage detection and high voltage detection flags
- Programmable Watch-Dog Timer/Power-On Reset (WDT/POR) circuits
- Two independent comparators with programmable interrupt polarity
- Programmable EPROM options
 - Port 0: 0–3 pull-up transistors
 - Port 0: 4–7 pull-up transistors

		T _A =0°C to 8.0M						Watch-Dog Timer [–] Mode	
No	Symbol	Parameter	v _{cc}	Minimum	Maximum	Units	Notes	Register (D1, D0)	
1	ТрС	Input Clock Period	2.0–3.6	121	DC	ns	1		
2	TrC,TfC	Clock Input Rise and Fall Times	2.0–3.6		25	ns	1		
3	TwC	Input Clock Width	2.0–3.6	37		ns	1		
4	TwTinL	Timer Input Low Width	2.0 3.6	100 70		ns	1		
5	TwTinH	Timer Input High Width	2.0–3.6	3ТрС			1		
6	TpTin	Timer Input Period	2.0–3.6	8TpC			1		
7	TrTin,TfTin	Timer Input Rise and Fall Timers	2.0–3.6		100	ns	1		
8	TwIL	Interrupt Request Low Time	2.0 3.6	100 70		ns	1, 2		
9	TwIH	Interrupt Request Input High Time	2.0–3.6	5TpC			1, 2		
10	Twsm	Stop-Mode Recovery Width	2.0–3.6	12		ns	3		
		Spec		10TpC			4		
11	Tost	Oscillator Start-Up Time	2.0–3.6		5TpC		4		
12	Twdt	Watch-Dog Timer	2.0–3.6	5		ms		0, 0	
		Delay Time	2.0–3.6	10		ms		0, 1	
			2.0–3.6	20		ms		1, 0	
			2.0–3.6	80		ms		1, 1	
13	T _{POR}	Power-On Reset	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						

Table 10. AC Characteristics

Notes:

1. Timing Reference uses 0.9 V_{CC} for a logic 1 and 0.1 V_{CC} for a logic 0. 2. Interrupt request through Port 3 (P33–P31).

3. SMR – D5 = 1.

4. SMR - D5 = 0.

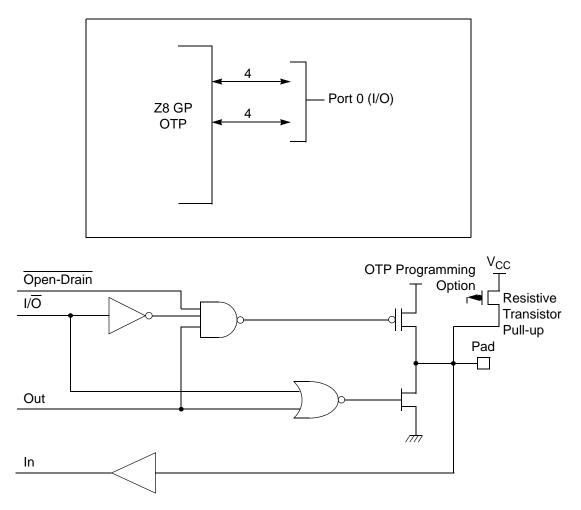


Figure 9. Port 0 Configuration

Port 1 (P17–P10)

Port 1 (see Figure 10) Port 1 can be configured for standard port input or output mode. After POR, Port 1 is configured as an input port. The output drivers are either push-pull or open-drain and are controlled by bit D1 in the PCON register.

Note: The Port 1 direction is reset to be input following an SMR.

