Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|---| | Product Status | Obsolete | | Core Processor | Z8 | | Core Size | 8-Bit | | Speed | 8MHz | | Connectivity | - | | Peripherals | HLVD, POR, WDT | | Number of I/O | 24 | | Program Memory Size | 32KB (32K x 8) | | Program Memory Type | OTP | | EEPROM Size | - | | RAM Size | 237 x 8 | | Voltage - Supply (Vcc/Vdd) | 2V ~ 3.6V | | Data Converters | - | | Oscillator Type | Internal | | Operating Temperature | -40°C ~ 125°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 28-SOIC (0.295", 7.50mm Width) | | Supplier Device Package | - | | Purchase URL | https://www.e-xfl.com/product-detail/zilog/zgp323las2832c00tr | ## **Table of Contents** | Development Features | |--| | General Description | | Pin Description | | Absolute Maximum Ratings | | Standard Test Conditions | | DC Characteristics | | AC Characteristics | | Pin Functions 16 XTAL1 Crystal 1 (Time-Based Input) 16 XTAL2 Crystal 2 (Time-Based Output) 16 Port 0 (P07–P00) 16 Port 1 (P17–P10) 17 Port 2 (P27–P20) 18 Port 3 (P37–P30) 19 RESET (Input, Active Low) 23 | | Functional Description 23 Program Memory 23 RAM 23 Expanded Register File 24 Register File 28 Stack 29 Timers 30 Counter/Timer Functional Blocks 38 | | Expanded Register File Control Registers (0D) | | Expanded Register File Control Registers (0F) 69 | | Standard Control Registers | | Package Information | | Ordering Information | | Precharacterization Product 95 | # List of Figures | Figure 1. | Functional Block Diagram 3 | |------------|--| | Figure 2. | Counter/Timers Diagram | | Figure 3. | 20-Pin PDIP/SOIC/SSOP/CDIP* Pin Configuration | | Figure 4. | 28-Pin PDIP/SOIC/SSOP/CDIP* Pin Configuration | | Figure 5. | 40-Pin PDIP/CDIP* Pin Configuration | | Figure 6. | 48-Pin SSOP Pin Configuration | | Figure 7. | Test Load Diagram | | Figure 8. | AC Timing Diagram | | Figure 9. | Port 0 Configuration | | Figure 10. | Port 1 Configuration | | Figure 11. | Port 2 Configuration | | Figure 12. | Port 3 Configuration | | Figure 13. | Port 3 Counter/Timer Output Configuration | | Figure 14. | Program Memory Map (32K OTP) | | Figure 15. | Expanded Register File Architecture 26 | | Figure 16. | Register Pointer | | Figure 17. | Register Pointer—Detail | | Figure 18. | Glitch Filter Circuitry | | Figure 19. | Transmit Mode Flowchart 39 | | Figure 20. | 8-Bit Counter/Timer Circuits | | Figure 21. | T8_OUT in Single-Pass Mode | | Figure 22. | T8_OUT in Modulo-N Mode | | Figure 23. | Demodulation Mode Count Capture Flowchart 42 | | Figure 24. | Demodulation Mode Flowchart 43 | | Figure 25. | 16-Bit Counter/Timer Circuits 44 | | Figure 26. | T16_OUT in Single-Pass Mode | | Figure 27. | T16_OUT in Modulo-N Mode | | Figure 28. | Ping-Pong Mode Diagram 47 | | Figure 29. | Output Circuit | | Figure 30. | Interrupt Block Diagram | | Figure 31. | Oscillator Configuration | | Figure 32. | Port Configuration Register (PCON) (Write Only) 53 | | Figure 33. | STOP Mode Recovery Register 55 | | Figure 34. | SCLK Circuit 56 | Port 1: 0–3 pull-up transistors Port 1: 4–7 pull-up transistors Port 2: 0–7 pull-up transistors EPROM Protection WDT enabled at POR **Note:** The mask option pull-up transistor has a *typical* equivalent resistance of 200 K Ω ±50% at V_{CC}=3 V and 450 K Ω ±50% at V_{CC}=2 V. ## **General Description** The Z8 GPTM OTP MCU Family is an OTP-based member of the MCU family of infrared microcontrollers. With 237B of general-purpose RAM and up to 32KB of OTP, ZiLOG[®]'s CMOS microcontrollers offer fast-executing, efficient use of memory, sophisticated interrupts, input/output bit manipulation capabilities, automated pulse generation/reception, and internal key-scan pull-up transistors. The Z8 GPTM OTP MCU Family architecture (Figure 1) is based on ZiLOG's 8-bit microcontroller core with an Expanded Register File allowing