

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	Z8
Core Size	8-Bit
Speed	8MHz
Connectivity	-
Peripherals	HLVD, POR, WDT
Number of I/O	24
Program Memory Size	16KB (16K x 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	237 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/zgp323las2816c00tr

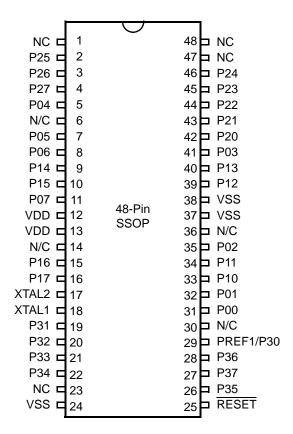


Figure 6. 48-Pin SSOP Pin Configuration

Table 5. 40- and 48-Pin Configuration

40-Pin PDIP/CDIP* #	48-Pin SSOP#	Symbol
26	31	P00
27	32	P01
30	35	P02
34	41	P03
5	5	P04
6	7	P05
7	8	P06
10	11	P07
28	33	P10
29	34	P11
32	39	P12

CTR1(0D)01H" on page 33). Other edge detect and IRQ modes are described in Table 11.

Note: Comparators are powered down by entering Stop Mode. For P31-P33 to be used in a Stop Mode Recovery (SMR) source, these inputs must be placed into digital mode.

Table 11. Port 3 Pin Function Summary

Pin	I/O	Counter/Timers	Comparator	Interrupt
Pref1/P30	IN		RF1	
P31	IN	IN	AN1	IRQ2
P32	IN		AN2	IRQ0
P33	IN		RF2	IRQ1
P34	OUT	T8	AO1	
P35	OUT	T16		
P36	OUT	T8/16		
P37	OUT		AO2	
P20	I/O	IN		

Port 3 also provides output for each of the counter/timers and the AND/OR Logic (see Figure 13). Control is performed by programming bits D5-D4 of CTR1, bit 0 of CTR0, and bit 0 of CTR2.

Capture_INT_Mask

Set this bit to allow an interrupt when data is captured into either LO8 or HI8 upon a positive or negative edge detection in demodulation mode.

Counter INT Mask

Set this bit to allow an interrupt when T8 has a timeout.

P34_Out

This bit defines whether P34 is used as a normal output pin or the T8 output.

T8 and T16 Common Functions—CTR1(0D)01H

This register controls the functions in common with the T8 and T16.

Table 13 lists and briefly describes the fields for this register.

Table 13. CTR1(0D)01H T8 and T16 Common Functions

Field	Bit Position		Value	Description
Mode	7	R/W	0*	Transmit Mode
				Demodulation Mode
P36_Out/	-6	R/W		Transmit Mode
Demodulator_Input			0*	Port Output
			1	T8/T16 Output
				Demodulation Mode
			0	P31
			1	P20
T8/T16_Logic/	54	R/W		Transmit Mode
Edge _Detect			00**	AND
			01	OR
			10	NOR
			11	NAND
				Demodulation Mode
			00**	Falling Edge
			01	Rising Edge
			10	Both Edges
			11	Reserved

Table 13. CTR1(0D)01H T8 and T16 Common Functions (Continued)

Field	Bit Position		Value	Description
Transmit_Submode/	32	R/W		Transmit Mode
Glitch_Filter			00*	Normal Operation
			01	Ping-Pong Mode
			10	T16_Out = 0
			11	T16_Out = 1
				Demodulation Mode
			00*	No Filter
			01	4 SCLK Cycle
			10	8 SCLK Cycle
			11	Reserved
Initial_T8_Out/	1-			Transmit Mode
Rising Edge		R/W	0*	T8_OUT is 0 Initially
			1	T8_OUT is 1 Initially
				Demodulation Mode
		R	0*	No Rising Edge
			1	Rising Edge Detected
		W	0	No Effect
			1	Reset Flag to 0
Initial_T16_Out/	0			Transmit Mode
Falling_Edge		R/W	0*	T16_OUT is 0 Initially
			1	T16_OUT is 1 Initially
				Demodulation Mode
		R	0*	No Falling Edge
			1	Falling Edge Detected
		W	0	No Effect
			1	Reset Flag to 0

Note:

Mode

If the result is 0, the counter/timers are in TRANSMIT mode; otherwise, they are in DEMODULATION mode.