Z8 GP[™] OTP MCU Family Product Specification

Z8 [®] Standard (Control Registers	Reset Condition
	Expanded Reg. Bank 0/Group 15*	* D7 D6 D5 D4 D3 D2 D1 D0
	FF SPL	
	FE SPH	U U U U U U U U
Register Pointer	FD RP	0 0 0 0 0 0 0
7 6 5 4 3 2 1 0	FC FLAGS	U U U U U U U U
	FB IMR	U U U U U U U U
Working Register Expanded Register	er FA IRQ	0 0 0 0 0 0 0 0
Group Pointer Bank Pointer	F9 IPR	U U U U U U U U
	F8 P01M	1 1 0 0 1 1 1 1
	* F7 P3M	00000000
	* F6 P2M	1 1 1 1 1 1 1 1
	F5 Reserved	U U U U U U U U
	F4 Reserved	U U U U U U U U
	F3 Reserved	$\cup \cup \cup \cup \cup \cup \cup \cup \cup$
Register File (Bank 0)** /	F2 Reserved	$\cup \cup \cup \cup \cup \cup \cup \cup \cup$
FF F0	F1 Reserved	$\cup \cup \cup \cup \cup \cup \cup \cup \cup$
F0	F0 Reserved	U U U U U U U U
	Expanded Reg. Bank F/Group 0**	
	(F) OF WDTMR	UU001101
	(F) 0E Reserved	
	* (F) 0D SMR2	0 0 0 0 0 0 0 0
	(F) 0C Reserved	
7F	↑ (F) 0B SMR	U 0 1 0 0 0 U 0
/F	(F) 0A Reserved	
	(F) 09 Reserved	
	(F) 08 Reserved	
	(F) 07 Reserved	
	(F) 06 Reserved	
	(F) 05 Reserved	
₀₅ ┝━━━━━━┓┛┙	(F) 04 Reserved	
	(F) 03 Reserved	
	(F) 02 Reserved	
	(F) 01 Reserved	
Expanded Reg. Bank 0/Group (0)	(F) 00 PCON	1 1 1 1 1 1 1 0
(0) 03 P3 0 U	Expanded Reg. Bank D/Group 0	
	(D) 0C LVD	$\cup \cup \cup \cup \cup \cup \cup 0$
(0) 02 P2 U	* (D) 0B HI8	000000000
* (0) 01 P1 U	* (D) 0A LO8	000000000
	* (D) 09 HI16	0 0 0 0 0 0 0 0
(0) 00 P0 U	* (D) 08 LO16	0 0 0 0 0 0 0 0
U = Unknown	* (D) 07 TC16H	0 0 0 0 0 0 0 0
* Is not reset with a Stop-Mode Recovery	* (D) 06 TC16L	0 0 0 0 0 0 0
** All addresses are in hexadecimal	* (D) 05 TC8H	0 0 0 0 0 0 0
↑ Is not reset with a Stop-Mode Recovery, except Bit 0	* (D) 04 TC8L	0 0 0 0 0 0 0 0
↑↑ Bit 5 Is not reset with a Stop-Mode Recovery	1↑ (D) 03 CTR3	0 0 0 1 1 1 1 1
↑↑↑ Bits 5,4,3,2 not reset with a Stop-Mode Recovery	↑↑↑ (D) 02 CTR2	0 0 0 0 0 0 0 0
↑↑↑↑ Bits 5 and 4 not reset with a Stop-Mode Recovery	^^↑↑↑ (D) 01 CTR1	0 0 0 0 0 0 0
$\uparrow\uparrow\uparrow\uparrow\uparrow$ Bits 5,4,3,2,1 not reset with a Stop-Mode Recovery	↑↑↑↑↑ (D) 00 CTR0	000000000
		-

Figure 15. Expanded Register File Architecture

31

ZILOG

Counter/Timer2 LS-Byte Hold Register—TC16L(D)06H

Field	Bit Position		Description
T16_Data_LO	[7:0]	R/W	Data

Counter/Timer8 High Hold Register—TC8H(D)05H

Field Bit Position			Description
T8_Level_HI	[7:0]	R/W	Data

Counter/Timer8 Low Hold Register—TC8L(D)04H

Field	Bit Position		Description
T8_Level_LO	[7:0]	R/W	Data

CTR0 Counter/Timer8 Control Register—CTR0(D)00H

Table 12 lists and briefly describes the fields for this register.