access to register-mapped peripherals, input/output (I/O) circuits, and powerful counter/timer circuitry. The Z8[®] offers a flexible I/O scheme, an efficient register and address space structure, and a number of ancillary features that are useful in many consumer, automotive, computer peripheral, and battery-operated hand-held applications. There are three basic address spaces available to support a wide range of configurations: Program Memory, Register File and Expanded Register File. The register file is composed of 256 Bytes (B) of RAM. It includes 4 I/O port registers, 16 control and status registers, and 236 general-purpose registers. The Expanded Register File consists of two additional register groups (F and D). To unburden the program from coping with such real-time problems as generating complex waveforms or receiving and demodulating complex waveform/pulses, the Z8 GP OTP MCU offers a new intelligent counter/timer architecture with 8-bit and 16-bit counter/timers (see Figure 2). Also included are a large number of user-selectable modes and two on-board comparators to process analog signals with separate reference voltages. Note: All signals with an overline, " ", are active Low. For example, B/W, in which WORD is active Low, and B/W, in which BYTE is active Low. Power connections use the conventional descriptions listed in Table 2. Figure 5. 40-Pin PDIP/CDIP* Pin Configuration Note: *Windowed Cerdip. These units are intended to be used for engineering code development only. ZiLOG does not recommend/guarantee this package for production use. ## **XTAL1 Crystal 1 (Time-Based Input)** This pin connects a parallel-resonant crystal or ceramic resonator to the on-chip oscillator input. Additionally, an optional external single-phase clock can be coded to the on-chip oscillator input. ### XTAL2 Crystal 2 (Time-Based Output) This pin connects a parallel-resonant crystal or ceramic resonant to the on-chip oscillator output. ## Port 0 (P07-P00) Port 0 is an 8-bit, bidirectional, CMOS-compatible port. These eight I/O lines are configured under software control as a nibble I/O port. The output drivers are push-pull or open-drain controlled by bit D2 in the PCON register. If one or both nibbles are needed for I/O operation, they must be configured by writing to the Port 0 mode register. After a hardware reset, Port 0 is configured as an input port. An optional pull-up transistor is available as a mask option on all Port 0 bits with nibble select. **Notes:** Internal pull-ups are disabled on any given pin or group of port pins when programmed into output mode. The Port 0 direction is reset to be input following an SMR. Figure 10. Port 1 Configuration ## Port 2 (P27-P20) Port 2 is an 8-bit, bidirectional, CMOS-compatible I/O port (see Figure 11). These eight I/O lines can be independently configured under software control as inputs or outputs. Port 2 is always available for I/O operation. A mask option is available to connect eight pull-up transistors on this port. Bits programmed as outputs are globally programmed as either push-pull or open-drain. The POR resets with the eight bits of Port 2 configured as inputs. Port 2 also has an 8-bit input OR and AND gate, which can be used to wake up the part. P20 can be programmed to access the edge-detection circuitry in demodulation mode. CTR1(0D)01H" on page 33). Other edge detect and IRQ modes are described in Table 11. **Note:** Comparators are powered down by entering Stop Mode. For P31-P33 to be used in a Stop Mode Recovery (SMR) source, these inputs must be placed into digital mode. **Table 11. Port 3 Pin Function Summary** | Pin | I/O | Counter/Timers | Comparator | Interrupt | |-----------|-----|----------------|------------|-----------| | Pref1/P30 | IN | | RF1 | | | P31 | IN | IN | AN1 | IRQ2 | | P32 | IN | | AN2 | IRQ0 | | P33 | IN | | RF2 | IRQ1 | | P34 | OUT | T8 | AO1 | | | P35 | OUT | T16 | | | | P36 | OUT | T8/16 | | | | P37 | OUT | | AO2 | | | P20 | I/O | IN | | | Port 3 also provides output for each of the counter/timers and the AND/OR Logic (see Figure 13). Control is performed by programming bits D5-D4 of CTR1, bit 0 of CTR0, and bit 0 of CTR2. The upper nibble of the register pointer (see Figure 16) selects which working register group, of 16 bytes in the register file, is accessed out of the possible 256. The lower nibble selects the expanded register file bank and, in the case of the Z8 GP family, banks 0, F, and D are implemented. A $_{0\mathrm{H}}$ in the lower nibble allows the normal register file (bank 0) to be addressed. Any other value from $_{1\mathrm{H}}$ to $_{\mathrm{FH}}$ exchanges the lower 16 registers to an expanded register bank. Figure 16. Register Pointer Example: Z8 GP: (See Figure 15 on page 26) R253 RP = 00h R0 = Port 0 R1 = Port 1 R2 = Port 2 R3 = Port 3 But if: R253 RP = 0Dh R0 = CTRL0 R1 = CTRL1 R2 = CTRL2 R3 = Reserved The counter/timers are mapped into ERF group D. Access is easily performed using the following: ``` RP, #0Dh T.D ; Select ERF D for access to bank D ; (working register group 0) R0,#xx LD ; load CTRL0 LD 1, #xx ; load CTRL1 LD R1, 2 ; CTRL2→CTRL1 LD RP, #0Dh ; Select ERF D for access to bank D ; (working register group 0) RP, #7Dh ; Select expanded register bank D and working ; register group 7 of bank 0 for access. 71h, 2 ; CTRL2→register 71h R1, 2 ; CTRL2\rightarrowregister 71h ``` ## **Register File** The register file (bank 0) consists of 4 I/O port registers, 237 general-purpose registers, 16 control and status registers (R0–R3, R4–R239, and R240–R255, respectively), and two expanded registers groups in Banks D (see Table 12) and F. Instructions can access registers directly or indirectly through an 8-bit address field, thereby allowing a short, 4-bit register address to use the Register Pointer (Figure 17). In the 4-bit mode, the register file is divided into 16 working register groups, each occupying 16 continuous locations. The Register Pointer addresses the starting location of the active working register group. Note: Working register group E0–EF can only be accessed through working registers and indirect addressing modes. Table 14. CTR2(D)02H: Counter/Timer16 Control Register | Field | Bit Position | | Value | Description | |------------------|--------------|-----|-------|---------------------------| | T16_Enable | 7 | R | 0* | Counter Disabled | | | | | 1 | Counter Enabled | | | | W | 0 | Stop Counter | | | | | 1 | Enable Counter | | Single/Modulo-N | -6 | R/W | | Transmit Mode | | | | | 0* | Modulo-N | | | | | 1 | Single Pass | | | | | | Demodulation Mode | | | | | 0 | T16 Recognizes Edge | | | | | 1 | T16 Does Not Recognize | | | | | | Edge | | Time_Out | 5 | R | 0* | No Counter Timeout | | | | | 1 | Counter Timeout | | | | | | Occurred | | | | W | 0 | No Effect | | | | | 1 | Reset Flag to 0 | | T16 _Clock | 43 | R/W | 00** | SCLK | | | | | 01 | SCLK/2 | | | | | 10 | SCLK/4 | | | | | 11 | SCLK/8 | | Capture_INT_Mask | 2 | R/W | 0** | Disable Data Capture Int. | | | | | 1 | Enable Data Capture Int. | | Counter_INT_Mask | 1- | R/W | 0 | Disable Timeout Int. | | | | | 1 | Enable Timeout Int. | | P35_Out | 0 | R/W | 0* | P35 as Port Output | | | | | 1 | T16 Output on P35 | #### Note: #### T16_Enable This field enables T16 when set to 1. #### Single/Modulo-N In TRANSMIT Mode, when set to 0, the counter reloads the initial value when it reaches the terminal count. When set to 1, the counter stops when the terminal count is reached. ^{*}Indicates the value upon Power-On Reset. ^{**}Indicates the value upon Power-On Reset.Not reset with Stop Mode recovery. Table 15. CTR3 (D)03H: T8/T16 Control Register (Continued) | Field | Bit Position | | Value | Description | |----------|--------------|---|-------|--------------------| | Reserved | 43210 | R | 1 | Always reads 11111 | | | | W | X | No Effect | Note: *Indicates the value upon Power-On Reset. #### Counter/Timer Functional Blocks #### **Input Circuit** The edge detector monitors the input signal on P31 or P20. Based on CTR1 D5–D4, a pulse is generated at the Pos Edge or Neg Edge line when an edge is detected. Glitches in the input signal that have a width less than specified (CTR1 D3, D2) are filtered out (see Figure 18). Figure 18. Glitch Filter Circuitry #### **T8 Transmit Mode** Before T8 is enabled, the output of T8 depends on CTR1, D1. If it is 0, T8_OUT is 1; if it is 1, T8_OUT is 0. See Figure 19. ^{**}Indicates the value upon Power-On Reset. Not reset with Stop Mode recovery. Figure 19. Transmit Mode Flowchart #### Clock The device's on-chip oscillator has a high-gain, parallel-resonant amplifier, for connection to a crystal, ceramic resonator, or any suitable external clock source (XTAL1 = Input, XTAL2 = Output). The crystal must be AT cut, 1 MHz to 8 MHz maximum, with a series resistance (RS) less than or equal to 100 Ω . The on-chip oscillator can be driven with a suitable external clock source. The crystal must be connected across XTAL1 and XTAL2 using the recommended capacitors (capacitance greater than or equal to 22 pF) from each pin to ground. Figure 31. Oscillator Configuration ``` FF NOP ; clear the pipeline 6F Stop ; enter Stop Mode Or FF NOP ; clear the pipeline 7F HALT ; enter HALT Mode ``` #### **Port Configuration Register** The Port Configuration (PCON) register (Figure 32) configures the comparator output on Port 3. It is located in the expanded register 2 at Bank F, location 00. PCON(FH)00H ^{*} Default setting after reset Figure 32. Port Configuration Register (PCON) (Write Only) #### **Comparator Output Port 3 (D0)** Bit 0 controls the comparator used in Port 3. A 1 in this location brings the comparator outputs to P34 and P37, and a 0 releases the Port to its standard I/O configuration. #### Port 1 Output Mode (D1) Bit 1 controls the output mode of port 1. A 1 in this location sets the output to push-pull, and a 0 sets the output to open-drain. #### **WDTMR During STOP (D3)** This bit determines whether or not the WDT is active during STOP Mode. Because the XTAL clock is stopped during STOP Mode, the on-board RC has to be selected as the clock source to the WDT/POR counter. A 1 indicates active during Stop. The default is 1. #### **EPROM Selectable Options** There are seven EPROM Selectable Options to choose from based on ROM code requirements. These options are listed in Table 21. **Table 21. EPROM Selectable Options** | Port 00–03 Pull-Ups | On/Off | |-----------------------------------|--------| | Port 04–07 Pull-Ups | On/Off | | Port 10–13 Pull-Ups | On/Off | | Port 14–17 Pull-Ups | On/Off | | Port 20–27 Pull-Ups | On/Off | | EPROM Protection | On/Off | | Watch-Dog Timer at Power-On Reset | On/Off | #### **Voltage Brown-Out/Standby** An on-chip Voltage Comparator checks that the V_{DD} is at the required level for correct operation of the device. Reset is globally driven when V_{DD} falls below V_{BO}. A small drop in V_{DD} causes the XTAL1 and XTAL2 circuitry to stop the crystal or resonator clock. If the V_{DD} is allowed to stay above V_{RAM}, the RAM content is preserved. When the power level is returned to above V_{BO}, the device performs a POR and functions normally. #### Low-Voltage Detection Register—LVD(D)0Ch **Note:** Voltage detection does not work at Stop mode. It must be disabled during Stop mode in order to reduce current. | Field | Bit Position | | | Description | |----------|--------------|-----|---------|--------------------------------| | LVD | 76543 | | | Reserved
No Effect | | | 2 | R | 1
0* | HVD flag set