P36_Out/Demodulator_Input

In TRANSMIT Mode, this bit defines whether P36 is used as a normal output pin or the combined output of T8 and T16.

In DEMODULATION Mode, this bit defines whether the input signal to the Counter/Timers is from P20 or P31.

If the input signal is from Port 31, a capture event may also generate an IRQ2 interrupt. To prevent generating an IRQ2, either disable the IRQ2 interrupt by clearing its IMR bit D2 or use P20 as the input.

^{*}Default at Power-On Reset.

^{**}Default at Power-On Reset.Not reset with Stop Mode recovery.

T8/T16_Logic/Edge _Detect

In TRANSMIT Mode, this field defines how the outputs of T8 and T16 are combined (AND, OR, NOR, NAND).

In DEMODULATION Mode, this field defines which edge should be detected by the edge detector.

Transmit_Submode/Glitch Filter

In Transmit Mode, this field defines whether T8 and T16 are in the PING-PONG mode or in independent normal operation mode. Setting this field to "NORMAL OPERATION Mode" terminates the "PING-PONG Mode" operation. When set to 10, T16 is immediately forced to a 0; a setting of 11 forces T16 to output a 1.

In DEMODULATION Mode, this field defines the width of the glitch that must be filtered out.

Initial_T8_Out/Rising_Edge

In TRANSMIT Mode, if 0, the output of T8 is set to 0 when it starts to count. If 1, the output of T8 is set to 1 when it starts to count. When the counter is not enabled and this bit is set to 1 or 0, T8_OUT is set to the opposite state of this bit. This ensures that when the clock is enabled, a transition occurs to the initial state set by CTR1, D1.

In DEMODULATION Mode, this bit is set to 1 when a rising edge is detected in the input signal. In order to reset the mode, a 1 should be written to this location.

Initial_T16 Out/Falling _Edge

In TRANSMIT Mode, if it is 0, the output of T16 is set to 0 when it starts to count. If it is 1, the output of T16 is set to 1 when it starts to count. This bit is effective only in Normal or PING-PONG Mode (CTR1, D3; D2). When the counter is not enabled and this bit is set, T16_OUT is set to the opposite state of this bit. This ensures that when the clock is enabled, a transition occurs to the initial state set by CTR1, D0.

In DEMODULATION Mode, this bit is set to 1 when a falling edge is detected in the input signal. In order to reset it, a 1 should be written to this location.

Note: Modifying CTR1 (D1 or D0) while the counters are enabled causes unpredictable output from T8/16_OUT.

CTR2 Counter/Timer 16 Control Register—CTR2(D)02H

Table 14 lists and briefly describes the fields for this register.

40

When T8 is enabled, the output T8_OUT switches to the initial value (CTR1, D1). If the initial value (CTR1, D1) is 0, TC8L is loaded; otherwise, TC8H is loaded into the counter. In SINGLE-PASS Mode (CTR0, D6), T8 counts down to 0 and stops, T8_OUT toggles, the timeout status bit (CTR0, D5) is set, and a timeout interrupt can be generated if it is enabled (CTR0, D1). In Modulo-N Mode, upon reaching terminal count, T8_OUT is toggled, but no interrupt is generated. From that point, T8 loads a new count (if the T8_OUT level now is 0), TC8L is loaded; if it is 1, TC8H is loaded. T8 counts down to 0, toggles T8_OUT, and sets the timeout status bit (CTR0, D5), thereby generating an interrupt if enabled (CTR0, D1). One cycle is thus completed. T8 then loads from TC8H or TC8L according to the T8_OUT level and repeats the cycle. See Figure 20.