Field	Bit Position		Value	Description
T8_Enable	7	R/W	0*	Counter Disabled
			1	Counter Enabled
			0	Stop Counter
			1	Enable Counter
Single/Modulo-N	-6	R/W	0	Modulo-N
			1	Single Pass
Time_Out	5	R/W	0	No Counter Time-Out
			1	Counter Time-Out Occurred
			0	No Effect
			1	Reset Flag to 0
T8 _Clock	43	R/W	0 0	SCLK
			0 1	SCLK/2
			10	SCLK/4
			11	SCLK/8
Capture_INT_Mask	2	R/W	0	Disable Data Capture Interrupt
			1	Enable Data Capture Interrupt

Table 12. CTR0(D)00H Counter/Timer8 Control Register

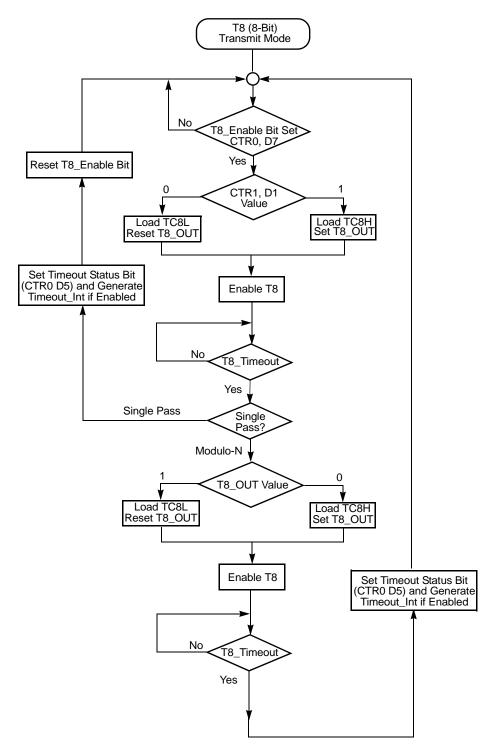


Figure 19. Transmit Mode Flowchart

into LO8; if it is a negative edge, data is put into HI8. From that point, one of the edge detect status bits (CTR1, D1; D0) is set, and an interrupt can be generated if enabled (CTR0, D2). Meanwhile, T8 is loaded with FFh and starts counting again. If T8 reaches 0, the timeout status bit (CTR0, D5) is set, and an interrupt can be generated if enabled (CTR0, D1). T8 then continues counting from FFH (see Figure 23 and Figure 24).

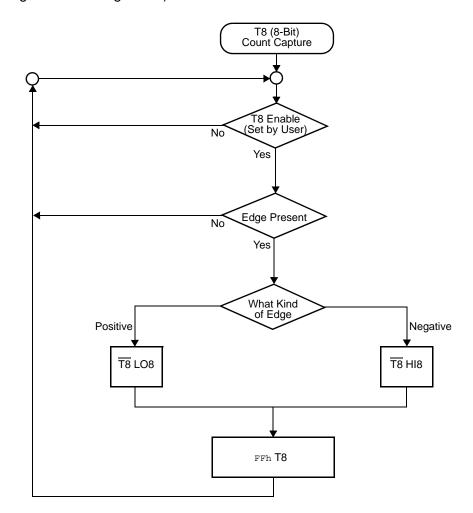


Figure 23. Demodulation Mode Count Capture Flowchart

T16 Transmit Mode

In NORMAL or PING-PONG mode, the output of T16 when not enabled, is dependent on CTR1, D0. If it is a 0, T16_OUT is a 1; if it is a 1, T16_OUT is 0. You can force the output of T16 to either a 0 or 1 whether it is enabled or not by programming CTR1 D3; D2 to a 10 or 11.

When T16 is enabled, TC16H * 256 + TC16L is loaded, and T16_OUT is switched to its initial value (CTR1, D0). When T16 counts down to 0, T16_OUT is toggled (in NORMAL or PING-PONG mode), an interrupt (CTR2, D1) is generated (if enabled), and a status bit (CTR2, D5) is set. See Figure 25.