HVD flag reset | | | 1- | R | 1
0* | LVD flag set
LVD flag reset | | | 0 | R/W | 1
0* | Enable VD
Disable VD | | *Default | after POR | | | | Note: Do not modify register P01M while checking a low-voltage condition. Switching noise of both ports 0 and 1 together might trigger the LVD flag. #### **Voltage Detection and Flags** The Voltage Detection register (LVD, register <code>0CH</code> at the expanded register bank <code>0Dh</code>) offers an option of monitoring the V_{CC} voltage. The Voltage Detection is enabled when bit 0 of LVD register is set. Once Voltage Detection is enabled, the the V_{CC} level is monitored in real time. The flags in the LVD register valid 20uS after Voltage Detection is enabled. The HVD flag (bit 2 of the LVD register) is set only if V_{CC} is higher than V_{HVD}. The LVD flag (bit 1 of the LVD register) is set only if V_{CC} is lower than the V_{LVD}. When Voltage Detection is enabled, the LVD flag also triggers IRQ5. The IRQ bit 5 latches the low voltage condition until it is cleared by instructions or reset. The IRQ5 interrupt is served if it is enabled in the IMR register. Otherwise, bit 5 of IRQ register is latched as a flag only. Notes: If it is necessary to receive an LVD interrupt upon power-up at an operating voltage lower than the low battery detect threshold, enable interrupts using the Enable Interrupt instruction (EI) prior to enabling the voltage detection. #### CTR3(0D)03H ^{*} Default setting after reset. Figure 42. T8/T16 Control Register (0D)03H: Read/Write (Except Where Noted) Note: If Sync Mode is enabled, the first pulse of T8 carrier is always synchronized with T16 (demodulated signal). It can always provide a full carrier pulse. ^{**} Default setting after reset. Not reset with Stop Mode recovery. #### SMR(0F)0BH - * Default setting after Reset - * * Set after STOP Mode Recovery - * * * At the XOR gate input - * * * * Default setting after Reset. Must be 1 if using a crystal or resonator clock source. - * * * * * Default setting after Power On Reset. Not Reset with a Stop Mode recovery. Figure 45. Stop Mode Recovery Register ((0F)0BH: D6–D0=Write Only, D7=Read Only) Figure 61. 20-Pin SSOP Package Diagram | 16KB Standard Temperature: 0° to +70°C | | | | | | |--|---------------------|----------------|---------------------|--|--| | Part Number | Description | Part Number | Description | | | | ZGP323LSH4816C | 48-pin SSOP 16K OTP | ZGP323LSS2816C | 28-pin SOIC 16K OTP | | | | ZGP323LSP4016C | 40-pin PDIP 16K OTP | ZGP323LSH2016C | 20-pin SSOP 16K OTP | | | | ZGP323LSH2816C | 28-pin SSOP 16K OTP | ZGP323LSP2016C | 20-pin PDIP 16K OTP | | | | ZGP323LSP2816C | 28-pin PDIP 16K OTP | ZGP323LSS2016C | 20-pin SOIC 16K OTP | | | | 16KB Extended Temperature: -40° to +105°C | | | | | |---|---------------------|----------------|---------------------|--| | Part Number | Description | Part Number | Description | | | ZGP323LEH4816C | 48-pin SSOP 16K OTP | ZGP323LES2816C | 28-pin SOIC 16K OTP | | | ZGP323LEP4016C | 40-pin PDIP 16K OTP | ZGP323LES2016C | 20-pin SOIC 16K OTP | | | ZGP323LEH2816C | 28-pin SSOP 16K OTP | ZGP323LEH2016C | 20-pin SSOP 16K OTP | | | ZGP323LEP2816C | 28-pin PDIP 16K OTP | ZGP323LEP2016C | 20-pin PDIP 16K OTP | | | 16KB Automotive Temperature: -40° to +125°C | | | | | |--|---------------------|----------------|---------------------|--| | Part Number | Description | Part Number | Description | | | ZGP323LAH4816C | 48-pin SSOP 16K OTP | ZGP323LAS2816C | 28-pin SOIC 16K OTP | | | ZGP323LAP4016C | 40-pin PDIP 16K OTP | ZGP323LAH2016C | 20-pin SSOP 16K OTP | | | ZGP323LAH2816C | 28-pin SSOP 16K OTP | ZGP323LAP2016C | 20-pin PDIP 16K OTP | | | ZGP323LAP2816C | 28-pin PDIP 16K OTP | ZGP323LAS2016C | 20-pin SOIC 16K OTP | | | | | | | | | Note: Replace C with G for Lead-Free Packaging | | | | | PS023702-1004 Preliminary Ordering Information