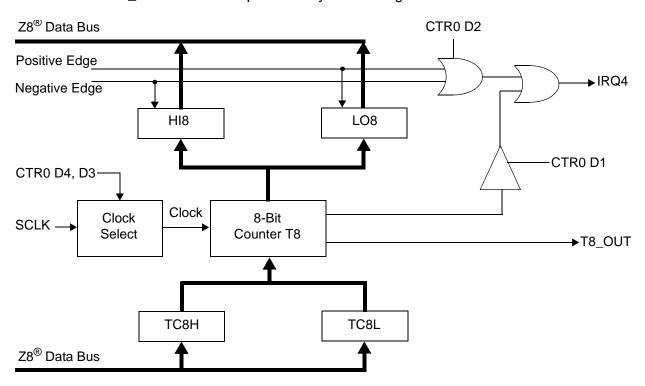


Figure 20. 8-Bit Counter/Timer Circuits

You can modify the values in TC8H or TC8L at any time. The new values take effect when they are loaded.

<u>^</u>

Caution:

To ensure known operation do not write these registers at the time the values are to be loaded into the counter/timer. *An initial count of 1 is not allowed (a non-function occurs).* An initial count of 0 causes TC8 to count from 0 to FFH to FEH.

Power-On Reset

A timer circuit clocked by a dedicated on-board RC-oscillator is used for the Power-On Reset (POR) timer function. The POR time allows V_{DD} and the oscillator circuit to stabilize before instruction execution begins.

The POR timer circuit is a one-shot timer triggered by one of three conditions:

- Power Fail to Power OK status, including Waking up from V_{BO} Standby
- Stop-Mode Recovery (if D5 of SMR = 1)
- WDT Timeout

The POR timer is 2.5 ms minimum. Bit 5 of the Stop-Mode Register determines whether the POR timer is bypassed after Stop-Mode Recovery (typical for external clock).

HALT Mode

This instruction turns off the internal CPU clock, but not the XTAL oscillation. The counter/timers and external interrupts IRQ0, IRQ1, IRQ2, IRQ3, IRQ4, and IRQ5 remain active. The devices are recovered by interrupts, either externally or internally generated. An interrupt request must be executed (enabled) to exit HALT Mode. After the interrupt service routine, the program continues from the instruction after HALT Mode.

STOP Mode

This instruction turns off the internal clock and external crystal oscillation, reducing the standby current to 10 μ A or less. STOP Mode is terminated only by a reset, such as WDT timeout, POR, SMR or external reset. This condition causes the processor to restart the application program at address 000CH. To enter STOP (or HALT) mode, first flush the instruction pipeline to avoid suspending execution in mid-instruction. Execute a NOP (Opcode = FFH) immediately before the appropriate sleep instruction, as follows:

Table 19. Stop Mode Recovery Source

SMR:432			Operation		
D4	D3	D2	Description of Action		
0	0	0	POR and/or external reset recovery		
0	0	1	Reserved		
0	1	0	P31 transition		
0	1	1	P32 transition		
1	0	0	P33 transition		
1	0	1	P27 transition		
1	1	0	Logical NOR of P20 through P23		
1	1	1	Logical NOR of P20 through P27		