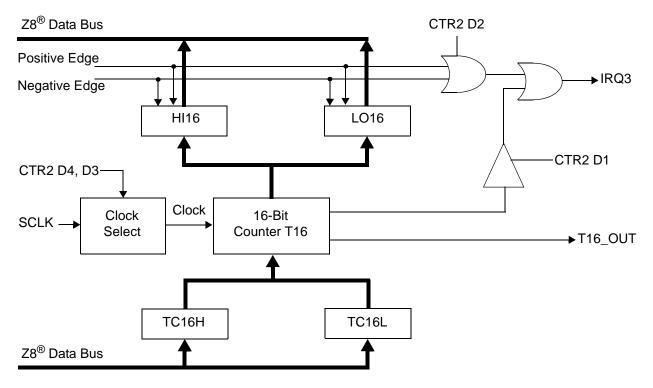
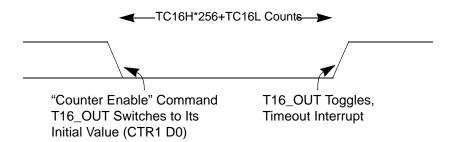


Figure 25. 16-Bit Counter/Timer Circuits

Note: Global interrupts override this function as described in "Interrupts" on page 48.


If T16 is in SINGLE-PASS mode, it is stopped at this point (see Figure 26). If it is in Modulo-N Mode, it is loaded with TC16H * 256 + TC16L, and the counting continues (see Figure 27).

You can modify the values in TC16H and TC16L at any time. The new values take effect when they are loaded.

Z8 GP[™] OTP MCU Family Product Specification

Caution: Do not load these registers at the time the values are to be loaded into the counter/timer to ensure known operation. An initial count of 1 is not allowed. An initial count of 0 causes T16 to count from 0 to FFFFH to FFFFH. Transition from 0 to FFFFH is not a timeout condition.

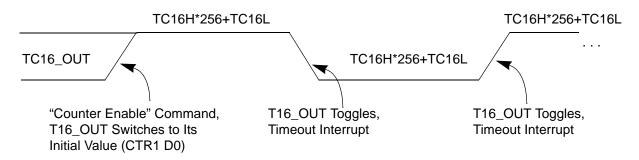


Figure 27. T16_OUT in Modulo-N Mode

T16 DEMODULATION Mode

The user must program TC16L and TC16H to FFH. After T16 is enabled, and the first edge (rising, falling, or both depending on CTR1 D5; D4) is detected, T16 captures HI16 and LO16, reloads, and begins counting.

If D6 of CTR2 Is 0

When a subsequent edge (rising, falling, or both depending on CTR1, D5; D4) is detected during counting, the current count in T16 is complemented and put into HI16 and LO16. When data is captured, one of the edge detect status bits (CTR1, D1; D0) is set, and an interrupt is generated if enabled (CTR2, D2). T16 is loaded with FFFFH and starts again.

This T16 mode is generally used to measure space time, the length of time between bursts of carrier signal (marks).

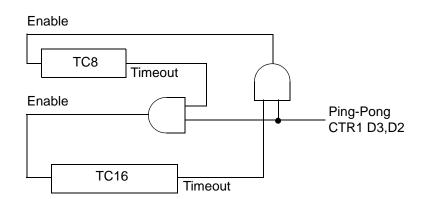
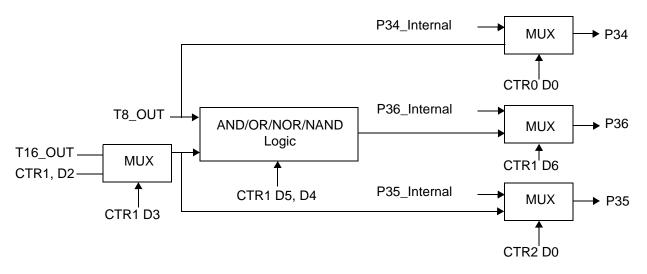



Figure 28. Ping-Pong Mode Diagram

Initiating PING-PONG Mode

First, make sure both counter/timers are not running. Set T8 into Single-Pass mode (CTR0, D6), set T16 into SINGLE-PASS mode (CTR2, D6), and set the Ping-Pong mode (CTR1, D2; D3). These instructions can be in random order. Finally, start PING-PONG mode by enabling either T8 (CTR0, D7) or T16 (CTR2, D7). See Figure 29.

The initial value of T8 or T16 must not be 1. Stopping the timer and restarting the timer reloads the initial value to avoid an unknown previous value.

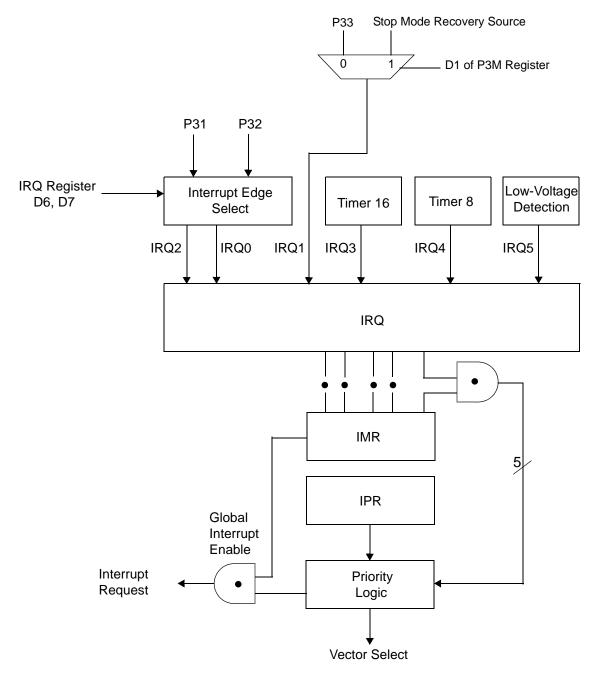


Figure 30. Interrupt Block Diagram

Stop Mode Recovery Register 2 (SMR2)

This register determines the mode of Stop Mode Recovery for SMR2 (Figure 36).

SMR2(0F)DH

D7	D6	D5	D4	D3	D2	D1	D0]
								Reserved (Must be 0) Reserved (Must be 0) Stop-Mode Recovery Source 2 000 POR Only * 001 NAND P20, P21, P22, P23 010 NAND P20, P21, P22, P23, P24, P25, P26, P27 011 NOR P31, P32, P33 100 NAND P31, P32, P33 101 NOR P31, P32, P33, P00, P07 110 NAND P31, P32, P33, P00, P07
								111 NAND P31, P32, P33, P20, P21, P22 Reserved (Must be 0)
								Recovery Level * * 0 Low * 1 High
								Reserved (Must be 0)

Note: If used in conjunction with SMR, either of the two specified events causes a Stop-Mode Recovery.

* Default setting after reset

* * At the XOR gate input

Figure 36. Stop Mode Recovery Register 2 ((0F)DH:D2–D4, D6 Write Only)

If SMR2 is used in conjunction with SMR, either of the specified events causes a Stop Mode Recovery.

Note: Port pins configured as outputs are ignored as an SMR or SMR2 recovery source. For example, if the NAND or P23–P20 is selected as the recovery source and P20 is configured as an output, the remaining SMR pins (P23–P21) form the NAND equation.