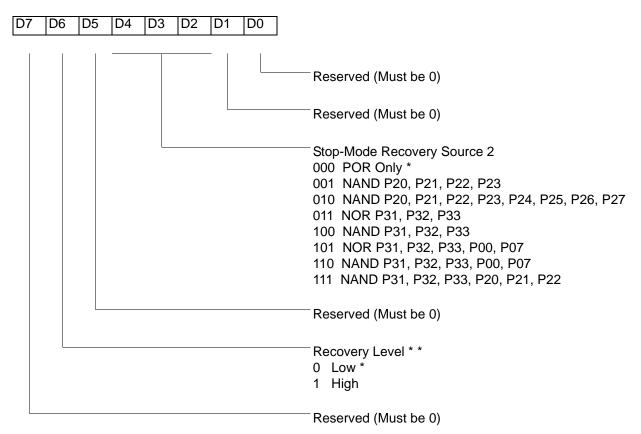
Note: Any Port 2 bit defined as an output drives the corresponding input to the default state. For example, if the NOR of P23-P20 is selected as the recovery source and P20 is configured as an output, the remaining SMR pins (P23-P21) form the NOR equation. This condition allows the remaining inputs to control the AND/OR function. Refer to SMR2 register on page 59 for other recover sources.

Stop Mode Recovery Delay Select (D5)

This bit, if Low, disables the T_{POR} delay after Stop Mode Recovery. The default configuration of this bit is 1. If the "fast" wake up is selected, the Stop Mode Recovery source must be kept active for at least 5 TpC.

Note: It is recommended that this bit be set to 1 if using a crystal or resonator clock source. The T_{POR} delay allows the clock source to stabilize before executing instructions.

Stop Mode Recovery Edge Select (D6)


A 1 in this bit position indicates that a High level on any one of the recovery sources wakes the device from Stop Mode. A 0 indicates Low level recovery. The default is 0 on POR.

Cold or Warm Start (D7)

This bit is read only. It is set to 1 when the device is recovered from Stop Mode. The bit is set to 0 when the device reset is other than Stop Mode Recovery (SMR).

Stop Mode Recovery Register 2 (SMR2)

This register determines the mode of Stop Mode Recovery for SMR2 (Figure 36). SMR2(0F)DH

Note: If used in conjunction with SMR, either of the two specified events causes a Stop-Mode Recovery.

Figure 36. Stop Mode Recovery Register 2 ((0F)DH:D2-D4, D6 Write Only)

If SMR2 is used in conjunction with SMR, either of the specified events causes a Stop Mode Recovery.

Note: Port pins configured as outputs are ignored as an SMR or SMR2 recovery source. For example, if the NAND or P23–P20 is selected as the recovery source and P20 is configured as an output, the remaining SMR pins (P23–P21) form the NAND equation.

^{*} Default setting after reset

^{* *} At the XOR gate input

Low-Voltage Detection Register—LVD(D)0Ch

Note: Voltage detection does not work at Stop mode. It must be disabled during Stop mode in order to reduce current.

Field	Bit Position			Description
LVD	76543			Reserved No Effect
	2	R	1 0*	HVD flag set HVD flag reset
	1-	R	1 0*	LVD flag set LVD flag reset
	0	R/W	1 0*	Enable VD Disable VD
*Default	after POR			

Note: Do not modify register P01M while checking a low-voltage condition. Switching noise of both ports 0 and 1 together might trigger the LVD flag.

Voltage Detection and Flags

The Voltage Detection register (LVD, register <code>0CH</code> at the expanded register bank <code>0Dh</code>) offers an option of monitoring the V_{CC} voltage. The Voltage Detection is enabled when bit 0 of LVD register is set. Once Voltage Detection is enabled, the the V_{CC} level is monitored in real time. The flags in the LVD register valid 20uS after Voltage Detection is enabled. The HVD flag (bit 2 of the LVD register) is set only if V_{CC} is higher than V_{HVD}. The LVD flag (bit 1 of the LVD register) is set only if V_{CC} is lower than the V_{LVD}. When Voltage Detection is enabled, the LVD flag also triggers IRQ5. The IRQ bit 5 latches the low voltage condition until it is cleared by instructions or reset. The IRQ5 interrupt is served if it is enabled in the IMR register. Otherwise, bit 5 of IRQ register is latched as a flag only.

Notes: If it is necessary to receive an LVD interrupt upon power-up at an operating voltage lower than the low battery detect threshold, enable interrupts using the Enable Interrupt instruction (EI) prior to enabling the voltage detection.