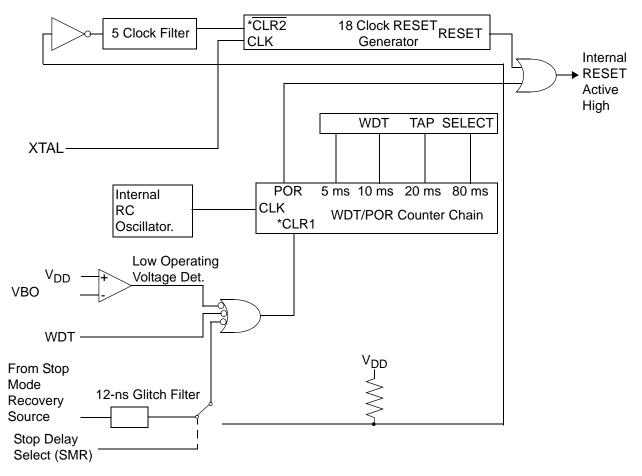
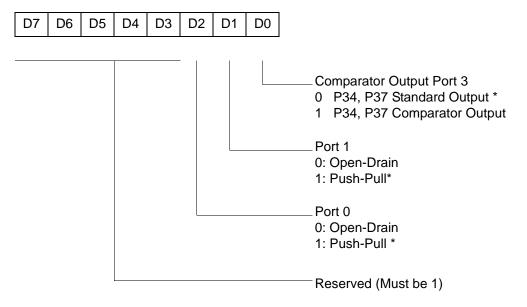

61

Table 20. Watch-Dog Timer Time Select

D1	D0	Timeout of Internal RC-Oscillator
0	0	5ms min.
0	1	10ms min.
1	0	20ms min.
1	1	80ms min.

WDTMR During Halt (D2)

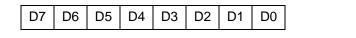
This bit determines whether or not the WDT is active during HALT Mode. A 1 indicates active during HALT. The default is 1. See Figure 38.



* CLR1 and CLR2 enable the WDT/POR and 18 Clock Reset timers respectively upon a Low-to-High input translation.

Figure 38. Resets and WDT

PCON(0F)00H



* Default setting after reset

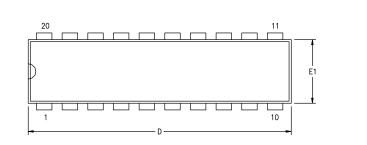
Figure 44. Port Configuration Register (PCON)(0F)00H: Write Only)

R254 SPH(FEH)

General-Purpose Register

Figure 56. Stack Pointer High (FEH: Read/Write)

R255 SPL(FFH)


D7	D6	D5	D4	D3	D2	D1	D0
----	----	----	----	----	----	----	----

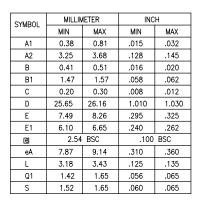

Stack Pointer Low Byte (SP7–SP0)

Figure 57. Stack Pointer Low (FFH: Read/Write)

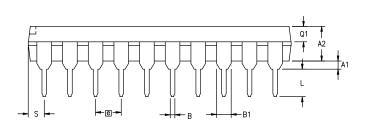
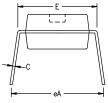
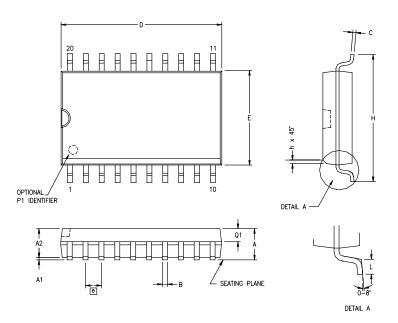
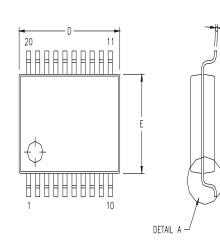



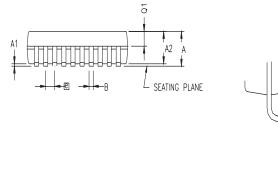
Figure 59. 20-Pin PDIP Package Diagram

CONTROLLING DIMENSIONS : INCH




Figure 60. 20-Pin SOIC Package Diagram

CVUDOI	MILL	IMETER	1	INCH		
SYMBOL	MIN	MAX	MIN	MAX		
A	2.40	2.65	.094	.104		
A1	0.10	0.30	.004	.012		
A2	2.24	2.44	.088	.096		
в	0.36	0.46	.014	.018		
С	0.23	0.30	.009	.012		
D	12.60	12.95	.496	.510		
E	7.40	7.60	.291	.299		
e	1.27	BSC	.050	BSC		
н	10.00	10.65	.394	.419		
h	0.30	0.40	.012	.016		
L	0.60	1.00	.024	.039		
Q1	0.97	1.07	.038	.042		


CONTROLLING DIMENSIONS : MM LEADS ARE COPLANAR WITHIN .004 INCH.

Z8 GP[™] OTP MCU Family Product Specification

SYMBOL	MILLIMETER			INCH		
	MIN	NOM	MAX	MIN	NOM	MAX
A	1.73	1.85	1.98	0.068	0.073	0.078
A1	0.05	0.13	0.21	0.002	0.005	0.008
A2	1.68	1.73	1.83	0.066	0.068	0.072
В	0.25	0.30	0.38	0.010	0.012	0.015
С	0.13	0.15	0.22	0.005	0.006	0.009
D	7.07	7.20	7.33	0.278	0.283	0.289
E	5.20	5.30	5.38	0.205	0.209	0.212
e	0.65 BSC			0.0256 BSC		
Н	7.65	7.80	7.90	0.301	0.307	0.311
L	0.56	0.75	0.94	0.022	0.030	0.037
Q1	0.74	0.78	0.82	0.029	0.031	0.032

CONTROLLING DIMENSIONS : MM LEADS ARE COPLANAR WITHIN .004 INCH.

Figure 61. 20-Pin SSOP Package Diagram

Н

0-"8

DETAIL A

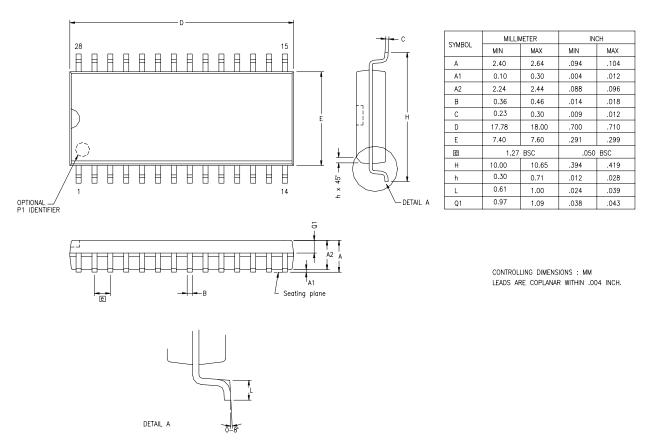


Figure 63. 28-Pin SOIC Package Diagram

93

For fast results, contact your local ZiLOG sales office for assistance in ordering the part desired.

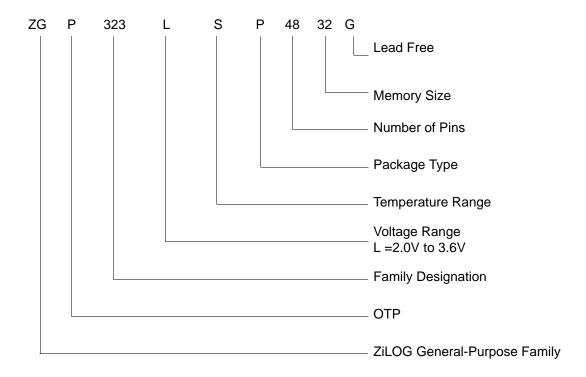
Codes

ZG = ZiLOG General Purpose Family

P = OTP

- 323 = Family Designation
- L = Voltage Range

2V to 3.6V


T = Temperature Range:

S = 0 to 70 degrees C (Standard)

- E = -40 to +105 degrees C (Extended)
- A = -40 to +125 degrees C (Automotive)
- P = Package Type:
 - K = Windowed Cerdip
 - P = PDIP
 - H = SSOP
 - S = SOIC
- ## = Number of Pins
- CC = Memory Size
- M = Packaging Options
 - C = Non Lead-Free
 - G = Lead-Free
 - E = CDIP

Example