CTR2(0D)02H

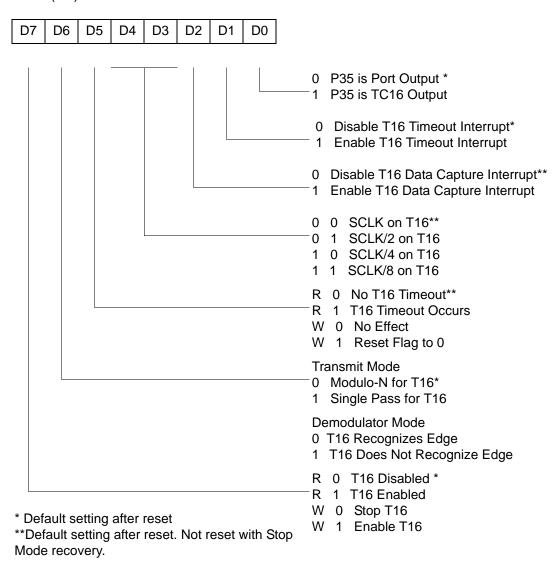
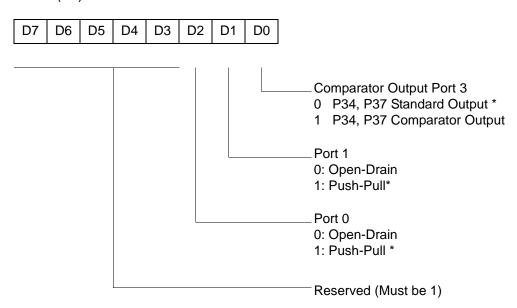



Figure 41. T16 Control Register ((0D) 2H: Read/Write Except Where Noted)

PCON(0F)00H

^{*} Default setting after reset

Figure 44. Port Configuration Register (PCON)(0F)00H: Write Only)

R249 IPR(F9H)

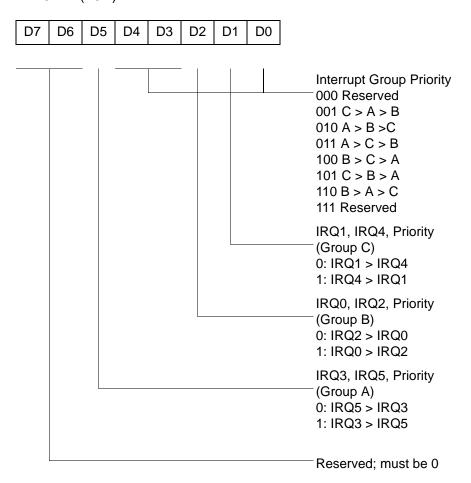


Figure 51. Interrupt Priority Register (F9H: Write Only)

R252 Flags(FCH)

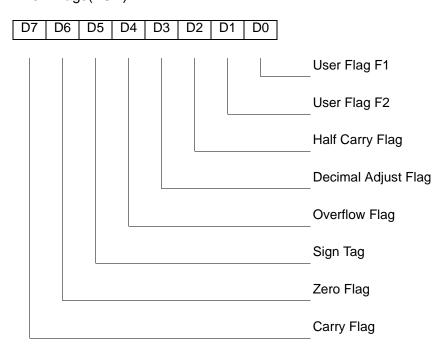
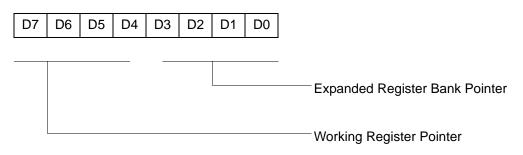



Figure 54. Flag Register (FCH: Read/Write)

R253 RP(FDH)

Default setting after reset = 0000 0000

Figure 55. Register Pointer (FDH: Read/Write)

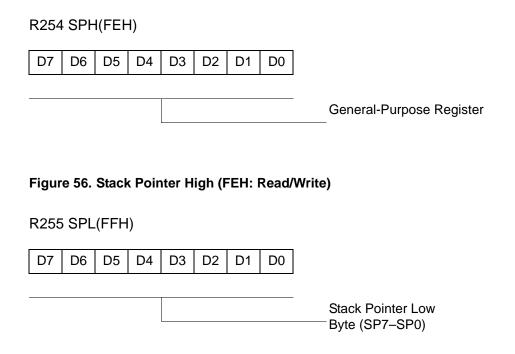


Figure 57. Stack Pointer Low (FFH: Read/Write)

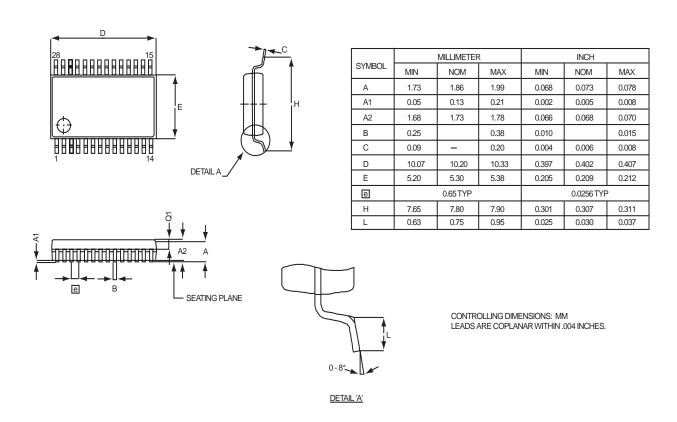


Figure 65. 28-Pin SSOP Package Diagram

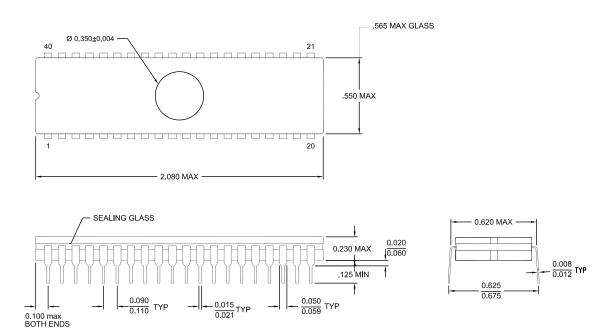


Figure 66. 40-Pin CDIP Package

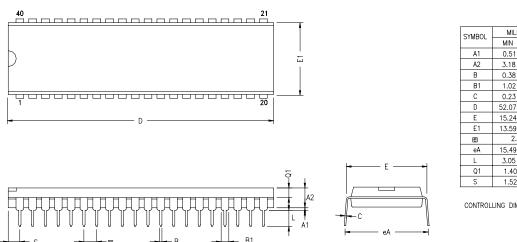


Figure 67. 40-Pin PDIP Package Diagram

SYMBOL	MILLIN	METER	INC	Н
SIMIDOL	MIN	MAX	MIN	MAX
A1	0.51	1.02	.020	.040
A2	3.18	3.94	.125	.155
В	0.38	0.53	.015	.021
B1	1.02	1.52	.040	.060
С	0.23	0.38	.009	.015
D	52.07	52.58	2.050	2.070
E	15.24	15.75	.600	.620
E1	13.59	14.22	.535	.560
e	2.54	TYP	.100	TYP
eA	15.49	16.76	.610	.660
L	3.05	3.81	.120	.150
Q1	1.40	1.91	.055	.075
S	1.52	2.29	.060	.090

CONTROLLING DIMENSIONS : INCH

91

8KB Standard Temperature: 0° to +70°C			
Part Number	Description	Part Number	Description
ZGP323LSH4808C	48-pin SSOP 8K OTP	ZGP323LSS2808C	28-pin SOIC 8K OTP
ZGP323LSP4008C	40-pin PDIP 8K OTP	ZGP323LSH2008C	20-pin SSOP 8K OTP
ZGP323LSH2808C	28-pin SSOP 8K OTP	ZGP323LSP2008C	20-pin PDIP 8K OTP
ZGP323LSP2808C	28-pin PDIP 8K OTP	ZGP323LSS2008C	20-pin SOIC 8K OTP

8KB Extended Temperature: -40° to +105°C				
Part Number	Description	Part Number	Description	
ZGP323LEH4808C	48-pin SSOP 8K OTP	ZGP323LES2808C	28-pin SOIC 8K OTP	
ZGP323LEP4008C	40-pin PDIP 8K OTP	ZGP323LEH2008C	20-pin SSOP 8K OTP	
ZGP323LEH2808C	28-pin SSOP 8K OTP	ZGP323LEP2008C	20-pin PDIP 8K OTP	
ZGP323LEP2808C	28-pin PDIP 8K OTP	ZGP323LES2008C	20-pin SOIC 8K OTP	

8KB Automotive Temperature: -40° to +125°C			
Part Number	Description	Part Number	Description
ZGP323LAH4808C	48-pin SSOP 8K OTP	ZGP323LAS2808C	28-pin SOIC 8K OTP
ZGP323LAP4008C	40-pin PDIP 8K OTP	ZGP323LAH2008C	20-pin SSOP 8K OTP
ZGP323LAH2808C	28-pin SSOP 8K OTP	ZGP323LAP2008C	20-pin PDIP 8K OTP
ZGP323LAP2808C	28-pin PDIP 8K OTP	ZGP323LAS2008C	20-pin SOIC 8K OTP

Note: Replace C with G for Lead-Free Packaging

95

Precharacterization Product

The product represented by this document is newly introduced and ZiLOG has not completed the full characterization of the product. The document states what ZiLOG knows about this product at this time, but additional features or nonconformance with some aspects of the document might be found, either by ZiLOG or its customers in the course of further application and characterization work. In addition, ZiLOG cautions that delivery might be uncertain at times, due to start-up yield issues.

ZiLOG, Inc.

532 Race Street

San Jose, CA 95126-3432

Telephone: (408) 558-8500

FAX: 408 558-8300

Internet: http://www.ZiLOG.com

T8 and T16 common control functions 65 T8/T16 control 68 TC16H(D)07h 30 TC16L(D)06h 31 TC8 control 64 TC8H(D)05h 31 TC8L(D)04h 31 voltage detection 69 watch-dog timer 73 register description	T T16 transmit mode 44 T16_Capture_HI 30 T8 transmit mode 38 T8_Capture_HI 30 test conditions, standard 10 test load diagram 10 timing diagram, AC 14 transmit mode flowchart 39
Counter/Timer2 LS-Byte Hold 31 Counter/Timer2 MS-Byte Hold 30 Counter/Timer8 Control 31 Counter/Timer8 High Hold 31 Counter/Timer8 Low Hold 31 CTR2 Counter/Timer 16 Control 35 CTR3 T8/T16 Control 37 Stop Mode Recovery2 38 T16_Capture_LO 30 T8 and T16 Common functions 33 T8_Capture_HI 30 T8_Capture_LO 30	V VCC 5 voltage brown-out/standby 62 detection and flags 63 voltage detection register 69 W watch-dog timer
register file 28 expanded 24 register pointer 27 detail 29	mode registerwatch-dog timer mode regis- ter 60 time select 61
reset pin function 23 resets and WDT 61	X XTAL1 5 XTAL1 pin function 16
SCLK circuit 56 single-pass mode T16_OUT 45 T8_OUT 41 stack 29 standard test conditions 10 standby modes 1 stop instruction, counter/timer 52 stop mode recovery 2 register 59 source 57 stop mode recovery 2 59 stop mode recovery register 55	XTAL2 5 XTAL2 pin function 16